Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = Galinstan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1484 KiB  
Communication
High-Performance Vacuum-Free Processed Organic Solar Cells with Gallium-Based Liquid Metal Top Electrodes
by Rui Hu, Di Xie, Yi Jin, Xiaojie Ren, Xiang Huang, Yitong Ji, Xiaotong Liu, Xueyuan Yang and Wenchao Huang
Materials 2025, 18(12), 2675; https://doi.org/10.3390/ma18122675 - 6 Jun 2025
Viewed by 753
Abstract
Conventional fabrication of high-efficiency organic solar cells (OSCs) predominantly relies on vacuum-evaporated metal top electrodes such as Ag and Al, which hinder large-scale industrial production. Gallium-based liquid metals (GaLMs), particularly the eutectic gallium–indium alloy (EGaIn), represent promising candidates to conventional vacuum-evaporated metal top [...] Read more.
Conventional fabrication of high-efficiency organic solar cells (OSCs) predominantly relies on vacuum-evaporated metal top electrodes such as Ag and Al, which hinder large-scale industrial production. Gallium-based liquid metals (GaLMs), particularly the eutectic gallium–indium alloy (EGaIn), represent promising candidates to conventional vacuum-evaporated metal top electrodes due to their excellent printability and high electrical conductivity. In this study, we fabricated vacuum-free OSCs based on GaLM electrodes (Ga, EGaIn, and Galinstan) and analyzed the device performances. Rigid devices with EGaIn electrodes achieved a champion power conversion efficiency (PCE) of 15.6%. Remarkably, all-solution-processed ultrathin flexible devices employing silver nanowire (AgNW) bottom electrodes in combination with EGaIn top electrodes achieved a PCE of 13.8% while maintaining 83.4% of their initial performance after 100 compression–tension cycles (at 30% strain). This work highlights the potential of GaLMs as cost-effective, scalable, and high-performance top electrodes for next-generation flexible photovoltaic devices, paving the way for their industrial adoption. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

18 pages, 2795 KiB  
Article
Transformers and Long Short-Term Memory Transfer Learning for GenIV Reactor Temperature Time Series Forecasting
by Stella Pantopoulou, Anthonie Cilliers, Lefteri H. Tsoukalas and Alexander Heifetz
Energies 2025, 18(9), 2286; https://doi.org/10.3390/en18092286 - 30 Apr 2025
Viewed by 614
Abstract
Automated monitoring of the coolant temperature can enable autonomous operation of generation IV reactors (GenIV), thus reducing their operating and maintenance costs. Automation can be accomplished with machine learning (ML) models trained on historical sensor data. However, the performance of ML usually depends [...] Read more.
Automated monitoring of the coolant temperature can enable autonomous operation of generation IV reactors (GenIV), thus reducing their operating and maintenance costs. Automation can be accomplished with machine learning (ML) models trained on historical sensor data. However, the performance of ML usually depends on the availability of large amount of training data, which is difficult to obtain for GenIV, as this technology is still under development. We propose the use of transfer learning (TL), which involves utilizing knowledge across different domains, to compensate for this lack of training data. TL can be used to create pre-trained ML models with data from small-scale research facilities, which can then be fine-tuned to monitor GenIV reactors. In this work, we develop pre-trained Transformer and long short-term memory (LSTM) networks by training them on temperature measurements from thermal hydraulic flow loops operating with water and Galinstan fluids at room temperature at Argonne National Laboratory. The pre-trained models are then fine-tuned and re-trained with minimal additional data to perform predictions of the time series of high temperature measurements obtained from the Engineering Test Unit (ETU) at Kairos Power. The performance of the LSTM and Transformer networks is investigated by varying the size of the lookback window and forecast horizon. The results of this study show that LSTM networks have lower prediction errors than Transformers, but LSTM errors increase more rapidly with increasing lookback window size and forecast horizon compared to the Transformer errors. Full article
Show Figures

Figure 1

13 pages, 4536 KiB  
Proceeding Paper
Numerical Thermo-Structural Simulations for the Design of the Havar Beam Window of a Beryllium Target for Neutron Beam Production
by Roberta Dattilo
Eng. Proc. 2025, 85(1), 28; https://doi.org/10.3390/engproc2025085028 - 26 Feb 2025
Viewed by 277
Abstract
The present work was carried out as part of the PRIN 2022JCS2CN project “CoolGal”, which aims to design and manufacture a beryllium target cooled by Galinstan (a liquid metal alloy at room temperature) for the production of neutrons using energetic protons. The objective [...] Read more.
The present work was carried out as part of the PRIN 2022JCS2CN project “CoolGal”, which aims to design and manufacture a beryllium target cooled by Galinstan (a liquid metal alloy at room temperature) for the production of neutrons using energetic protons. The objective of the present work is to thermo-structurally design a beam window that encloses the environment in which the target is housed. The window consists of a Havar disk, the thickness of which must be minimized to absorb the least amount of proton beam power, while its diameter must be sufficient to avoid excessive beam loss. The window will then be embedded around its perimeter and will have to withstand two load conditions, applied individually: A mechanical load, due to the atmospheric pressure of 0.11 MPa during vacuuming, and a thermal load, due to heating during irradiation with the proton beam. Once a first-version window geometry was defined, a static structural finite element analysis (FEA) was carried out by activating geometric nonlinearities to assess the structural integrity of the window under mechanical loading. After that, a static thermal–mechanical FEA analysis was carried out to assess the structural integrity of the window under thermal loading. Given the compressive stress state induced by thermal loading and the slenderness of the window itself, a nonlinear buckling structural FEA analysis was also performed. Full article
Show Figures

Figure 1

13 pages, 2302 KiB  
Article
Passive Frequency Tuning of Kinetic Energy Harvesters Using Distributed Liquid-Filled Mass
by Rahul Adhikari and Nathan Jackson
Actuators 2025, 14(2), 78; https://doi.org/10.3390/act14020078 - 7 Feb 2025
Viewed by 1002
Abstract
Micro-scale kinetic energy harvesters are in large demand to function as sustainable power sources for wireless sensor networks and the Internet of Things. However, one of the challenges associated with them is their inability to easily tune the frequency during the manufacturing process, [...] Read more.
Micro-scale kinetic energy harvesters are in large demand to function as sustainable power sources for wireless sensor networks and the Internet of Things. However, one of the challenges associated with them is their inability to easily tune the frequency during the manufacturing process, requiring devices to be custom-made for each application. Previous attempts have either used active tuning, which consumes power, or passive devices that increase their energy footprint, thus decreasing power density. This study involved developing a novel passive method that does not alter the device footprint or power density. It involved creating a proof mass with an array of chambers or cavities that can be individually filled with liquid to alter the overall proof mass as well as center of gravity. The resonant frequency of a rectangular cantilever can then be altered by changing the location, density, and volume of the liquid-filled mass. The resolution can be enhanced by increasing the number of chambers, whereas the frequency tuning range can be increased by increasing the amount of liquid or density of the liquids used to fill the cavities. A piezoelectric cantilever with a 340 Hz initial resonant frequency was used as the testing device. Liquids with varying density (silicone oil, liquid sodium polytungstate, and Galinstan) were investigated. The resonant frequencies were measured experimentally by filling various cavities with these liquids to determine the tuning frequency range and resolution. The tuning ranges of the first resonant frequency mode for the device were 142–217 Hz, 108–217 Hz, and 78.4–217 Hz for silicone oil, liquid sodium polytungstate, and Galinstan, respectively, with a sub Hz resolution. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

16 pages, 3231 KiB  
Article
Long-Term Corrosion of Eutectic Gallium, Indium, and Tin (EGaInSn) Interfacing with Diamond
by Stephan Handschuh-Wang, Tao Wang, Zongyan Zhang, Fucheng Liu, Peigang Han and Xiaorui Liu
Materials 2024, 17(11), 2683; https://doi.org/10.3390/ma17112683 - 2 Jun 2024
Cited by 4 | Viewed by 2448
Abstract
Thermal transport is of grave importance in many high-value applications. Heat dissipation can be improved by utilizing liquid metals as thermal interface materials. Yet, liquid metals exhibit corrosivity towards many metals used for heat sinks, such as aluminum, and other electrical devices (i.e., [...] Read more.
Thermal transport is of grave importance in many high-value applications. Heat dissipation can be improved by utilizing liquid metals as thermal interface materials. Yet, liquid metals exhibit corrosivity towards many metals used for heat sinks, such as aluminum, and other electrical devices (i.e., copper). The compatibility of the liquid metal with the heat sink or device material as well as its long-term stability are important performance variables for thermal management systems. Herein, the compatibility of the liquid metal Galinstan, a eutectic alloy of gallium, indium, and tin, with diamond coatings and the stability of the liquid metal in this environment are scrutinized. The liquid metal did not penetrate the diamond coating nor corrode it. However, the liquid metal solidified with the progression of time, starting from the second year. After 4 years of aging, the liquid metal on all samples solidified, which cannot be explained by the dissolution of aluminum from the titanium alloy. In contrast, the solidification arose from oxidation by oxygen, followed by hydrolysis to GaOOH due to the humidity in the air. The hydrolysis led to dealloying, where In and Sn remained an alloy while Ga separated as GaOOH. This hydrolysis has implications for many devices based on gallium alloys and should be considered during the design phase of liquid metal-enabled products. Full article
(This article belongs to the Special Issue Liquid Metals: From Fundamentals to Applications)
Show Figures

Figure 1

17 pages, 9109 KiB  
Article
Rapid Prototyping of Anomalous Reflective Metasurfaces Using Spray-Coated Liquid Metal
by Glan Allan V. Manio, Matthew T. Kouchi, Saige J. Dacuycuy, Aaron T. Ohta and Wayne A. Shiroma
Materials 2024, 17(9), 2003; https://doi.org/10.3390/ma17092003 - 25 Apr 2024
Cited by 2 | Viewed by 1666
Abstract
Reconfigurable intelligent surfaces (RISs) have the potential to improve wireless communication links by dynamically redirecting signals to dead spots. Although a reconfigurable surface is best suited for environments in which the reflected signal must be dynamically steered, there are cases where a static, [...] Read more.
Reconfigurable intelligent surfaces (RISs) have the potential to improve wireless communication links by dynamically redirecting signals to dead spots. Although a reconfigurable surface is best suited for environments in which the reflected signal must be dynamically steered, there are cases where a static, non-reconfigurable anomalous reflective metasurface can suffice. In this work, spray-coated liquid metal is used to rapidly prototype an anomalous reflective metasurface. Using a pressurized air gun and a plastic thin-film mask, a metasurface consisting of a 6 × 4 array of Galinstan liquid–metal elements is sprayed within minutes. The metasurface produces a reflected wave at an angle of 28° from normal in response to a normal incident 3.5-GHz electromagnetic plane wave. The spray-coated liquid–metal metasurface shows comparable results to an anomalous reflective metasurface with copper elements of the same dimensions, demonstrating that this liquid–metal fabrication process is a viable solution for the rapid prototyping of anomalous reflective metasurfaces. Full article
(This article belongs to the Special Issue Liquid Metals: From Fundamentals to Applications)
Show Figures

Figure 1

10 pages, 2123 KiB  
Article
Compatibility of LaFe13−x−yMnxSiyH1.6 and Eutectic Liquid GaInSn Alloy
by Jamieson Brechtl, Joseph Rendall, Mingkan Zhang, Michael R. Koehler, Kashif Nawaz and Ayyoub M. Momen
Magnetochemistry 2024, 10(2), 13; https://doi.org/10.3390/magnetochemistry10020013 - 12 Feb 2024
Cited by 2 | Viewed by 2449
Abstract
The heat transfer rate of magnetocaloric regenerators is a topic of extensive research and the cyclability of these regenerators is critical to the operation of systems with a high coefficient of performance (e.g., potentially >22, significantly higher than typical vapor compression cooling technologies). [...] Read more.
The heat transfer rate of magnetocaloric regenerators is a topic of extensive research and the cyclability of these regenerators is critical to the operation of systems with a high coefficient of performance (e.g., potentially >22, significantly higher than typical vapor compression cooling technologies). To enable a high operating frequency that will result in a high specific cooling power, the heat transfer fluid should have high thermal conductivity and lower specific heat, i.e., higher thermal diffusivity. Eutectic metal alloys possess these qualities, such as gallium–indium–tin (Galinstan), whose thermal diffusivity has been found to be approximately an order of magnitude higher than water. For this study, the effects of eutectic liquid Galinstan exposure on the phase stability of LaFe13−x−yMnxSiyH1.6 magnetocaloric powders in an active magnetic regenerator device were investigated. The powders were characterized before and after exposure to Galinstan using X-ray diffraction, in which the phases were determined using the Rietveld refinement technique and X-ray fluorescence. It was found that after Galinstan exposure, hydrogen containing phases were present in the powder, suggesting that the hydrogen was lost from the magnetocaloric phase. The magnetocaloric phase degradation indicates that the powder was incompatible with the Galinstan metal in an environment with moisture. Full article
(This article belongs to the Special Issue Advances in Functional Materials with Tunable Magnetic Properties)
Show Figures

Figure 1

16 pages, 20855 KiB  
Article
Tungsten Oxide Coated Liquid Metal Electrodes via Galvanic Replacement as Heavy Metal Ion Sensors
by Sagar Bhagwat, Leonhard Hambitzer, Richard Prediger, Pang Zhu, Ahmed Hamza, Sophia K. Kilian, Sebastian Kluck, Pegah Pezeshkpour, Frederik Kotz-Helmer and Bastian E. Rapp
Sensors 2024, 24(2), 416; https://doi.org/10.3390/s24020416 - 10 Jan 2024
Cited by 1 | Viewed by 2551
Abstract
Gallium liquid metals (LMs) like Galinstan and eutectic Gallium-Indium (EGaIn) have seen increasing applications in heavy metal ion (HMI) sensing, because of their ability to amalgamate with HMIs like lead, their high hydrogen potential, and their stable electrochemical window. Furthermore, coating LM droplets [...] Read more.
Gallium liquid metals (LMs) like Galinstan and eutectic Gallium-Indium (EGaIn) have seen increasing applications in heavy metal ion (HMI) sensing, because of their ability to amalgamate with HMIs like lead, their high hydrogen potential, and their stable electrochemical window. Furthermore, coating LM droplets with nanopowders of tungsten oxide (WO) has shown enhancement in HMI sensing owing to intense electrical fields at the nanopowder-liquid–metal interface. However, most LM HMI sensors are droplet based, which show limitations in scalability and the homogeneity of the surface. A scalable approach that can be extended to LM electrodes is therefore highly desirable. In this work, we present, for the first time, WO-Galinstan HMI sensors fabricated via photolithography of a negative cavity, Galinstan brushing inside the cavity, lift-off, and galvanic replacement (GR) in a tungsten salt solution. Successful GR of Galinstan was verified using optical microscopy, SEM, EDX, XPS, and surface roughness measurements of the Galinstan electrodes. The fabricated WO-Galinstan electrodes demonstrated enhanced sensitivity in comparison with electrodes structured from pure Galinstan and detected lead at concentrations down to 0.1 mmol·L−1. This work paves the way for a new class of HMI sensors using GR of WO-Galinstan electrodes, with applications in microfluidics and MEMS for a toxic-free environment. Full article
Show Figures

Figure 1

16 pages, 7155 KiB  
Article
Sonochemistry of Liquid-Metal Galinstan toward the Synthesis of Two-Dimensional and Multilayered Gallium-Based Metal–Oxide Photonic Semiconductors
by Mohammad Karbalaei Akbari, Nasrin Siraj Lopa and Serge Zhuiykov
Micromachines 2023, 14(6), 1214; https://doi.org/10.3390/mi14061214 - 8 Jun 2023
Cited by 2 | Viewed by 2471
Abstract
The scientific field of two-dimensional (2D) nanostructures has witnessed tremendous development during the last decade. To date, different synthesis approaches have been developed; therefore, various exceptional properties of this family of advanced materials have been discovered. It has recently been found that the [...] Read more.
The scientific field of two-dimensional (2D) nanostructures has witnessed tremendous development during the last decade. To date, different synthesis approaches have been developed; therefore, various exceptional properties of this family of advanced materials have been discovered. It has recently been found that the natural surface oxide films of room-temperature liquid metals is an emerging platform for the synthesis of novel types of 2D nanostructures with numerous functional applications. However, most of the developed synthesis techniques for these materials are based on the direct mechanical exfoliation of 2D materials as research targets. This paper reports a facile and functional sonochemical-assisted approach for the synthesis of 2D hybrid and complex multilayered nanostructures with tunable characteristics. In this method, the intense interaction of acoustic waves with microfluidic gallium-based room-temperature liquid galinstan alloy provides the activation energy for synthesis of hybrid 2D nanostructures. The microstructural characterizations reveal the impact of sonochemical synthesis parameters, including the processing time and composition of the ionic synthesis environment, on the growth of GaxOy/Se 2D hybrid structures and InGaxOy/Se multilayered crystalline structures with tunable photonic characteristics. This technique shows promising potential for synthesis of various types of 2D and layered semiconductor nanostructures with tunable photonic characteristics. Full article
(This article belongs to the Special Issue Semiconductors and Nanostructures for Electronics and Photonics)
Show Figures

Figure 1

16 pages, 2418 KiB  
Article
Stretchable Sensors for Soft Robotic Grippers in Edge-Intelligent IoT Applications
by Prosenjit Kumar Ghosh and Prabha Sundaravadivel
Sensors 2023, 23(8), 4039; https://doi.org/10.3390/s23084039 - 17 Apr 2023
Cited by 11 | Viewed by 2875
Abstract
The rapid development of electronic material and sensing technology has enabled research to be conducted on liquid metal-based soft sensors. The application of soft sensors is widespread and has many applications in soft robotics, smart prosthetics, and human-machine interfaces, where these sensors can [...] Read more.
The rapid development of electronic material and sensing technology has enabled research to be conducted on liquid metal-based soft sensors. The application of soft sensors is widespread and has many applications in soft robotics, smart prosthetics, and human-machine interfaces, where these sensors can be integrated for precise and sensitive monitoring. Soft sensors can be easily integrated for soft robotic applications, where traditional sensors are incompatible with robotic applications as these types of sensors show large deformation and very flexible. These liquid-metal-based sensors have been widely used for biomedical, agricultural and underwater applications. In this research, we have designed and fabricated a novel soft sensor that yields microfluidic channel arrays embedded with liquid metal Galinstan alloy. First of all, the article presents different fabrication steps such as 3D modeling, printing, and liquid metal injection. Different sensing performances such as stretchability, linearity, and durability results are measured and characterized. The fabricated soft sensor demonstrated excellent stability and reliability and exhibited promising sensitivity with respect to different pressures and conditions. Full article
(This article belongs to the Special Issue Flexible and Stretchable Sensors: Design and Applications)
Show Figures

Figure 1

9 pages, 1062 KiB  
Article
Amplifying the Output of a Triboelectric Nanogenerator Using an Intermediary Layer of Gallium-Based Liquid Metal Particles
by Jong Hyeok Kim, Ju-Hyung Kim and Soonmin Seo
Nanomaterials 2023, 13(7), 1290; https://doi.org/10.3390/nano13071290 - 6 Apr 2023
Cited by 4 | Viewed by 2627
Abstract
The production of energy has become a major issue in today’s world. Triboelectric nanogenerators (TENGs) are promising devices that can harvest mechanical energy and convert it into electrical energy. This study explored the use of Galinstan particles in the production of TENGs, which [...] Read more.
The production of energy has become a major issue in today’s world. Triboelectric nanogenerators (TENGs) are promising devices that can harvest mechanical energy and convert it into electrical energy. This study explored the use of Galinstan particles in the production of TENGs, which convert mechanical energy into electrical energy. During the curing process, the evaporation of the hexane solvent resulted in a film with varying concentrations of Galinstan particles. The addition of n-hexane during ultrasonication reduced the viscosity of the polydimethylsiloxane (PDMS) solution, allowing for the liquid metal (LM) particles to be physically pulverized into smaller pieces. The particle size distribution of the film with a Galinstan concentration of 23.08 wt.% was measured to be within a few micrometers through ultrasonic crushing. As the amount of LM particles in the PDMS film increased, the capacitance of the film also increased, with the LM/PDMS film with a 23.08% weight percentage exhibiting the highest capacitance value. TENGs were created using LM/PDMS films with different weight percentages and tested for open-circuit voltage, short-circuit current, and charge amount Q. The TENG with an LM/PDMS film with a 23.08% weight percentage had the highest relative permittivity, resulting in the greatest voltage, current, and charge amount. The use of Galinstan particles in PDMS films has potential applications in wearable devices, sensors, and biomedical fields. Full article
Show Figures

Figure 1

13 pages, 4241 KiB  
Article
Crystalline Nanodomains at Multifunctional Two-Dimensional Liquid–Metal Hybrid Interfaces
by Mohammad Karbalaei Akbari, Nasrin Siraj Lopa and Serge Zhuiykov
Crystals 2023, 13(4), 604; https://doi.org/10.3390/cryst13040604 - 1 Apr 2023
Cited by 1 | Viewed by 2069
Abstract
Two-dimensional (2D) liquid–metal (LM) heterointerfaces with their tunable physicochemical characteristics are emerging platforms for the development of multifunctional hybrid nanostructures with numerous functional applications. From this perspective, the functionalization of LM galinstan nanoparticles (NPs) with crystalline nanodomains is a promising approach toward the [...] Read more.
Two-dimensional (2D) liquid–metal (LM) heterointerfaces with their tunable physicochemical characteristics are emerging platforms for the development of multifunctional hybrid nanostructures with numerous functional applications. From this perspective, the functionalization of LM galinstan nanoparticles (NPs) with crystalline nanodomains is a promising approach toward the synthesis of novel 2D hybrid LM heterointerfaces with unprecedented properties. However, the decoration of LM heterointerfaces with desired nanocrystalline structures is a challenging process due to simultaneous and intensive interactions between liquid–metal-based structures and metallic nanodomains. The present study discloses a facile and functional method for the growth of crystalline nanodomains at LM heterointerfaces. In this sonochemical-assisted synthesis method, acoustic waves provide the driving force for the growth of ultra-fine crystalline nanodomains on the surface of galinstan NPs. The galinstan NPs were initially engulfed within carbon nanotube (CNT) frameworks, to prevent intensive reactions with surrounding environment. These CNT frameworks furthermore separate galinstan NPs from the other products of sonochemistry reactions. The following material characterization studies demonstrated the nucleation and growth of various types of polycrystalline structures, including Ag, Se, and Nb nanodomains on 2D heterointerfaces of galinstan NPs. The functionalized galinstan NPs showed tunable electronic and photonic characteristics originated from their 2D hybrid interfaces. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Coordination Compounds)
Show Figures

Figure 1

14 pages, 7041 KiB  
Article
Characteristics for Gallium-Based Liquid Alloys of Low Melting Temperature
by Jianfei Shentu, Jiatong Pan, Hao Chen, Chunlin He, Youbin Wang, Gjergj Dodbiba and Toyohisa Fujita
Metals 2023, 13(3), 615; https://doi.org/10.3390/met13030615 - 19 Mar 2023
Cited by 20 | Viewed by 8963
Abstract
Gallium alloys are ideal base carriers for temperature-sensitive ferrofluids, which can be used for energy convection, soft robotics, microchannels, magnetorheological devices, etc. In this study, gallium was mixed with different substances (In, Sn, Zn, Ge, and Al) to obtain a low melting point, [...] Read more.
Gallium alloys are ideal base carriers for temperature-sensitive ferrofluids, which can be used for energy convection, soft robotics, microchannels, magnetorheological devices, etc. In this study, gallium was mixed with different substances (In, Sn, Zn, Ge, and Al) to obtain a low melting point, reduce the wetness and adhesion of its alloys, and realize low viscosity. The melting point, contact angle on certain solid plates, viscosity, and viscoelasticity of the gallium alloys were measured, and some useful gallium alloys were obtained. The experimental results showed that Ga80In10Sn10 had lower wettability at a larger contact angle of 148.6° on the Teflon plate. Here, (Ga80In10Sn10)97Zn3 with a melting point of 8.2 °C, lower than the melting point of Galinstan, was developed. It had a viscosity about three times that of water at room temperature and an elastic response from 0.1 to 100 Hz at a 1% strain amplitude for the viscoelasticity. It was expected that a kind of temperature-sensitive magnetic fluid with a gallium-based liquid alloy as the base carrier liquid would be prepared in the future with Teflon as the container to achieve energy conversion under the drive of the magnetic field. Full article
(This article belongs to the Special Issue Advances in Characterization of Heterogeneous Metals/Alloys)
Show Figures

Graphical abstract

21 pages, 121699 KiB  
Article
Impact of Submerged Entry Nozzle (SEN) Immersion Depth on Meniscus Flow in Continuous Casting Mold under Electromagnetic Brake (EMBr)
by Alexander Vakhrushev, Ebrahim Karimi-Sibaki, Jan Bohacek, Menghuai Wu, Andreas Ludwig, Yong Tang, Gernot Hackl, Gerald Nitzl, Josef Watzinger and Abdellah Kharicha
Metals 2023, 13(3), 444; https://doi.org/10.3390/met13030444 - 21 Feb 2023
Cited by 10 | Viewed by 2657
Abstract
Complex multi-phase phenomena, including turbulent flow, solidification, and magnetohydrodynamics (MHD) forces, occur during the continuous casting (CC) under the applied electromagnetic brake (EMBr). The results of the small-scale experiment of the liquid metal model for continuous casting (mini-LIMMCAST) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), [...] Read more.
Complex multi-phase phenomena, including turbulent flow, solidification, and magnetohydrodynamics (MHD) forces, occur during the continuous casting (CC) under the applied electromagnetic brake (EMBr). The results of the small-scale experiment of the liquid metal model for continuous casting (mini-LIMMCAST) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), investigating MHD flow with a deep immersion depth of 100 mm, are supplemented by newly presented numerical studies with the shallow position of the submerged entry nozzle (SEN) at 50 mm below the meniscus. Herein, the focus is on the MHD effects at the meniscus level considering (i) a fully insulating domain boundary, (ii) a perfectly conductive mold, or (iii) the presence of the solid shell. The volume-of-fluid (VOF) approach is utilized to model a Galinstan flow, including free surface behavior. A multiphase solver is developed using conservative MHD formulations in the framework of the open-source computational fluid dynamics (CFD) package OpenFOAM®. The wall-adapting local eddy-viscosity (WALE) subgrid-scale (SGS) model is employed to model the turbulent effects on the free surface flow. We found that, for the deep immersion depth, the meniscus remains calm under the EMBr for the conductive and semi-conductive domain. For the insulated mold disregarding the SEN position, the self-inducing MHD vortices, aligned with the magnetic field, cause strong waving of the meniscus and air bubble entrapment for shallow immersion depth. Secondary MHD structures can form close to the meniscus under specific conditions. The influence of the EMBr and immersion depth on the flow energy characteristics is analyzed using power spectral density (PSD). Full article
Show Figures

Figure 1

11 pages, 5720 KiB  
Article
Robust Impact Effect and Super-Lyophobic Reduced Galinstan on Polymers Applied for Energy Harvester
by Husheng Chen, Shilong Hu, Yuan Jin, Aibing Zhang, Licheng Hua, Jianke Du and Guangyong Li
Polymers 2022, 14(17), 3633; https://doi.org/10.3390/polym14173633 - 2 Sep 2022
Viewed by 2103
Abstract
In this paper, we present a novel reduced Galinstan-based microfluidic energy harvester, which can converse kinetic energy to electricity from an arbitrary vibration source. Firstly, the wetting behaviors of reduced Galinstan are performed, which shows a robust impact effect on polymer substrates. Moreover, [...] Read more.
In this paper, we present a novel reduced Galinstan-based microfluidic energy harvester, which can converse kinetic energy to electricity from an arbitrary vibration source. Firstly, the wetting behaviors of reduced Galinstan are performed, which shows a robust impact effect on polymer substrates. Moreover, the electric circuit model of the reduced Galinstan-based energy harvester is made and discussed by the use of the EDLCs (electrical double layer capacitors). After modeling, the microfluidic energy harvester with coplanar microfluidic channels is designed and fabricated. Finally, the performance of the microfluidic energy harvester is investigated, which can harvest multi-direction vibration energy. The experiment results demonstrate that the novel reduced Galinstan-based microfluidic energy harvester is suitably and uniquely applied in a complex vibration environment. Full article
(This article belongs to the Special Issue Applications of Polymers in Energy and Environmental Sciences II)
Show Figures

Figure 1

Back to TopTop