Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = GSTF8

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1159 KB  
Article
Unraveling Paracetamol Metabolism and Its Circadian Regulation: Insights from Tobacco Hairy Roots as a Model System
by Lucas G. Sosa Alderete, Mariana Vezza, Sabrina G. Ibañez, Peter Schroeder, Elizabeth Agostini and Melina A. Talano
Plants 2025, 14(17), 2812; https://doi.org/10.3390/plants14172812 - 8 Sep 2025
Cited by 1 | Viewed by 1651
Abstract
The increasing interest in the presence of contaminants of emerging concern (CEC) in aquatic environments has driven research into biological mechanisms capable of eliminating pharmaceutical compounds like paracetamol, considering different plant species as model systems. Thus, the use of hairy roots (HRs) has [...] Read more.
The increasing interest in the presence of contaminants of emerging concern (CEC) in aquatic environments has driven research into biological mechanisms capable of eliminating pharmaceutical compounds like paracetamol, considering different plant species as model systems. Thus, the use of hairy roots (HRs) has become an interesting tool. This study explores the ability of tobacco HRs to remove paracetamol, with an emphasis on elucidating the main metabolism steps and key enzymes involved in the green liver detoxification process, as well as the antioxidant response. The deepening of these aspects has been carried out through gene expression and biochemical analysis under circadian regulation. Our results reveal that HRs efficiently removed paracetamol (100 mg L−1) from the culture medium, achieving around 99% removal at ZT16 h (Zeitgeber Time 16). The early activation of antioxidant defense mechanisms, demonstrated by enhanced peroxidase (POD) activity and total antioxidant capacity (TAA) during the light phase, has been observed. Furthermore, glutathione S-transferase (GSTs) activity and glutathione (GSH) levels, potentially linked to paracetamol conjugation, were also assessed. Gene expression analyses confirmed GST gene upregulation in response to paracetamol treatment, with GSTF6-like and GSTF8-like maintaining circadian rhythms as in the control, and GSTZ1-like only displayed rhythmic expression upon treatment. Additionally, the modulation of core circadian clock genes (NtLHY1 and NtTOC1) suggests that the plant response to paracetamol is tightly regulated by the circadian system. Together, these findings shed light on the complex molecular and biochemical mechanisms underlying paracetamol detoxification in tobacco HRs and underscore the significant role of circadian regulation in orchestrating these responses. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

15 pages, 3476 KB  
Article
Putative Upstream Regulators DoNF-YB3 and DoIDD12 Correlate with DoGSTF11 Expression and Anthocyanin Accumulation in Dendrobium officinale
by Yingying Liu, Jiadong Chen, Xiaojing Duan, Man Zhang, Zhengming Tao and Wu Jiang
Horticulturae 2025, 11(6), 711; https://doi.org/10.3390/horticulturae11060711 - 19 Jun 2025
Viewed by 790
Abstract
Dendrobium officinale is a traditional and valuable medicinal herb, with extensive research conducted on its polysaccharides, alkaloids, and other components, yet studies on anthocyanins remain limited. In this study, we analyzed the expression levels of GST family genes in green and purplish D. [...] Read more.
Dendrobium officinale is a traditional and valuable medicinal herb, with extensive research conducted on its polysaccharides, alkaloids, and other components, yet studies on anthocyanins remain limited. In this study, we analyzed the expression levels of GST family genes in green and purplish D. officinale and found that DoGSTF11 is highly expressed in the purplish variety. DoGSTF11 is localized to the nucleus and cell membrane but lacks transcriptional activation activity. Overexpression of DoGSTF11 in tomato enhances anthocyanin accumulation, suggesting a role in anthocyanin sequestration or transport. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays further revealed that DoGSTF11 interacts with DoGST31, while DoIDD12 and DoNF-YB3 are potential transcriptional regulators based on promoter-binding assays and expression correlation. In conclusion, our study demonstrates that DoGST11 positively regulates anthocyanin accumulation in D. officinale. These findings provide valuable insights into the metabolic engineering of flavonoids in D. officinale. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

11 pages, 1391 KB  
Article
DNA Demethylase ROS1 Interferes with DNA Methylation and Activates Stress Response Genes in Plants Infected with Beet Severe Curly Top Virus
by Taicheng Jin, Yushuo Li, Xu Sun, Yidi Li, Zhuyi Xiao, Weiyan Wang, Jiaxue Yu and Liping Yang
Int. J. Mol. Sci. 2025, 26(6), 2807; https://doi.org/10.3390/ijms26062807 - 20 Mar 2025
Cited by 3 | Viewed by 1293
Abstract
DNA methylation is one mechanism of epigenetic regulation in plants. Small interfering RNAs (siRNAs) targeted endogenous genes and caused the promoters to be hypermethylated, namely RNA-directed DNA methylation (RdDM). Repressor of silencing 1 (ROS1) is an active DNA demethylase involved in the regulation [...] Read more.
DNA methylation is one mechanism of epigenetic regulation in plants. Small interfering RNAs (siRNAs) targeted endogenous genes and caused the promoters to be hypermethylated, namely RNA-directed DNA methylation (RdDM). Repressor of silencing 1 (ROS1) is an active DNA demethylase involved in the regulation of DNA methylation. This study indicates that ROS1-mediated DNA demethylation plays important roles in regulating the expression of these stress response genes and in response to biotic stresses. Further experiments confirmed that the expression level of the ROS1 gene was significantly upregulated in A. thaliana plants infected with beet severe curly top virus (BSCTV). Moreover, the DNA sequencing results demonstrated that ROS1 interferes with DNA methylation of repeat regions in the promoters of ACD6, GSTF14, and ACO3 in A. thaliana plants infected with BSCTV. These findings reveal the epigenetic mechanisms by which ROS1 regulates the expression of the stress response genes, thereby improving the adaptability of plants to biotic stresses. Full article
Show Figures

Figure 1

29 pages, 8203 KB  
Article
Intelligent BIM Searching via Deep Embedding of Geometric, Semantic, and Topological Features
by Pin-Hao Huang, Sheng-Yu Song, Zhen Xu, Zhen-Zhong Hu and Jia-Rui Lin
Buildings 2025, 15(6), 951; https://doi.org/10.3390/buildings15060951 - 18 Mar 2025
Cited by 2 | Viewed by 1439
Abstract
As a digital representation of buildings, building information models (BIMs) encapsulate geometric, semantic, and topological features (GSTFs), to express the visual and functional characteristics of building components and their connections to create building systems. However, searching for BIMs pays much attention to semantic [...] Read more.
As a digital representation of buildings, building information models (BIMs) encapsulate geometric, semantic, and topological features (GSTFs), to express the visual and functional characteristics of building components and their connections to create building systems. However, searching for BIMs pays much attention to semantic features, while overlooking geometric and topological features, making it difficult to find and reuse rich knowledge in BIMs. Thus, this study proposes a novel approach to intelligent BIM searching by embedding GSTFs via deep learning (DL). First, algorithms for extracting GSTFs from BIMs and identifying required GSTFs from search queries are developed. Then, different GSTFs are embedded via DL models, creating vector-based representations of BIMs or search queries. Finally, similarity-based ranking is adopted to find BIMs highly related to the queries. Experiments show that the proposed approach demonstrates an efficiency of 780 times greater than manual retrieval methods and 4–6% more efficient than traditional methods. This study advances the field of BIM searching by providing a more comprehensive, accurate, and efficient method for finding and reusing rich knowledge in BIMs, ultimately contributing to better building design and knowledge management. Full article
Show Figures

Figure 1

19 pages, 16534 KB  
Article
Identification of the GST Gene Family and Functional Analysis of RcGSTF2 Related to Anthocyanin in Rosa chinensis ‘Old Blush’
by Ting Zhang, Han Wu, Yujia Sun, Peiheng Zhang, Lixia Li, Dan Luo and Zhe Wu
Plants 2025, 14(6), 932; https://doi.org/10.3390/plants14060932 - 16 Mar 2025
Cited by 2 | Viewed by 1250
Abstract
The rose (Rosa chinensis), with its rich color variations and elegant form, holds a significant position in the global floriculture industry, where the color of its petals and the content of anthocyanins are crucial for enhancing the plant’s ornamental value and [...] Read more.
The rose (Rosa chinensis), with its rich color variations and elegant form, holds a significant position in the global floriculture industry, where the color of its petals and the content of anthocyanins are crucial for enhancing the plant’s ornamental value and market competitiveness. Nevertheless, the precise roles of the GST gene family in roses, especially regarding their participation in anthocyanin transport and the modulation of petal color, remain poorly elucidated. In the present investigation, we identified 83 rose glutathione S-transferase (GST) genes through whole-genome analysis. The identification and functional analysis of RcGSTF2 were conducted exclusively in the ‘Old Blush’ cultivar of Rosa chinensis. We employed bioinformatics, tissue expression analysis, subcellular localization, and transient expression validation to explore the function of the RcGSTF2 gene in anthocyanin transport and accumulation. We found that RcGSTF2 is closely related to anthocyanin-associated GSTs and demonstrated a conserved domain with high sequence similarity. Molecular docking analysis revealed potential binding modes between RcGSTF2 and cyanidin-3,5-diglucoside, suggesting a role in anthocyanin transport. Subcellular localization indicated that RcGSTF2 is associated with the cell membrane. Overexpression of RcGSTF2 in rose plants significantly increased anthocyanin accumulation, while silencing RcGSTF2 reduced anthocyanin content, highlighting its crucial role in regulating anthocyanin accumulation. This research investigates the functions of the GST gene family in roses, laying the groundwork for developing more colorful and resilient rose cultivars, with the functional analysis of RcGSTF2 being a key contribution to the floriculture industry’s genetic enhancement efforts. Full article
(This article belongs to the Special Issue Horticultural Plant Physiology and Molecular Biology)
Show Figures

Figure 1

15 pages, 2577 KB  
Article
DNA Damaging Agents Induce RNA Structural and Transcriptional Changes for Genes Associated with Redox Homeostasis in Arabidopsis thaliana
by Ping Li, Jiong-Yi Li, Yu-Jiao Ma, Xiao-Wei Wang, Jian-Ping Chen and Yi-Yuan Li
Plants 2025, 14(5), 780; https://doi.org/10.3390/plants14050780 - 4 Mar 2025
Viewed by 1665
Abstract
Living organisms are constantly exposed to various DNA damaging agents. While the mechanisms of DNA damage and DNA repair are well understood, the impact of these agents on RNA secondary structure and subsequent function remains elusive. In this study, we explore the effects [...] Read more.
Living organisms are constantly exposed to various DNA damaging agents. While the mechanisms of DNA damage and DNA repair are well understood, the impact of these agents on RNA secondary structure and subsequent function remains elusive. In this study, we explore the effects of DNA damaging reagent methyl methanesulfonate (MMS) on arabidopsis gene expression and RNA secondary structure using the dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-MaPseq) method. Our analyses reveal that changes in transcriptional levels and mRNA structure are key factors in response to DNA damaging agents. MMS treatment leads to the up-regulation of arabidopsis RBOHs (respiratory burst oxidase homologues) and alteration in the RNA secondary structure of GSTF9 and GSTF10, thereby enhancing mRNA translation efficiency. Redox homeostasis manipulated by RBOHs and GSTFs plays a crucial role in MMS-induced primary root growth inhibition. In conclusion, our findings shed light on the effects of DNA damaging agents on RNA structure and potential mRNA translation, which provide a new insight to understand the mechanism of DNA damage. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

18 pages, 2168 KB  
Article
MicroRNA-Mediated Post-Transcriptional Regulation of Enzymes Involved in Herbicide Resistance in Echinochloa oryzicola (Vasinger) Vasinger
by Carlo Maria Cusaro, Enrica Capelli, Anna Maria Picco, Marta Guarise, Enrico Gozio, Pietro Zarpellon and Maura Brusoni
Plants 2025, 14(5), 719; https://doi.org/10.3390/plants14050719 - 26 Feb 2025
Viewed by 899
Abstract
Herbicide resistance is an emerging phytosanitary threat, causing serious yield and economic losses. Although this phenomenon has been widely studied, only recently has the role of epigenetic factors in its occurrence been considered. In the present study, we analyzed the microRNA-mediated regulation in [...] Read more.
Herbicide resistance is an emerging phytosanitary threat, causing serious yield and economic losses. Although this phenomenon has been widely studied, only recently has the role of epigenetic factors in its occurrence been considered. In the present study, we analyzed the microRNA-mediated regulation in Echinochloa oryzicola (Vasinger) Vasinger (late-watergrass) of the expression of cytochromes P450, glutathione S-transferase (GST), and eIF4B, all of which are enzymes involved in profoxydim (AURA®) detoxification. Before and after profoxydim application, the expression profiles of microRNAs (miRNAs) were selected for their ability to target the genes considered, and their targets were assessed by means of RT-qPCR. Susceptible and resistant biotypes showed different responses to this herbicide. After profoxydim application, in resistant biotypes, osa-miR2099-5p, ath-miR396b, osa-miR395f, osa-miR396a-5p, osa-miR166a-5p, osa-miR166d-5p, gra-miR8759, and gma-miR396f were not triggered, allowing the expression of CYP81A, GSTF1, and eIF4B genes and the herbicide’s detoxification. Meanwhile, the transcription of ata-miR166c-5p, ath-miR847, osa-miR5538, and gra-miR7487c was triggered, down-regulating CYP71AK2, CYP72A254, CYP72A122, and EcGST expression. In susceptible biotypes, the herbicide stimulated ata-miR166c-5p, ath-miR847, osa-miR5538, gra-miR7487c, osa-miR166a-5p, and gra-miR8759, down-regulating their respective target genes (CYP72A122, CYP71AK2, EcGST, CYP72A254, CYP81A12, and eIF4B). A better understanding of the role of miRNA-mediated epigenetic regulation in herbicide resistance will be useful in planning more targeted and sustainable methods for controlling this phytosanitary threat. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

20 pages, 6923 KB  
Article
Functional Characterization of the PoWHY1 Gene from Platycladus orientalis and Its Role in Abiotic Stress Tolerance in Transgenic Arabidopsis thaliana
by Chun Ou, Zhiyu Dong, Xudong Zheng, Wenhui Cheng, Ermei Chang and Xiamei Yao
Plants 2025, 14(2), 218; https://doi.org/10.3390/plants14020218 - 14 Jan 2025
Cited by 1 | Viewed by 1561
Abstract
The frequent occurrence of extreme weather conditions in the world has brought many unfavorable factors to plant growth, causing the growth and development of plants to be hindered and even leading to plant death, with abiotic stress hindering the growth and metabolism of [...] Read more.
The frequent occurrence of extreme weather conditions in the world has brought many unfavorable factors to plant growth, causing the growth and development of plants to be hindered and even leading to plant death, with abiotic stress hindering the growth and metabolism of plants due to severe uncontrollability. The WHY1 transcription factor plays a critical role in regulating gene expression in plants, influencing chlorophyll biosynthesis, plant growth, and development, as well as responses to environmental stresses. The important role of the PoWHY1 gene in regulating plant growth and adaptation to environmental stress has become a hot research topic. However, the mechanism of the PoWHY1 gene in Platycladus orientalis under abiotic stress is still unclear. Here, the PoWHY1 gene was analyzed bioinformatically using P. orientalis as study material, and the role of the gene against abiotic stress conditions in Arabidopsis thaliana was verified using transgenic technology. It was found that overexpression of PoWHY1 increased seed germination, decreased malondialdehyde accumulation, increased proline content, and delayed the senescence process under salt stress. The expression levels of JAZ1, LOX1, ABI1, and ABI2 were decreased, while the expression levels of RAB18, APX1, GSTF6, and DREB2A were increased, indicating that overexpression of PoWHY1 enhanced the salt stress tolerance of A. thaliana. Furthermore, PoWHY1 overexpression also increased drought tolerance in A. thaliana. From the above results, it can be concluded that maintaining high PoWHY1 expression levels in the leaves of P. orientalis can improve their environmental adaptability. The results provide a scientific basis for understanding the gene function of the PoWHY1 gene of P. orientalis under stress conditions and lay the foundation for further research on the function of the PoWHY1 gene. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

20 pages, 8973 KB  
Article
Integrated Transcriptomic and Metabolomic Analysis of G. hirsutum and G. barbadense Responses to Verticillium Wilt Infection
by Baoguang Xing, Pengtao Li, Yanfang Li, Bingkai Cui, Zhihao Sun, Yu Chen, Shaoliang Zhang, Qiankun Liu, Aiming Zhang, Liuan Hao, Xue Du, Xiaoyan Liu, Bei Wu, Renhai Peng and Shoulin Hu
Int. J. Mol. Sci. 2025, 26(1), 28; https://doi.org/10.3390/ijms26010028 - 24 Dec 2024
Cited by 2 | Viewed by 1321
Abstract
Verticillium wilt (VW) caused by Verticillium dahliae (Vd) is a devastating fungal cotton disease characterized by high pathogenicity, widespread distribution, and frequent variation. It leads to significant losses in both the yield and quality of cotton. Identifying key non-synonymous single nucleotide polymorphism (SNP) [...] Read more.
Verticillium wilt (VW) caused by Verticillium dahliae (Vd) is a devastating fungal cotton disease characterized by high pathogenicity, widespread distribution, and frequent variation. It leads to significant losses in both the yield and quality of cotton. Identifying key non-synonymous single nucleotide polymorphism (SNP) markers and crucial genes associated with VW resistance in Gossypium hirsutum and Gossypium barbadense, and subsequently breeding new disease-resistant varieties, are essential for VW management. Here, we sequenced the transcriptome and metabolome of roots of TM-1 (G. hirsutum) and Hai7124 (G. barbadense) after 0, 1, and 2 days of V991 inoculation. Transcriptome analysis identified a total of 72,752 genes, with 5814 differentially expressed genes (DEGs) determined through multiple group comparisons. KEGG enrichment analysis revealed that the key pathways enriched by DEGs obtained from both longitudinal and transverse comparisons contained the glutathione metabolism pathway. Metabolome analysis identified 995 metabolites, and 22 differentially accumulated metabolites (DAMs), which were correlated to pathways including glutathione metabolism, degradation of valine, leucine, and isoleucine, and biosynthesis of terpenoids, alkaloids, pyridine, and piperidine. The conjoint analysis of transcriptomic and metabolomic sequencing revealed DAMs and DEGs associated with the glutathione metabolism pathway, and the key candidate gene GH_D11G2329 (glutathione S-transferase, GSTF8) potentially associated with cotton response to VW infection was selected. These findings establish a basis for investigating the mechanisms underlying the cotton plant’s resistance to VW. Full article
(This article belongs to the Special Issue Genetic Engineering of Plants for Stress Tolerance)
Show Figures

Figure 1

17 pages, 9301 KB  
Article
Molecular Functional and Transcriptome Analysis of Arabidopsis thaliana Overexpression BrBBX21 from Zicaitai (Brassica rapa var. purpuraria)
by Mei Fu, Mengting Lu, Juxian Guo, Shizheng Jiang, Imran Khan, Umer Karamat and Guihua Li
Plants 2024, 13(23), 3306; https://doi.org/10.3390/plants13233306 - 25 Nov 2024
Cited by 1 | Viewed by 1735
Abstract
B-box transcription factors (TFs) in plants are essential for circadian rhythm regulation, abiotic stress responses, hormonal signaling pathways, secondary metabolism, photomorphogenesis, and anthocyanin formation. Here, by blasting the AtBBX21 gene sequence, we identified a total of 18 BBX21 genes from five distinct Brassica [...] Read more.
B-box transcription factors (TFs) in plants are essential for circadian rhythm regulation, abiotic stress responses, hormonal signaling pathways, secondary metabolism, photomorphogenesis, and anthocyanin formation. Here, by blasting the AtBBX21 gene sequence, we identified a total of 18 BBX21 genes from five distinct Brassica species (Arabidopsis thaliana, Brassica rapa, Brassica oleracea, Brassica napus, and Brassica juncea). The BrBBX21-1 gene is most closely linked to the AtBBX21 gene based on phylogeny and protein sequence similarities. The BrBBX21-1 gene, which encodes a polypeptide of 319 amino acids, was identified from Zicaitai (Brassica rapa ssp. purpuraria) and functionally characterized. BrBBX21-1 was localized within the nucleus, and its overexpression in Arabidopsis augmented anthocyanin accumulation in both leaves and seeds. We further performed an RNA-seq analysis between the BrBBX21-OE and WT A. thaliana to identify the key regulators involved in anthocyanin accumulation. In detail, a total of 7583 genes demonstrated differential expression, comprising 4351 that were upregulated and 3232 that were downregulated. Out of 7583 DEGs, 81 F-box protein genes and 9 B-box protein genes were either up- or downregulated. Additionally, 7583 differentially expressed genes (DEGs) were associated with 109 KEGG pathways, notably including plant hormone signal transduction, the biosynthesis of secondary metabolites, metabolic pathways, glutathione metabolism, and starch and sucrose metabolism, which were considerably enriched. A transcriptome analysis led us to identify several structural genes, including DFRA, GSTF12, UGT75C1, FLS1, CHI1, 4CL3, and PAL1, and transcription factors, MYB90, TT8, and HY5, that are regulated by the overexpression of the BrBBX21-1 gene and involved in anthocyanin biosynthesis. Altogether, these findings demonstrate the beneficial regulatory function of BrBBX21-1 in anthocyanin accumulation and offer valuable information about the basis for breeding superior Brassica crops. Full article
(This article belongs to the Special Issue The Growth and Development of Vegetable Crops)
Show Figures

Figure 1

15 pages, 9516 KB  
Article
Genome-Wide Identification and Expression Analysis of GST Genes during Light-Induced Anthocyanin Biosynthesis in Mango (Mangifera indica L.)
by Shiqing Yuan, Chengkun Yang, Bin Zheng, Junbei Ni, Kaibing Zhou, Minjie Qian and Hongxia Wu
Plants 2024, 13(19), 2726; https://doi.org/10.3390/plants13192726 - 29 Sep 2024
Cited by 3 | Viewed by 2108
Abstract
Anthocyanins are important secondary metabolites contributing to the red coloration of fruits, the biosynthesis of which is significantly affected by light. Glutathione S-transferases (GSTs) play critical roles in the transport of anthocyanins from the cytosol to the vacuole. Despite their importance, GST genes [...] Read more.
Anthocyanins are important secondary metabolites contributing to the red coloration of fruits, the biosynthesis of which is significantly affected by light. Glutathione S-transferases (GSTs) play critical roles in the transport of anthocyanins from the cytosol to the vacuole. Despite their importance, GST genes in mango have not been extensively characterized. In this study, 62 mango GST genes were identified and further divided into six subfamilies. MiGSTs displayed high similarity in their exon/intron structure and motif and domain composition within the same subfamilies. The mango genome harbored eleven pairs of segmental gene duplications and ten sets of tandemly duplicated genes. Orthologous analysis identified twenty-nine, seven, thirty-four, and nineteen pairs of orthologous genes among mango MiGST genes and their counterparts in Arabidopsis, rice, citrus, and bayberry, respectively. Tissue-specific expression profiling highlighted tissue-specific expression patterns for MiGST genes. RNA-seq and qPCR analyses revealed elevated expression levels of seven MiGSTs including MiDHAR1, MiGSTU7, MiGSTU13, MiGSTU21, MiGSTF3, MiGSTF8, and MiGSTF9 during light-induced anthocyanin accumulation in mango. This study establishes a comprehensive genetic framework of MiGSTs in mango fruit and their potential roles in regulating anthocyanin accumulation, which is helpful in developing GST-derived molecular markers and speeding up the process of breeding new red-colored mango cultivars. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

17 pages, 17435 KB  
Article
Genome-Wide Identification Analysis of GST Gene Family in Wild Blueberry Vaccinium duclouxii and Their Impact on Anthocyanin Accumulation
by Wei Lv, Liyong Zhu, Lifa Tan, Lei Gu, Hongcheng Wang, Xuye Du, Bin Zhu, Tuo Zeng and Caiyun Wang
Plants 2024, 13(11), 1497; https://doi.org/10.3390/plants13111497 - 29 May 2024
Cited by 4 | Viewed by 2193
Abstract
Vaccinium duclouxii, a wild blueberry species native to the mountainous regions of southwestern China, is notable for its exceptionally high anthocyanin content, surpassing that of many cultivated varieties and offering significant research potential. Glutathione S-transferases (GSTs) are versatile enzymes crucial for anthocyanin [...] Read more.
Vaccinium duclouxii, a wild blueberry species native to the mountainous regions of southwestern China, is notable for its exceptionally high anthocyanin content, surpassing that of many cultivated varieties and offering significant research potential. Glutathione S-transferases (GSTs) are versatile enzymes crucial for anthocyanin transport in plants. Yet, the GST gene family had not been previously identified in V. duclouxii. This study utilized a genome-wide approach to identify and characterize the GST gene family in V. duclouxii, revealing 88 GST genes grouped into seven distinct subfamilies. This number is significantly higher than that found in closely related species, with these genes distributed across 12 chromosomes and exhibiting gene clustering. A total of 46 members are classified as tandem duplicates. The gene structure of VdGST is relatively conserved among related species, showing closer phylogenetic relations to V. bracteatum and evidence of purifying selection. Transcriptomic analysis and qRT-PCR indicated that VdGSTU22 and VdGSTU38 were highly expressed in flowers, VdGSTU29 in leaves, and VdGSTF11 showed significant expression in ripe and fully mature fruits, paralleling trends seen with anthocyanin accumulation. Subcellular localization identified VdGSTF11 primarily in the plasma membrane, suggesting a potential role in anthocyanin accumulation in V. duclouxii fruits. This study provides a foundational basis for further molecular-level functional analysis of the transport and accumulation of anthocyanins in V. duclouxii, enhancing our understanding of the molecular mechanisms underlying anthocyanin metabolism in this valuable species. Full article
(This article belongs to the Special Issue Growth, Development, and Stress Response of Horticulture Plants)
Show Figures

Figure 1

11 pages, 7875 KB  
Article
Overexpression of GhGSTF9 Enhances Salt Stress Tolerance in Transgenic Arabidopsis
by Huimin Li, Yihui Liu, Jie Wu, Kexin Chang, Guangqiang Zhang, Hang Zhao, Nianwei Qiu and Ying Bao
Genes 2024, 15(6), 695; https://doi.org/10.3390/genes15060695 - 27 May 2024
Cited by 4 | Viewed by 2283
Abstract
Soil salinization is a major abiotic stress factor that negatively impacts plant growth, development, and crop yield, severely limiting agricultural production and economic development. Cotton, a key cash crop, is commonly cultivated as a pioneer crop in regions with saline-alkali soil due to [...] Read more.
Soil salinization is a major abiotic stress factor that negatively impacts plant growth, development, and crop yield, severely limiting agricultural production and economic development. Cotton, a key cash crop, is commonly cultivated as a pioneer crop in regions with saline-alkali soil due to its relatively strong tolerance to salt. This characteristic renders it a valuable subject for investigating the molecular mechanisms underlying plant salt tolerance and for identifying genes that confer salt tolerance. In this study, focus was placed on examining a salt-tolerant variety, E991, and a salt-sensitive variety, ZM24. A combined analysis of transcriptomic data from these cotton varieties led to the identification of potential salt stress-responsive genes within the glutathione S-transferase (GST) family. These versatile enzyme proteins, prevalent in animals, plants, and microorganisms, were demonstrated to be involved in various abiotic stress responses. Our findings indicate that suppressing GhGSTF9 in cotton led to a notably salt-sensitive phenotype, whereas heterologous overexpression in Arabidopsis plants decreases the accumulation of reactive oxygen species under salt stress, thereby enhancing salt stress tolerance. This suggests that GhGSTF9 serves as a positive regulator in cotton’s response to salt stress. These results offer new target genes for developing salt-tolerant cotton varieties. Full article
(This article belongs to the Special Issue Cotton Genes, Genetics, and Genomics)
Show Figures

Figure 1

25 pages, 199841 KB  
Article
Identification and Characterization of the Glutathione S-Transferase Gene Family in Blueberry (Vaccinium corymbosum) and Their Potential Roles in Anthocyanin Intracellular Transportation
by Xuxiang Wang, Jiajia Dong, Yiting Hu, Qiaoyu Huang, Xiaoying Lu, Yilin Huang, Mingyang Sheng, Lijun Cao, Buhuai Xu, Yongqiang Li, Yu Zong and Weidong Guo
Plants 2024, 13(10), 1316; https://doi.org/10.3390/plants13101316 - 10 May 2024
Cited by 11 | Viewed by 2611
Abstract
The glutathione S-transferases (GSTs, EC 2.5.1.18) constitute a versatile enzyme family with pivotal roles in plant stress responses and detoxification processes. Recent discoveries attributed the additional function of facilitating anthocyanin intracellular transportation in plants to GSTs. Our study identified 178 VcGST genes from [...] Read more.
The glutathione S-transferases (GSTs, EC 2.5.1.18) constitute a versatile enzyme family with pivotal roles in plant stress responses and detoxification processes. Recent discoveries attributed the additional function of facilitating anthocyanin intracellular transportation in plants to GSTs. Our study identified 178 VcGST genes from 12 distinct subfamilies in the blueberry genome. An uneven distribution was observed among these genes across blueberry’s chromosomes. Members within the same subfamily displayed homogeneity in gene structure and conserved protein motifs, whereas marked divergence was noted among subfamilies. Functional annotations revealed that VcGSTs were significantly enriched in several gene ontology and KEGG pathway categories. Promoter regions of VcGST genes predominantly contain light-responsive, MYB-binding, and stress-responsive elements. The majority of VcGST genes are subject to purifying selection, with whole-genome duplication or segmental duplication serving as key processes that drive the expansion of the VcGST gene family. Notably, during the ripening of the blueberry fruit, 100 VcGST genes were highly expressed, and the expression patterns of 24 of these genes demonstrated a strong correlation with the dynamic content of fruit anthocyanins. Further analysis identified VcGSTF8, VcGSTF20, and VcGSTF22 as prime candidates of VcGST genes involved in the anthocyanin intracellular transport. This study provides a reference for the exploration of anthocyanin intracellular transport mechanisms and paves the way for investigating the spectrum of GST functions in blueberries. Full article
(This article belongs to the Special Issue Fruit Development, Ripening and Quality)
Show Figures

Figure 1

20 pages, 10550 KB  
Article
Genome-Wide Identification of Glutathione S-Transferase Genes in Eggplant (Solanum melongena L.) Reveals Their Potential Role in Anthocyanin Accumulation on the Fruit Peel
by Hesbon Ochieng Obel, Xiaohui Zhou, Songyu Liu, Yan Yang, Jun Liu and Yong Zhuang
Int. J. Mol. Sci. 2024, 25(8), 4260; https://doi.org/10.3390/ijms25084260 - 11 Apr 2024
Cited by 4 | Viewed by 2844
Abstract
Anthocyanins are ubiquitous pigments derived from the phenylpropanoid compound conferring red, purple and blue pigmentations to various organs of horticultural crops. The metabolism of flavonoids in the cytoplasm leads to the biosynthesis of anthocyanin, which is then conveyed to the vacuoles for storage [...] Read more.
Anthocyanins are ubiquitous pigments derived from the phenylpropanoid compound conferring red, purple and blue pigmentations to various organs of horticultural crops. The metabolism of flavonoids in the cytoplasm leads to the biosynthesis of anthocyanin, which is then conveyed to the vacuoles for storage by plant glutathione S-transferases (GST). Although GST is important for transporting anthocyanin in plants, its identification and characterization in eggplant (Solanum melongena L.) remains obscure. In this study, a total of 40 GST genes were obtained in the eggplant genome and classified into seven distinct chief groups based on the evolutionary relationship with Arabidopsis thaliana GST genes. The seven subgroups of eggplant GST genes (SmGST) comprise: dehydroascorbate reductase (DHAR), elongation factor 1Bγ (EF1Bγ), Zeta (Z), Theta(T), Phi(F), Tau(U) and tetra-chlorohydroquinone dehalogenase TCHQD. The 40 GST genes were unevenly distributed throughout the 10 eggplant chromosomes and were predominantly located in the cytoplasm. Structural gene analysis showed similarity in exons and introns within a GST subgroup. Six pairs of both tandem and segmental duplications have been identified, making them the primary factors contributing to the evolution of the SmGST. Light-related cis-regulatory elements were dominant, followed by stress-related and hormone-responsive elements. The syntenic analysis of orthologous genes indicated that eggplant, Arabidopsis and tomato (Solanum lycopersicum L.) counterpart genes seemed to be derived from a common ancestry. RNA-seq data analyses showed high expression of 13 SmGST genes with SmGSTF1 being glaringly upregulated on the peel of purple eggplant but showed no or low expression on eggplant varieties with green or white peel. Subsequently, SmGSTF1 had a strong positive correlation with anthocyanin content and with anthocyanin structural genes like SmUFGT (r = 0.9), SmANS (r = 0.85), SmF3H (r = 0.82) and SmCHI2 (r = 0.7). The suppression of SmGSTF1 through virus-induced gene silencing (VIGs) resulted in a decrease in anthocyanin on the infiltrated fruit surface. In a nutshell, results from this study established that SmGSTF1 has the potential of anthocyanin accumulation in eggplant peel and offers viable candidate genes for the improvement of purple eggplant. The comprehensive studies of the SmGST family genes provide the foundation for deciphering molecular investigations into the functional analysis of SmGST genes in eggplant. Full article
(This article belongs to the Special Issue Vegetable Genetics and Genomics 2.0)
Show Figures

Figure 1

Back to TopTop