Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Frido Units

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 42047 KiB  
Article
Characterisation of Fault-Related Mn-Fe Striae on the Timpa Della Manca Fault (Mercure Basin, Southern Apennines, Italy)
by Sabrina Nazzareni, Luciana Mantovani, Mattia Pizzati, Danilo Bersani, Tiziano Boschetti, Ambra Palmucci, Daniele Cirillo and Francesco Brozzetti
Geosciences 2024, 14(11), 299; https://doi.org/10.3390/geosciences14110299 - 5 Nov 2024
Cited by 1 | Viewed by 1364 | Correction
Abstract
The Quaternary Mercure basin is a complex fault structure located in the Pollino region of the southern Apennines (Italy). A persistent seismic gap makes the Mercure basin structure one of Italy’s highest seismic risk zones. The southernmost termination of the Mercure basin is [...] Read more.
The Quaternary Mercure basin is a complex fault structure located in the Pollino region of the southern Apennines (Italy). A persistent seismic gap makes the Mercure basin structure one of Italy’s highest seismic risk zones. The southernmost termination of the Mercure basin is the Timpa della Manca fault. The fault’s mirror is characterised by distinctive, lineated, black-coloured striae decorating a cataclasite made of carbonate clasts. These black-coloured striae consist of a mixture of Mn phases, including hollandite, todorokite, birnessite, and orientite, which are associated with goethite and hematite along with minor amounts of phyllosilicates (chlorite, muscovite), quartz, and sursassite. This mineral association and their phase stability suggest that hydrothermal circulating fluids may have mobilised and re-precipitated low-temperature Mn hydrous phases within the shear zone, leaving remnants of higher-temperature minerals. Oceanic crust remnant blocks within the Frido Unit appear to be the most likely source of the Mn. The uniqueness of the Mn striae on the Timpa della Manca fault offers intriguing insights into fluid circulation within the Mercure basin tectonic system, with potential implications for the seismotectonic characteristics of the Pollino region. Full article
Show Figures

Figure 1

31 pages, 4527 KiB  
Article
An Integrated Study of the Serpentinite-Hosted Hydrothermal System in the Pollino Massif (Southern Apennines, Italy)
by Giovanna Rizzo, Maria Carmela Dichicco, Pedro Castiñeiras, Fausto Grassa, Salvatore Laurita, Michele Paternoster, Rosa Sinisi and Giovanni Mongelli
Minerals 2020, 10(2), 127; https://doi.org/10.3390/min10020127 - 31 Jan 2020
Cited by 4 | Viewed by 4156
Abstract
A comprehensive study of the serpentinite and associated veins belonging to the Frido Unit in the Pollino Massif (southern Italy) is presented here with the aim to provide new constraints about the hydrothermal system hosted by the accretionary wedge of the southern Apennines. [...] Read more.
A comprehensive study of the serpentinite and associated veins belonging to the Frido Unit in the Pollino Massif (southern Italy) is presented here with the aim to provide new constraints about the hydrothermal system hosted by the accretionary wedge of the southern Apennines. The studied serpentinites are from two different sites: Fosso Arcangelo and Pietrapica. In both sites, the rocks show mylonitic-cataclastic structures and pseudomorphic and patch textures and are traversing by pervasive carbonate and quartz-carbonate veins. The mineralogical assemblage of serpentinites consists of serpentine group minerals (with a predominance of lizardite), amphiboles, pyroxene, chlorite, titanite, magnetite, and talc. In some samples, hydro-garnet was also detected and documented here for the first time. As for cutting veins, different mineralogical compositions were observed in the two sites: calcite characterizes the veins from Fosso Arcangelo, whereas quartz and dolomite are the principal minerals of the Pietrapica veins infill, suggesting a different composition of mineralizing fluids. Stable isotopes of C and O also indicate such a different chemistry. In detail, samples from the Pietrapica site are characterized by δ13C fluctuations coupled with a δ18O shift documenting calcite formation in an open-system where mixing between deep and shallow fluids occurred. Conversely, δ13C and δ18O of the Fosso Arcangelo veins show a decarbonation trend, suggesting their developing in a closed-system at deeper crustal conditions. Precipitation temperature calculated for both sites indicates a similar range (80 °C to 120 °C), thus suggesting carbonate precipitation within the same thermal system. Full article
(This article belongs to the Special Issue Feature Papers in Mineral Geochemistry and Geochronology 2019)
Show Figures

Figure 1

10 pages, 7204 KiB  
Article
The First Occurrence of Asbestiform Magnesio-Riebeckite in Schists in the Frido Unit (Pollino Unesco Global Geopark, Southern Italy)
by Salvatore Laurita and Giovanna Rizzo
Fibers 2019, 7(9), 79; https://doi.org/10.3390/fib7090079 - 31 Aug 2019
Cited by 4 | Viewed by 5545
Abstract
In this paper, new mineralogical and petrographical data of asbestiform Magnesio-riebeckite from ophiolite cropping out in the Pollino Unesco Global Geopark (southern Italy) are presented. Magnesio-riebeckite schists with HP-LT index mineral assemblage recorded metamorphic events in blueschist facies in the Frido Unit. Previous [...] Read more.
In this paper, new mineralogical and petrographical data of asbestiform Magnesio-riebeckite from ophiolite cropping out in the Pollino Unesco Global Geopark (southern Italy) are presented. Magnesio-riebeckite schists with HP-LT index mineral assemblage recorded metamorphic events in blueschist facies in the Frido Unit. Previous toxicological studies showed that asbestiform Magnesio-riebeckite species exhibited high carcinogenicity in previous intraperitoneal injection experiments with rats. The results have been obtained using different analytical techniques such as X-ray fluorescence (XRF), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and electron probe micro analysis (EPMA). Results show that all the samples contain fibrous Magnesio-riebeckite and/or prismatic, acicular crystals in aggregates. The concentration of elements in Magnesio-riebeckite crystals is: Na2O (4.12–6.26 wt%), MgO (8.22–10.87 wt%), FeO (19.07–23.81 wt%), SiO2 (52.05–56.06 wt%), CaO (1.12–4.53 wt%), Al2O3 (1.34–1.93 wt%), and MnO (0.10–0.34 wt%). Magnesio-riebeckite crystals are documented in the Pollino Unesco Global Geopark for the first time. For this reason, the aim of this paper is the characterization of Magnesio-riebeckite to improve the knowledge of this mineral in the studied area, because the release of fibers into the environment is dangerous for human health. Full article
Show Figures

Figure 1

13 pages, 1835 KiB  
Review
Mineralogical Asbestos Assessment in the Southern Apennines (Italy): A Review
by Maria Carmela Dichicco, Michele Paternoster, Giovanna Rizzo and Rosa Sinisi
Fibers 2019, 7(3), 24; https://doi.org/10.3390/fib7030024 - 19 Mar 2019
Cited by 21 | Viewed by 5528
Abstract
This paper deals with petrography and mineralogy of serpentinitic rocks occurring in the Southern Apennines (Italy) with the aim to review the already available literature data and furnish new details on asbestos minerals present in the studied area. Two sites of Southern Italy [...] Read more.
This paper deals with petrography and mineralogy of serpentinitic rocks occurring in the Southern Apennines (Italy) with the aim to review the already available literature data and furnish new details on asbestos minerals present in the studied area. Two sites of Southern Italy were taken into account: the Pollino Massif, at the Calabrian-Lucanian border, and the surroundings of the Gimigliano and Mt. Reventino areas where serpentinites of Frido Unit are mainly exposed. Textural and mineralogical features of the studied rocks point to a similar composition for both sites including asbestos minerals such as chrysotile and tremolite-actinolite series mineral phases. Only in the Pollino Massif serpentinites edenite crystals have been detected as well; they are documented here for the first time. This amphibole forms as fibrous and/or prismatic crystals in aggregates associated with serpentine, pyroxene, and calcite. Metamorphism and/or metasomatic alteration of serpentinites are the most probable processes promoting the edenite formation in the Southern Apennine ophiolitic rocks. Full article
(This article belongs to the Special Issue Mineral Fibres)
Show Figures

Figure 1

13 pages, 3950 KiB  
Article
Environmental and Health: The Importance of Tremolite Occurence in the Pollino Geopark (Southern Italy)
by Maria Carmela Dichicco, Salvatore Laurita, Rosa Sinisi, Raimondo Battiloro and Giovanna Rizzo
Geosciences 2018, 8(3), 98; https://doi.org/10.3390/geosciences8030098 - 13 Mar 2018
Cited by 17 | Viewed by 4298
Abstract
Worldwide studies have been done about the toxicity and carcinogenicity of asbestos minerals occurring in ophiolitic rocks. Inhalation of asbestos due to environmental exposure could cause malignant mesothelioma and lung cancers. In particular, the ophiolitic rocks in Tethyan realm represents a serious enivironmental [...] Read more.
Worldwide studies have been done about the toxicity and carcinogenicity of asbestos minerals occurring in ophiolitic rocks. Inhalation of asbestos due to environmental exposure could cause malignant mesothelioma and lung cancers. In particular, the ophiolitic rocks in Tethyan realm represents a serious enivironmental concern due to both the presence of asbestos-like minerals and the large Cr abundance that is prone to solubilisation as CrVI. At the Pollino Geopark (southern Apennines, Italy), serpentinites-rich ophiolite rocks and sediments of the Frido Unit crop-out. In these rocks, tremolite, an asbestos-like mineral, is typically intergrown with fibrous antigorite and chrysotile. Tremolite shows acicular, friable, fibrous, and elongated habitus, can be easily released into the environment as a result of both natural processes and anthropogenic activities. In the analyzed rocks, tremolite is present mainly in veins as much as in the matrix and forms crowns around clinopyroxene porphyroclasts. The different analytical techniques showed the recognition of the amphibole-like minerals (actinolite and tremolite) that are the dominant phases, with a small percentage of Fe2+. The presence of Fe in the “ideal” tremolite asbestos could cause pathological effects for the human living in the Pollino Geopark. This study has several environmental relevant implications, including, for example, the realization of national health protecting programs and the mapping of natural sites characterized by the presence of asbestos minerals in Pollino Geopark and in others area where outcrop asbestos bearing ophiolitic rocks. Full article
Show Figures

Figure 1

Back to TopTop