Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = FreeFlyer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 29509 KiB  
Article
Finite Element Modeling of Different Types of Hydrogen Pressure Vessels Under Extreme Conditions for Space Applications
by Reham Reda, Sabbah Ataya and Amir Ashraf
Processes 2025, 13(5), 1429; https://doi.org/10.3390/pr13051429 - 7 May 2025
Viewed by 773
Abstract
Fuel cells, propulsion systems, and reaction control systems (RCSs) are just a few of the space applications that depend on pressure vessels (PVs) to safely hold high-pressure fluids while enduring extreme environmental conditions both during launch and in orbit. Under these challenging circumstances, [...] Read more.
Fuel cells, propulsion systems, and reaction control systems (RCSs) are just a few of the space applications that depend on pressure vessels (PVs) to safely hold high-pressure fluids while enduring extreme environmental conditions both during launch and in orbit. Under these challenging circumstances, PVs must be lightweight while retaining structural integrity in order to increase the efficiency and lower the launch costs. PVs have significant challenges in space conditions, such as extreme vibrations during launch, the complete vacuum of space, and sudden temperature changes based on their location within the satellite and orbit types. Determining the operational temperature limits and endurance of PVs in space applications requires assessing the combined effects of these factors. As the main propellant for satellites and rockets, hydrogen has great promise for use in future space missions. This study aimed to assess the structural integrity and determine the thermal operating limits of different types of hydrogen pressure vessels using finite element analysis (FEA) with Ansys 2019 R3 Workbench. The impact of extreme space conditions on the performances of various kinds of hydrogen pressure vessels was analyzed numerically in this work. This study determined the safe operating temperature ranges for Type 4, Type 3, and Type 1 PVs at an operating hydrogen storage pressure of 35 MPa in an absolute vacuum. Additionally, the dynamic performance was assessed through modal and random vibration analyses. Various aspects of Ansys Workbench were explored, including the influence of the mesh element size, composite modeling methods, and their combined impact on the result accuracy. In terms of the survival temperature limits, the Type 4 PVs, which consisted of a Nylon 6 liner and a carbon fiber-reinforced epoxy (CFRE) prepreg composite shell, offered the optimal balance between the weight (56.2 kg) and a relatively narrow operating temperature range of 10–100 °C. The Type 3 PVs, which featured an Aluminum 6061-T6 liner, provided a broader operational temperature range of 0–145 °C but at a higher weight of 63.7 kg. Meanwhile, the Type 1 PVs demonstrated a superior cryogenic performance, with an operating range of −55–54 °C, though they were nearly twice as heavy as the Type 4 PVs, with a weight of 106 kg. The absolute vacuum environment had a negligible effect on the mechanical performance of all the PVs. Additionally, all the analyzed PV types maintained structural integrity and safety under launch-induced vibration loads. This study provided critical insights for selecting the most suitable pressure vessel type for space applications by considering operational temperature constraints and weight limitations, thereby ensuring an optimal mechanical–thermal performance and structural efficiency. Full article
Show Figures

Figure 1

17 pages, 30600 KiB  
Article
Spall Failure of ECAE Mg-Al Alloys at Extreme Strain Rates: Influence of a Refined Precipitate and Grain Microstructure
by Christopher S. DiMarco, Peter Lim, Debjoy Mallick, Laszlo Kecskes, Timothy P. Weihs and K. T. Ramesh
Metals 2023, 13(3), 454; https://doi.org/10.3390/met13030454 - 22 Feb 2023
Cited by 6 | Viewed by 2170
Abstract
The development of advanced materials for extreme dynamic environments requires an understanding of the links between the microstructure and the response of the material (i.e., Materials-by-Design). Spall failure significantly limits material performance at high strain rates, but our understanding of the influence of [...] Read more.
The development of advanced materials for extreme dynamic environments requires an understanding of the links between the microstructure and the response of the material (i.e., Materials-by-Design). Spall failure significantly limits material performance at high strain rates, but our understanding of the influence of microstructure on spall strength is limited. While models suggest that increasing the static yield strength by adding precipitates or refining grain size can improve the spall strength, it is possible that the associated increase in nucleation sites may have deleterious effects on spall performance. Herein, we examine spall failure of a Magnesium-Aluminum system with precipitation and grain size strengthening through novel high-throughput laser-driven micro-flyer (LDMF) impact experiments. Six microstructures are investigated, four with grain sizes around 2–3 μm and precipitates around 0.5–1 μm, and two that are precipitate-free with grain sizes around 500 μm at six and nine percent Aluminum contents. The LDMF method allows us to detect differences in spall strength with relatively small changes in microstructure. The spall strength is observed to be strongly affected by varying levels of precipitates and consistently shows a notable reduction in average spall strength around 8–19% with the addition of precipitates, with values ranging from 1.22–1.50 GPa. The spall strength is also seen to decrease with the refinement of grain size independent of composition. However, this decrease is small compared to the hundred-fold grain size reduction. While ductile void growth is observed across all samples, greater variability and a further decrease in strength are seen with an increasing numbers of non-uniformly dispersed precipitates. Full article
(This article belongs to the Special Issue Dynamic Response of Metals under Extreme Conditions)
Show Figures

Figure 1

12 pages, 2933 KiB  
Article
High-Strain Rate Spall Strength Measurement for CoCrFeMnNi High-Entropy Alloy
by Andrew Ehler, Abhijeet Dhiman, Tyler Dillard, Remi Dingreville, Erin Barrick, Andrew Kustas and Vikas Tomar
Metals 2022, 12(9), 1482; https://doi.org/10.3390/met12091482 - 7 Sep 2022
Cited by 8 | Viewed by 2923
Abstract
In this study, we experimentally investigate the high stain rate and spall behavior of Cantor high-entropy alloy (HEA), CoCrFeMnNi. First, the Hugoniot equations of state (EOS) for the samples are determined using laser-driven CoCrFeMnNi flyers launched into known Lithium Fluoride (LiF) windows. Photon [...] Read more.
In this study, we experimentally investigate the high stain rate and spall behavior of Cantor high-entropy alloy (HEA), CoCrFeMnNi. First, the Hugoniot equations of state (EOS) for the samples are determined using laser-driven CoCrFeMnNi flyers launched into known Lithium Fluoride (LiF) windows. Photon Doppler Velocimetry (PDV) recordings of the velocity profiles find the EOS coefficients using an impedance mismatch technique. Following this set of measurements, laser-driven aluminum flyer plates are accelerated to velocities of 0.5–1.0 km/s using a high-energy pulse laser. Upon impact with CoCrFeMnNi samples, the shock response is found through PDV measurements of the free surface velocities. From this second set of measurements, the spall strength of the alloy is found for pressures up to 5 GPa and strain rates in excess of 106 s−1. Further analysis of the failure mechanisms behind the spallation is conducted using fractography revealing the occurrence of ductile fracture at voids presumed to be caused by chromium oxide deposits created during the manufacturing process. Full article
(This article belongs to the Special Issue Dynamic Response of Metals under Extreme Conditions)
Show Figures

Figure 1

18 pages, 8472 KiB  
Article
Experimental and Numerical Investigations into Magnetic Pulse Welding of Aluminum Alloy 6016 to Hardened Steel 22MnB5
by Rico Drehmann, Christian Scheffler, Sven Winter, Verena Psyk, Verena Kräusel and Thomas Lampke
J. Manuf. Mater. Process. 2021, 5(3), 66; https://doi.org/10.3390/jmmp5030066 - 24 Jun 2021
Cited by 18 | Viewed by 4101
Abstract
By means of magnetic pulse welding (MPW), high-quality joints can be produced without some of the disadvantages of conventional welding, such as thermal softening, distortion, and other undesired temperature-induced effects. However, the range of materials that have successfully been joined by MPW is [...] Read more.
By means of magnetic pulse welding (MPW), high-quality joints can be produced without some of the disadvantages of conventional welding, such as thermal softening, distortion, and other undesired temperature-induced effects. However, the range of materials that have successfully been joined by MPW is mainly limited to comparatively soft materials such as copper or aluminum. This paper presents an extensive experimental study leading to a process window for the successful MPW of aluminum alloy 6016 (AA6016) to hardened 22MnB5 steel sheets. This window is defined by the impact velocity and impact angle of the AA6016 flyer. These parameters, which are significantly dependent on the initial gap between flyer and target, the charging energy of the pulse power generator, and the lateral position of the flyer in relation to the inductor, were determined by a macroscopic coupled multiphysics simulation in LS-DYNA. The welded samples were mechanically characterized by lap shear tests. Furthermore, the bonding zone was analyzed by optical and scanning electron microscopy including energy-dispersive X-ray spectroscopy as well as nanoindentation. It was found that the samples exhibited a wavy interface and a transition zone consisting of Al-rich intermetallic phases. Samples with comparatively thin and therefore crack-free transition zones showed a 45% higher shear tensile strength resulting in failure in the aluminum base material. Full article
(This article belongs to the Special Issue Impulse-Based Manufacturing Technologies)
Show Figures

Figure 1

6 pages, 496 KiB  
Proceeding Paper
Developing Technologies for Biological Experiments in Deep Space
by Elizabeth M. Hawkins, Ada Kanapskyte and Sergio R. Santa Maria
Proceedings 2020, 60(1), 28; https://doi.org/10.3390/IECB2020-07085 - 2 Nov 2020
Cited by 4 | Viewed by 4630
Abstract
In light of an upcoming series of missions beyond low Earth orbit (LEO) through NASA’s Artemis program and the potential establishment of bases on the Moon and Mars, the effects of the deep space environment on biology need to be examined and protective [...] Read more.
In light of an upcoming series of missions beyond low Earth orbit (LEO) through NASA’s Artemis program and the potential establishment of bases on the Moon and Mars, the effects of the deep space environment on biology need to be examined and protective countermeasures need to be developed. Even though many biological experiments have been performed in space since the 1960s, most of them have occurred in LEO and for only short periods of time. These LEO missions have studied many biological phenomena in a variety of model organisms, as well as utilized a broad range of technologies. Given the constraints of the deep space environment, however, future deep space biological missions will be limited to microbial organisms using miniaturized technologies. Small satellites like CubeSats are capable of querying relevant space environments using novel instruments and biosensors. CubeSats also provide a low-cost alternative to more complex and larger missions, and require minimal crew support, if any. Several have been deployed in LEO, but the next iteration of biological CubeSats will go farther. BioSentinel will be the first interplanetary CubeSat and the first biological study NASA has sent beyond Earth’s magnetosphere in 50 years. BioSentinel is an autonomous free-flyer platform able to support biology and to investigate the effects of radiation on a model organism in interplanetary deep space. The BioSensor payload contained within the free-flyer is also an adaptable instrument that can perform biologically relevant measurements with different microorganisms and in multiple space environments, including the ISS, lunar gateway, and on the surface of the Moon. Nanosatellites like BioSentinel can be used to study the effects of both reduced gravity and space radiation and can house different organisms or biosensors to answer specific scientific questions. Utilizing these biosensors will allow us to better understand the effects of the space environment on biology so humanity may return safely to deep space and venture farther than ever before. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Biosensors)
Show Figures

Figure 1

56 pages, 1431 KiB  
Review
Tutorial Review on Space Manipulators for Space Debris Mitigation
by Alex Ellery
Robotics 2019, 8(2), 34; https://doi.org/10.3390/robotics8020034 - 26 Apr 2019
Cited by 59 | Viewed by 17618
Abstract
Space-based manipulators have traditionally been tasked with robotic on-orbit servicing or assembly functions, but active debris removal has become a more urgent application. We present a much-needed tutorial review of many of the robotics aspects of active debris removal informed by activities in [...] Read more.
Space-based manipulators have traditionally been tasked with robotic on-orbit servicing or assembly functions, but active debris removal has become a more urgent application. We present a much-needed tutorial review of many of the robotics aspects of active debris removal informed by activities in on-orbit servicing. We begin with a cursory review of on-orbit servicing manipulators followed by a short review on the space debris problem. Following brief consideration of the time delay problems in teleoperation, the meat of the paper explores the field of space robotics regarding the kinematics, dynamics and control of manipulators mounted onto spacecraft. The core of the issue concerns the spacecraft mounting which reacts in response to the motion of the manipulator. We favour the implementation of spacecraft attitude stabilisation to ease some of the computational issues that will become critical as increasing level of autonomy are implemented. We review issues concerned with physical manipulation and the problem of multiple arm operations. We conclude that space robotics is well-developed and sufficiently mature to tackling tasks such as active debris removal. Full article
(This article belongs to the Special Issue Space Robotics)
Show Figures

Figure 1

17 pages, 536 KiB  
Article
Recruitment Strategies for a Randomised Controlled Trial Comparing Fast Versus Slow Weight Loss in Postmenopausal Women with Obesity—The TEMPO Diet Trial
by Michelle S.H. Hsu, Claudia Harper, Alice A. Gibson, Arianne N. Sweeting, John McBride, Tania P. Markovic, Ian D. Caterson, Nuala M. Byrne, Amanda Sainsbury and Radhika V. Seimon
Healthcare 2018, 6(3), 76; https://doi.org/10.3390/healthcare6030076 - 6 Jul 2018
Cited by 8 | Viewed by 5883
Abstract
Current research around effective recruitment strategies for clinical trials of dietary obesity treatments have largely focused on younger adults, and thus may not be applicable to older populations. The TEMPO Diet Trial (Type of Energy Manipulation for Promoting [...] Read more.
Current research around effective recruitment strategies for clinical trials of dietary obesity treatments have largely focused on younger adults, and thus may not be applicable to older populations. The TEMPO Diet Trial (Type of Energy Manipulation for Promoting optimal metabolic health and body composition in Obesity) is a randomised controlled trial comparing the long-term effects of fast versus slow weight loss on body composition and cardio-metabolic health in postmenopausal women with obesity. This paper addresses the recruitment strategies used to enrol participants into this trial and evaluates their relative effectiveness. 101 post-menopausal women aged 45–65 years, with a body mass index of 30–40 kg/m2 were recruited and randomised to either fast or slow weight loss. Multiple strategies were used to recruit participants. The total time cost (labour) and monetary cost per randomised participant from each recruitment strategy was estimated, with lower values indicating greater cost-effectiveness and higher values indicating poorer cost-effectiveness. The most cost-effective recruitment strategy was word of mouth, followed (at equal second place) by free publicity on TV and radio, and printed advertorials, albeit these avenues only yielded 26/101 participants. Intermediate cost-effective recruitment strategies were flyer distribution at community events, hospitals and a local tertiary education campus, internet-based strategies, and clinical trial databases and intranets, which recruited a further 40/101 participants. The least cost-effective recruitment strategy was flyer distribution to local health service centres and residential mailboxes, and referrals from healthcare professionals were not effective. Recruiting for clinical trials involving postmenopausal women could benefit from a combination of recruitment strategies, with an emphasis on word of mouth and free publicity via radio, TV, and print media, as well as strategic placement of flyers, supplemented with internet-based strategies, databases and intranets if a greater yield of participants is needed. Full article
(This article belongs to the Special Issue Dietary Management of Obesity)
Show Figures

Figure 1

6 pages, 8665 KiB  
Proceeding Paper
Dynamic Behavior of Metals at Elevated Temperatures and Ultra-High Strain Rates
by Tianxue Wang, Bryan Zuanetti and Vikas Prakash
Proceedings 2018, 2(8), 372; https://doi.org/10.3390/ICEM18-05204 - 7 May 2018
Cited by 1 | Viewed by 1882
Abstract
This paper presents the results of a series of reverse geometry normal plate impact experiments designed to investigate the onset of incipient plasticity in commercial purity polycrystalline magnesium (99.9%) under weak uniaxial-strain shock compression loading and elevated temperatures up to the melting point [...] Read more.
This paper presents the results of a series of reverse geometry normal plate impact experiments designed to investigate the onset of incipient plasticity in commercial purity polycrystalline magnesium (99.9%) under weak uniaxial-strain shock compression loading and elevated temperatures up to the melting point of magnesium. To enable the characterization of dynamic material behavior under extreme conditions, i.e., ultra-high strain rates (~106/s) and test temperatures up to sample melt (1000 °C), strategic modifications were made to the single-stage gas-gun facility at the Case Western Reserve University. In this configuration, thin metal samples (also representing the flyer plate), carried by a specially designed heat-resistant sabot, are heated uniformly across the diameter in a 100 mTorr vacuum prior to impact by a resistance coil heater at the breech end of the gun barrel. Moreover, a compact fiber-optics-based heterodyne normal displacement interferometer is designed and implemented to measure the normal component of the particle velocity history at the free surface of the target plate. Similar to the standard photonic Doppler velocimetry (PDV), this diagnostic tool is assembled using commercially available telecommunications hardware and uses a 1550-nm wavelength 2 W fiber-coupled laser, an optical probe and single mode fibers to transport light to and from the target. Using this unique approach, normal plate impact experiments are conducted on preheated (room temperature to near the melting point of magnesium) 99.9% polycrystalline magnesium using Inconel 718 target plates at impact velocities of 100–110 m/s. As inferred from the measured normal particle velocity history, the stress at the flyer/target interface shows progressive weakening with increasing sample temperatures below the melting point. At higher test temperatures, the rate of material softening under stress is observed to decrease and even reverse as the sample temperatures approach the melting point of magnesium samples. Scanning electron microscopy is utilized to understand the evolution of sample material microstructure including twinning following the impact event. Full article
(This article belongs to the Proceedings of The 18th International Conference on Experimental Mechanics)
Show Figures

Figure 1

Back to TopTop