Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = Floral primordia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1106 KiB  
Article
Temperature and Daylength Effects on Growth and Floral Initiation in Biennial-Fruiting Blackberry
by Anita Sønsteby and Ola M. Heide
Horticulturae 2023, 9(12), 1285; https://doi.org/10.3390/horticulturae9121285 - 29 Nov 2023
Cited by 3 | Viewed by 1903
Abstract
Little is known about the environmental control of growth and flower bud initiation (FBI) in commercial blackberries. We studied the processes in the cultivars ‘Lock Ness’, ’Ouachita’ and ‘Sweet Royalla’ at 12, 16 and 20 °C in a daylight phytotron under naturally decreasing [...] Read more.
Little is known about the environmental control of growth and flower bud initiation (FBI) in commercial blackberries. We studied the processes in the cultivars ‘Lock Ness’, ’Ouachita’ and ‘Sweet Royalla’ at 12, 16 and 20 °C in a daylight phytotron under naturally decreasing autumn daylength at Ås, Norway (59°40′ N). Growth rate increased with increasing temperature but was much lower at all temperatures in the erect ‘Ouachita’ than in the trailing cultivars ‘Lock Ness’ and ‘Sweet Royalla’. In all cultivars, FBI occurred earliest at 16 °C, whereas little or no FBI took place in ‘Ouachita’ and ‘Lock Ness’ at 12 °C. Growth cessation was earliest at 16 °C where it occurred in early September in all cultivars, suggesting a critical daylength of approximately 14 h. At variance from earlier statements, FBI started in lateral buds situated several nodes below the apex and progressed in both acropetal and basipetal directions as previously reported for red raspberry. Winter chill at 0 °C enhanced flowering in spring in marginally induced plants of all cultivars except ‘Ouachita’ grown at 12 °C, which remained vegetative in spring. The results suggest that temperature is as important as daylength for FBI in biennial-fruiting blackberry, and that winter chilling may enhance flowering and yield potential in partially induced plants. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

17 pages, 40275 KiB  
Article
Development of Flowers Buds and Mixed Buds in the Dichasial Inflorescence of Geranium koreanum Kom. (Geraniaceae)
by Wanpei Lu, Zhongzhou Han, Qinghua Liu, Kuiling Wang, Qingchao Liu and Xuebin Song
Plants 2023, 12(18), 3178; https://doi.org/10.3390/plants12183178 - 5 Sep 2023
Viewed by 2385
Abstract
Flower bud differentiation is of great significance for understanding plant evolution and ecological adaptability. The development of flower buds and mixed buds in the dichasial inflorescence of Geranium koreanum was described in this paper. The morphogenesis, surface structure, and organ morphology at different [...] Read more.
Flower bud differentiation is of great significance for understanding plant evolution and ecological adaptability. The development of flower buds and mixed buds in the dichasial inflorescence of Geranium koreanum was described in this paper. The morphogenesis, surface structure, and organ morphology at different growth stages of G. koreanum buds were examined in detail using scanning electron microscope and stereo microscope. The development of mixed buds started from the flattened apical meristem. The stipule and leaf primordia arose first. Subsequently, the hemispherical meristem was divided into two hemispheres, forming a terminal bud and floral bud primordia, followed by lateral bud differentiation. The formation of the terminal and lateral buds of G. koreanum was sequential and their differentiation positions were also different. The floral bud primordia would develop into two flower units and four bracts. The primordia of a flower bud first formed the sepal primordia, then the stamen and petal primordia, and finally the pistil primordia. Compared to the stamen primordia, the growth of the petal primordia was slower. Finally, all organs, especially the petals and pistil, grew rapidly. When the pistil and petals exceeded the stamens and the petals changed color, the flower bud was ready to bloom. Full article
(This article belongs to the Special Issue Flower Development in Ornamental Plants)
Show Figures

Figure 1

12 pages, 37804 KiB  
Article
Emergence of Corona Is Independent of the Four Whorls of Floral Organs in Narcissus tazetta
by Yanjun Ma, Xiaomeng Hu, Keke Fan, Na Zhang, Lili Shang, Yayun Deng, Tao Hu, Wenbo Zhang, Yan Wang and Zehui Jiang
Plants 2023, 12(7), 1458; https://doi.org/10.3390/plants12071458 - 27 Mar 2023
Viewed by 4222
Abstract
Plants of the genus Narcissus are well-known for their characteristic corona morphology, which structural origins have been a bone of contention among scholars. With “Jinzhanyintai” (JZ) and “Yulinglong” (YLL)—two major close-originated cultivars of Chinese narcissus (Narcissus tazetta L. var. chinensis Roem)—as materials, [...] Read more.
Plants of the genus Narcissus are well-known for their characteristic corona morphology, which structural origins have been a bone of contention among scholars. With “Jinzhanyintai” (JZ) and “Yulinglong” (YLL)—two major close-originated cultivars of Chinese narcissus (Narcissus tazetta L. var. chinensis Roem)—as materials, anatomic observation was made on floral organs during corona morphogenesis by dissection with hands under a stereomicroscope, paraffin section, scanning electron microscopy, and high-resolution X-ray tomography. It was uncovered that corona primordia of both cultivars appeared following the end of the differentiation of other floral organs, with differentiation sites located at the inner wall of the juncture of the base of tepals and the upper margin of the hypanthium. Affected by staminal filaments, the corona primordia of JZ experienced a three-stage differentiation process, namely blockage from the second whorl of stamens, blockage from the first whorl of stamens, and healing of corona primordia. However, the expanded spatial structure of the first whorl of petal-like stamens blocked the path of differentiation of YLL corona primordia, giving rise to slow differentiation of the corona primordia at the base of the first whorl of petal-like stamens and malformed differentiation of the corona primordia in the interval between the two whorls of petal-like stamens. Thus, a fragmented structure consisting of typical and fragmented coronas was formed. Furthermore, petal-like stamens of YLL in the lower part had a corona-like morphology. The spatio-temporal specificity of corona differentiation convincingly demonstrates that the corona is a structure independent of and different from the typical four whorls of floral organs, but also highly correlated with stamen. Full article
(This article belongs to the Special Issue Floral Biology 2.0)
Show Figures

Figure 1

21 pages, 6679 KiB  
Article
Cross-Talk between Transcriptome Analysis and Dynamic Changes of Carbohydrates Identifies Stage-Specific Genes during the Flower Bud Differentiation Process of Chinese Cherry (Prunus pseudocerasus L.)
by Chunqiong Shang, Xuejiao Cao, Tian Tian, Qiandong Hou, Zhuang Wen, Guang Qiao and Xiaopeng Wen
Int. J. Mol. Sci. 2022, 23(24), 15562; https://doi.org/10.3390/ijms232415562 - 8 Dec 2022
Cited by 13 | Viewed by 2541
Abstract
Flower bud differentiation is crucial to reproductive success in plants. In the present study, RNA-Seq and nutrients quantification were used to identify the stage-specific genes for flower bud differentiation with buds which characterize the marked change during flower bud formation from a widely [...] Read more.
Flower bud differentiation is crucial to reproductive success in plants. In the present study, RNA-Seq and nutrients quantification were used to identify the stage-specific genes for flower bud differentiation with buds which characterize the marked change during flower bud formation from a widely grown Chinese cherry (Prunus pseudocerasus L.) cultivar ‘Manaohong’. A KEGG enrichment analysis revealed that the sugar metabolism pathways dynamically changed. The gradually decreasing trend in the contents of total sugar, soluble sugar and protein implies that the differentiation was an energy-consuming process. Changes in the contents of D-glucose and sorbitol were conformed with the gene expression trends of bglX and SORD, respectively, which at least partially reflects a key role of the two substances in the transition from physiological to morphological differentiation. Further, the WRKY and SBP families were also significantly differentially expressed during the vegetative-to-reproductive transition. In addition, floral meristem identity genes, e.g., AP1, AP3, PI, AGL6, SEP1, LFY, and UFO demonstrate involvement in the specification of the petal and stamen primordia, and FPF1 might promote the onset of morphological differentiation. Conclusively, the available evidence justifies the involvement of sugar metabolism in the flower bud differentiation of Chinese cherry, and the uncovered candidate genes are beneficial to further elucidate flower bud differentiation in cherries. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 3766 KiB  
Article
Transcriptomic and iTRAQ-Based Quantitative Proteomic Analyses of inap CMS in Brassica napus L.
by Aifan Wang, Lei Kang, Guangsheng Yang and Zaiyun Li
Plants 2022, 11(19), 2460; https://doi.org/10.3390/plants11192460 - 21 Sep 2022
Cited by 6 | Viewed by 2124
Abstract
Brassica napus inap cytoplasmic male sterility (CMS) is a novel sterile line with potential application in rapeseed hybrid breeding. Sterile cytoplasm was obtained from Isatis indigotica through somatic fusion and then recurrent backcrossing with B. napus. Previous studies have shown that inap [...] Read more.
Brassica napus inap cytoplasmic male sterility (CMS) is a novel sterile line with potential application in rapeseed hybrid breeding. Sterile cytoplasm was obtained from Isatis indigotica through somatic fusion and then recurrent backcrossing with B. napus. Previous studies have shown that inap CMS abortion occurred before the stamen primordia (stage 4–5), but the genetic mechanism of sterility needs to be studied. RNA-seq analyses were performed on the floral buds at two stages (0–5 and 6–8), before and after the formation of stamen primordium. As a result, a total of 1769 and 594 differentially expressed genes (DEGs) were detected in the CMS line compared to its maintainer line at the two stages, respectively. In accordance with the CMS phenotype, the up- and downstream regulators of the stamen identity genes AP3 and PI were up- and downregulated in the CMS line, respectively. Furthermore, isobaric tags for relative and absolute quantitation (iTRAQ) analysis showed that a total of 760 differentially abundant proteins (DAPs) were identified in flower buds at stages 0–8, and most of the proteins related to the anther development, oxidative phosphorylation, and programmed cell death (PCD) were downregulated in inap CMS. In combined transcriptomic and proteomic analysis, a total of 32 DEGs/DAPs were identified, of which 7 common DEGs/DAPs had the same expression trend at stage 0–8 of flower development. The downregulation of genes related to the energy deficiency, hormone signal transduction, and the maintenance of mitochondrial metabolic homeostasis at stage 0–5 might disturb the normal differentiation of stamen primordium, resulting in carpelloid stamen of inap CMS. The study will help provide insights into the molecular mechanism of this new male sterility. Full article
Show Figures

Figure 1

26 pages, 8424 KiB  
Review
Mechanical Forces in Floral Development
by Kester Bull–Hereñu, Patricia dos Santos, João Felipe Ginefra Toni, Juliana Hanna Leite El Ottra, Pakkapol Thaowetsuwan, Julius Jeiter, Louis Philippe Ronse De Craene and Akitoshi Iwamoto
Plants 2022, 11(5), 661; https://doi.org/10.3390/plants11050661 - 28 Feb 2022
Cited by 29 | Viewed by 6299
Abstract
Mechanical forces acting within the plant body that can mold flower shape throughout development received little attention. The palette of action of these forces ranges from mechanical pressures on organ primordia at the microscopic level up to the twisting of a peduncle that [...] Read more.
Mechanical forces acting within the plant body that can mold flower shape throughout development received little attention. The palette of action of these forces ranges from mechanical pressures on organ primordia at the microscopic level up to the twisting of a peduncle that promotes resupination of a flower at the macroscopic level. Here, we argue that without these forces acting during the ontogenetic process, the actual flower phenotype would not be achieved as it is. In this review, we concentrate on mechanical forces that occur at the microscopic level and determine the fate of the flower shape by the physical constraints on meristems at an early stage of development. We thus highlight the generative role of mechanical forces over the floral phenotype and underline our general view of flower development as the sum of interactions of known physiological and genetic processes, together with physical aspects and mechanical events that are entangled towards the shaping of the mature flower. Full article
(This article belongs to the Special Issue Developmental and Genetic Mechanisms of Floral Structure)
Show Figures

Figure 1

23 pages, 6383 KiB  
Article
Expression Patterns of DNA Methylation and Demethylation Genes during Plant Development and in Response to Phytohormones
by Morgan Bennett, Kailyn Cleaves and Tarek Hewezi
Int. J. Mol. Sci. 2021, 22(18), 9681; https://doi.org/10.3390/ijms22189681 - 7 Sep 2021
Cited by 17 | Viewed by 3951
Abstract
DNA methylation and demethylation precisely and effectively modulate gene expression during plant growth and development and in response to stress. However, expression profiles of genes involved in DNA methylation and demethylation during plant development and their responses to phytohormone treatments remain largely unknown. [...] Read more.
DNA methylation and demethylation precisely and effectively modulate gene expression during plant growth and development and in response to stress. However, expression profiles of genes involved in DNA methylation and demethylation during plant development and their responses to phytohormone treatments remain largely unknown. We characterized the spatiotemporal expression patterns of genes involved in de novo methylation, methyl maintenance, and active demethylation in roots, shoots, and reproductive organs using β-glucuronidase (GUS) reporter lines. Promoters of DNA demethylases were generally more highly active at the mature root tissues, whereas the promoters of genes involved in DNA methylation were more highly active at fast-growing root tissues. The promoter activity also implies that methylation status in shoot apex, leaf primordia, floral organs, and developing embryos is under tight equilibrium through the activity of genes involved in DNA methylation and demethylation. The promoter activity of DNA methylation and demethylation-related genes in response to various phytohormone treatments revealed that phytohormones can alter DNA methylation status in specific and redundant ways. Overall, our results illustrate that DNA methylation and demethylation pathways act synergistically and antagonistically in various tissues and in response to phytohormone treatments and point to the existence of hormone-linked methylome regulation mechanisms that may contribute to tissue differentiation and development. Full article
(This article belongs to the Special Issue Epigenetics and Chromatin Modifications in Plants)
Show Figures

Figure 1

8 pages, 7760 KiB  
Review
Then There Were Plenty-Ring Meristems Giving Rise to Many Stamen Whorls
by Doudou Kong and Annette Becker
Plants 2021, 10(6), 1140; https://doi.org/10.3390/plants10061140 - 3 Jun 2021
Cited by 5 | Viewed by 3055
Abstract
Floral meristems are dynamic systems that generate floral organ primordia at their flanks and, in most species, terminate while giving rise to the gynoecium primordia. However, we find species with floral meristems that generate additional ring meristems repeatedly throughout angiosperm history. Ring meristems [...] Read more.
Floral meristems are dynamic systems that generate floral organ primordia at their flanks and, in most species, terminate while giving rise to the gynoecium primordia. However, we find species with floral meristems that generate additional ring meristems repeatedly throughout angiosperm history. Ring meristems produce only stamen primordia, resulting in polystemous flowers (having stamen numbers more than double that of petals or sepals), and act independently of the floral meristem activity. Most of our knowledge on floral meristem regulation is derived from molecular genetic studies of Arabidopsis thaliana, a species with a fixed number of floral organs and, as such of only limited value for understanding ring meristem function, regulation, and ecological value. This review provides an overview of the main molecular players regulating floral meristem activity in A. thaliana and summarizes our knowledge of ring primordia morphology and occurrence in dicots. Our work provides a first step toward understanding the significance and molecular genetics of ring meristem regulation and evolution. Full article
(This article belongs to the Special Issue Developmental and Genetic Mechanisms of Floral Structure)
Show Figures

Graphical abstract

18 pages, 5345 KiB  
Article
Ongoing Evolution in the Genus Crocus: Diversity of Flowering Strategies on the Way to Hysteranthy
by Teresa Pastor-Férriz, Marcelino De-los-Mozos-Pascual, Begoña Renau-Morata, Sergio G. Nebauer, Enrique Sanchis, Matteo Busconi, José-Antonio Fernández, Rina Kamenetsky and Rosa V. Molina
Plants 2021, 10(3), 477; https://doi.org/10.3390/plants10030477 - 3 Mar 2021
Cited by 8 | Viewed by 3360
Abstract
Species of the genus Crocus are found over a wide range of climatic areas. In natural habitats, these geophytes diverge in the flowering strategies. This variability was assessed by analyzing the flowering traits of the Spanish collection of wild crocuses, preserved in the [...] Read more.
Species of the genus Crocus are found over a wide range of climatic areas. In natural habitats, these geophytes diverge in the flowering strategies. This variability was assessed by analyzing the flowering traits of the Spanish collection of wild crocuses, preserved in the Bank of Plant Germplasm of Cuenca. Plants of the seven Spanish species were analyzed both in their natural environments (58 native populations) and in common garden experiments (112 accessions). Differences among species observed in the native habitats were maintained under uniform environmental conditions, suggesting a genetic basis for flowering mechanisms. Two eco-morphological types, autumn- and spring-flowering species, share similar patterns of floral induction and differentiation period in summer. The optimal temperature for this process was 23 °C for both types. Unlike Irano-Turanian crocuses, spring-flowering Spanish species do not require low winter temperatures for flower elongation. Hysteranthous crocuses flower in autumn prior to leaf elongation. We conclude that the variability in flowering traits in crocuses is related to the genetic and environmental regulation of flower primordia differentiation and elongation prior to emergence above the soil surface. The elucidation of the physiological differences between eco-morphological types of crocuses: synanthous with cold requirements and synanthous and hysteranthous without cold requirements, unlocks a new approach to the flowering evolution of geophytes in Mediterranean regions. Crocus species can serve both as a new model in the study of the molecular basis of hysteranthy and for the purposes of developing the molecular markers for desirable flowering traits. Full article
(This article belongs to the Special Issue Floral Biology)
Show Figures

Figure 1

13 pages, 1210 KiB  
Review
Morphology, Physiology and Analysis Techniques of Grapevine Bud Fruitfulness: A Review
by Ana I. Monteiro, Aureliano C. Malheiro and Eunice A. Bacelar
Agriculture 2021, 11(2), 127; https://doi.org/10.3390/agriculture11020127 - 5 Feb 2021
Cited by 21 | Viewed by 9678
Abstract
Grapevine reproductive development extends over two growing seasons (vegetative cycles), for the complete formation of inflorescences and clusters. Induction and floral differentiation, the mechanism that leads to the formation of reproductive structures inside dormant buds, is a complex process divided into three well-defined [...] Read more.
Grapevine reproductive development extends over two growing seasons (vegetative cycles), for the complete formation of inflorescences and clusters. Induction and floral differentiation, the mechanism that leads to the formation of reproductive structures inside dormant buds, is a complex process divided into three well-defined stages (formation of anlagen, inflorescence primordia and flowers). This sequence of stages comprises morphological, biochemical, and physiological events, influenced by a set of environmental and endogenous factors. Inflorescence primordia formation determines the potential number of clusters that will be formed in the following growing season. Thus, during bud dormancy, viticulturists and winemakers can obtain a first yield prediction through the determination of bud fruitfulness. This information allows adjustments to be made to bud load, promoting balanced yield and fruit quality and higher commercial value. The present review describes the morphology and physiology of the formation of inflorescence primordia, as well as discusses the main abiotic and biotic factors involved, including a physiological disorder known as primary bud necrosis. In the same way, we intend to approach the more used techniques of analysis of fruitfulness and its importance for a robust yield forecasting. Full article
(This article belongs to the Special Issue Sustainable Agriculture and Viticulture)
Show Figures

Figure 1

26 pages, 17101 KiB  
Article
Stability Despite Reduction: Flower Structure, Patterns of Receptacle Elongation and Organ Fusion in Eriocaulon (Eriocaulaceae: Poales)
by Dmitry D. Sokoloff, Shrirang R. Yadav, Arun N. Chandore and Margarita V. Remizowa
Plants 2020, 9(11), 1424; https://doi.org/10.3390/plants9111424 - 24 Oct 2020
Cited by 6 | Viewed by 4127
Abstract
Eriocaulaceae (Poales) differ from potentially related Xyridaceae in pattern of floral organ arrangement relative to subtending bract (with median sepal adaxial). Some Eriocaulaceae possess reduced and non-trimerous perianth, but developmental data are insufficient. We conducted a SEM investigation of flower development in three [...] Read more.
Eriocaulaceae (Poales) differ from potentially related Xyridaceae in pattern of floral organ arrangement relative to subtending bract (with median sepal adaxial). Some Eriocaulaceae possess reduced and non-trimerous perianth, but developmental data are insufficient. We conducted a SEM investigation of flower development in three species of Eriocaulon to understand whether organ number and arrangement are stable in E. redactum, a species with a highly reduced calyx and reportedly missing corolla of female flowers. Early flower development is similar in all three species. Male and female flowers are indistinguishable at early stages. Despite earlier reports, both floral types uniformly possess three congenitally united sepals and three petals in E. redactum. Petals and inner stamens develop from common primordia. We assume that scanning electron microscopy should be used in taxonomic accounts of Eriocaulon to assess organ number and arrangement. Two types of corolla reduction are found in Eriocaulaceae: suppression and complete loss of petals. Common petal–stamen primordia in Eriocaulon do not co-occur with delayed receptacle expansion as in other monocots but are associated with retarded petal growth. The ‘reverse’ flower orientation of Eriocaulon is probably due to strictly transversal lateral sepals. Gynoecium development indicates similarities of Eriocaulaceae with restiids and graminids rather than with Xyridaceae. Full article
(This article belongs to the Special Issue Plant Reproductive Development)
Show Figures

Graphical abstract

15 pages, 3393 KiB  
Article
Inflorescence Development and Floral Organogenesis in Taraxacum kok-saghyz
by Carolina Schuchovski, Tea Meulia, Bruno Francisco Sant’Anna-Santos and Jonathan Fresnedo-Ramírez
Plants 2020, 9(10), 1258; https://doi.org/10.3390/plants9101258 - 24 Sep 2020
Cited by 9 | Viewed by 7474
Abstract
Rubber dandelion (Taraxacum kok-saghyz Rodin; TK) has received attention for its natural rubber content as a strategic biomaterial, and a promising, sustainable, and renewable alternative to synthetic rubber from fossil carbon sources. Extensive research on the domestication and rubber content of TK [...] Read more.
Rubber dandelion (Taraxacum kok-saghyz Rodin; TK) has received attention for its natural rubber content as a strategic biomaterial, and a promising, sustainable, and renewable alternative to synthetic rubber from fossil carbon sources. Extensive research on the domestication and rubber content of TK has demonstrated TK’s potential in industrial applications as a relevant natural rubber and latex-producing alternative crop. However, many aspects of its biology have been neglected in published studies. For example, floral development is still poorly characterized. TK inflorescences were studied by scanning electron microscopy. Nine stages of early inflorescence development are proposed, and floral micromorphology is detailed. Individual flower primordia development starts at the periphery and proceeds centripetally in the newly-formed inflorescence meristem. Floral organogenesis begins in the outermost flowers of the capitulum, with corolla ring and androecium formation. Following, pappus primordium—forming a ring around the base of the corolla tube—and gynoecium are observed. The transition from vegetative to inflorescence meristem was observed 21 days after germination. This description of inflorescence and flower development in TK sheds light on the complex process of flowering, pollination, and reproduction. This study will be useful for genetics, breeding, systematics, and development of agronomical practices for this new rubber-producing crop. Full article
(This article belongs to the Special Issue Floral Biology)
Show Figures

Graphical abstract

16 pages, 3543 KiB  
Article
Deep Sequencing and Analysis of Transcriptomes of Pinus koraiensis Sieb. & Zucc.
by Shaolin Shi, Siyu Yan, Chao Zhao, Peng Zhang, Ling Yang, Chao Wang and Hailong Shen
Forests 2020, 11(3), 350; https://doi.org/10.3390/f11030350 - 20 Mar 2020
Cited by 9 | Viewed by 3003
Abstract
The objective of this research was to study the differences in endogenous hormone levels and the genes related to reproductive development in Chinese pinenut (Pinus koraiensis) trees of different ages. The apical buds of P. koraiensis were collected from 2-, 5-, [...] Read more.
The objective of this research was to study the differences in endogenous hormone levels and the genes related to reproductive development in Chinese pinenut (Pinus koraiensis) trees of different ages. The apical buds of P. koraiensis were collected from 2-, 5-, 10-, 15-, and 30-year-old plants and also from grafted plants. There were three replicates from each group used for transcriptome sequencing. After assembly and annotation, we identified the differentially expressed genes (DEGs) and performed enrichment analysis, pathway analysis, and expression analysis of the DEGs in each sample. The results showed that unigenes related to reproductive development, such as c64070.graph_c0 and c68641.graph_c0, were expressed at relatively low levels at young ages, and that the relative expression gradually increased with increasing plant age. In addition the highest expression levels were reached around 10 and 15 years of age, after which they gradually decreased. Moreover, some unigenes, such as c61855.graph_c0, were annotated as abscisic acid hydroxylase genes, and the expression of c61855.graph_c0 gradually declined with increasing age in P. koraiensis. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

22 pages, 6912 KiB  
Article
Programmed Cell Death Facilitates the Formation of Unisexual Male and Female Flowers in Persimmon (Diospyros kaki Thunb.)
by Liyuan Wang, Huawei Li, Yujing Suo, Weijuan Han, Songfeng Diao, Yini Mai, Peng Sun, Fangdong Li and and Jianmin Fu
Agronomy 2020, 10(2), 234; https://doi.org/10.3390/agronomy10020234 - 5 Feb 2020
Cited by 16 | Viewed by 3550
Abstract
Most varieties of persimmon (Diospyros kaki Thunb.) are gynoecious, while just a few are either monoecious, androgynomonoecious, or androecious. Persimmon flowers initially contain the original androecium and gynoecium followed by arrest of either pistil or stamen primordia before maturity. Abortion of inappropriate [...] Read more.
Most varieties of persimmon (Diospyros kaki Thunb.) are gynoecious, while just a few are either monoecious, androgynomonoecious, or androecious. Persimmon flowers initially contain the original androecium and gynoecium followed by arrest of either pistil or stamen primordia before maturity. Abortion of inappropriate primordium in persimmon may be related to programmed cell death (PCD). To test this hypothesis, hematoxylin and eosin (H&E) staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, cyt-c immunohistochemistry (IHC) assay, transmission electron microscopy (TEM) observation, and real-time quantitative polymerase chain reaction (RT-qPCR) were used to clarify the occurrence and molecular regulatory mechanism of PCD in male and female floral buds during the 14 days prior to the second crucial morphological stage when inappropriate sexual primordia were arrested to form unisexual flowers. Accordingly, dead cells in inappropriate sex organs were largely accumulated during the microsporocyte and macrosporocyte period of male and female floral buds, respectively. This may explain the abortion of inappropriate sex organs, leading to unisexual flowers. PCD is necessary for normal growth and development in persimmons, as dead cells could also be observed in the normal flower organs. High levels of a gene homologous to AMC9 may have accelerated the arrest of the pistil primordium during differentiation, leading to male unisexual flowers, and high levels of genes homologous to MeGI, BAG5, AifA, and HSP70 in female floral buds were positively correlated with the arrest of stamen primordium. Future studies may try to transform unisexual flowers into hermaphroditic flowers by the regulation of PCD artificially, which will be helpful to the controlled pollination experiments. Full article
Show Figures

Figure 1

23 pages, 11121 KiB  
Article
Temporal Distinction between Male and Female Floral Organ Development in Nicotiana tabacum cv. Xanthi (Solanaceae)
by Hongli Chang and Fengjie Sun
Plants 2020, 9(1), 127; https://doi.org/10.3390/plants9010127 - 19 Jan 2020
Cited by 5 | Viewed by 5138
Abstract
Early floral developmental investigations provide crucial evidence for phylogenetic and molecular studies of plants. The developmental and evolutionary mechanisms underlying the variations in floral organs are critical for a thorough understanding of the diversification of flowers. Ontogenetic comparisons between anthers and pistil within [...] Read more.
Early floral developmental investigations provide crucial evidence for phylogenetic and molecular studies of plants. The developmental and evolutionary mechanisms underlying the variations in floral organs are critical for a thorough understanding of the diversification of flowers. Ontogenetic comparisons between anthers and pistil within single flowers were characterized over time in Nicotiana tabacum cv. Xanthi. The ages of 42 tobacco flower or flower primordia were estimated using corolla growth analysis. Results showed that the protodermal layer in carpel primordia contributes to carpel development by both anticlinal and periclinal divisions. Periclinal divisions in the hypodermal layer of the placenta were observed around 4.8 ± 1.3 days after the formation of early carpel primordia (ECP) and ovule initiation occurred 10.0 ± 0.5 days after ECP. Meiosis in anthers and ovules began about 8.9 ± 1.1 days and 14.4 ± 1.3 days after ECP, respectively. Results showed an evident temporal distinction between megasporogenesis and microsporogenesis. Flower ages spanned a 17-day interval, starting with flower primordia containing the ECP and anther primordia to the tetrad stage of meiosis in megasporocytes and the bicellular stage in pollen grains. These results establish a solid foundation for future studies in order to identify the developmental and molecular mechanisms responsible for the mating system in tobacco. Full article
(This article belongs to the Special Issue Plant Reproduction)
Show Figures

Figure 1

Back to TopTop