Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Fe-doped hydroxyapatite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9758 KiB  
Article
Clam Shell-Derived Hydroxyapatite: A Green Approach for the Photocatalytic Degradation of a Model Pollutant from the Textile Industry
by Roxana Ioana Matei (Brazdis), Anda Maria Baroi, Toma Fistos, Irina Fierascu, Maria Grapin, Valentin Raditoiu, Florentina Monica Raduly, Cristian Andi Nicolae and Radu Claudiu Fierascu
Materials 2024, 17(11), 2492; https://doi.org/10.3390/ma17112492 - 22 May 2024
Cited by 1 | Viewed by 2010
Abstract
This work aims to evaluate the potential use of natural wastes (in particular, clam shells) to synthesize one of the most well-known and versatile materials from the phosphate mineral group, hydroxyapatite (HAP). The obtained material was characterized in terms of morphology and composition [...] Read more.
This work aims to evaluate the potential use of natural wastes (in particular, clam shells) to synthesize one of the most well-known and versatile materials from the phosphate mineral group, hydroxyapatite (HAP). The obtained material was characterized in terms of morphology and composition using several analytical methods (scanning electron microscopy—SEM, X-ray diffraction—XRD, X-ray fluorescence—XRF, Fourier transform infrared spectroscopy—FTIR, thermal analysis—TGA, and evaluation of the porosity and specific surface characteristics by the Brunauer–Emmett–Teller—BET method) in order to confirm the successful synthesis of the material and to evaluate the presence of potential secondary phases. The developed material was further doped with iron oxide (HAP-Fe) using a microwave-assisted method, and both materials were evaluated in terms of photocatalytic activity determined by the photodecomposition of methylene blue (MB) which served as a contaminant model. The best results (approx. 33% MB degradation efficiency, after 120 min. of exposure) were obtained for the hydroxyapatite material, superior to the HAP-Fe composite (approx. 27%). The utilization of hydroxyapatite obtained from clam shells underscores the importance of sustainable and eco-friendly practices in materials syntheses. By repurposing waste materials from the seafood industry, we not only reduce environmental impact, but also create a valuable resource with diverse applications, contributing to advancements in both healthcare and environmental protection. Full article
Show Figures

Figure 1

16 pages, 5432 KiB  
Article
Simultaneous Photocatalytic Sugar Conversion and Hydrogen Production Using Pd Nanoparticles Decorated on Iron-Doped Hydroxyapatite
by Chitiphon Chuaicham, Yuto Noguchi, Sulakshana Shenoy, Kaiqian Shu, Jirawat Trakulmututa, Assadawoot Srikhaow, Karthikeyan Sekar and Keiko Sasaki
Catalysts 2023, 13(4), 675; https://doi.org/10.3390/catal13040675 - 30 Mar 2023
Cited by 5 | Viewed by 2611
Abstract
Pd nanoparticles (PdNPs) were successfully deposited on the surface of Fe(III)-modified hydroxyapatite (HAp), which was subsequently used as a photocatalyst for simultaneous photocatalytic H2 evolution and xylose conversion. The structural phase and morphology of the pristine HAp, FeHAp, and Pd@FeHAp were examined [...] Read more.
Pd nanoparticles (PdNPs) were successfully deposited on the surface of Fe(III)-modified hydroxyapatite (HAp), which was subsequently used as a photocatalyst for simultaneous photocatalytic H2 evolution and xylose conversion. The structural phase and morphology of the pristine HAp, FeHAp, and Pd@FeHAp were examined using XRD, SEM, and TEM instruments. At 20 °C, Pd@FeHAp provided a greater xylose conversion than pristine HAp and FeHAp, about 2.15 times and 1.41 times, respectively. In addition, lactic acid and formic acid production was increased by using Pd@FeHAp. The optimal condition was further investigated using Pd@FeHAp, which demonstrated around 70% xylose conversion within 60 min at 30 °C. Moreover, only Pd@FeHAp produced H2 under light irradiation. To clarify the impact of Fe(III) doping in FeHAp and heterojunction between PdNPs and FeHAp in the composite relative to pure Hap, the optical and physicochemical properties of Pd@FeHAp samples were analyzed, which revealed the extraordinary ability of the material to separate and transport photogenerated electron-hole pairs, as demonstrated by a substantial reduction in photoluminescence intensity when compared to Hp and FeHAp. In addition, a decrease in electron trap density in the Pd@FeHAp composite using reversed double-beam photoacoustic spectroscopy was attributed to the higher photocatalytic activity rate. Furthermore, the development of new electronic levels by the addition of Fe(III) to the structure of HAp in FeHAp may improve the ability to absorb light by lessening the energy band gap. The photocatalytic performance of the Pd@FeHAp composite was improved by lowering charge recombination and narrowing the energy band gap. As a result, a newly developed Pd@FeHAp composite might be employed as a photocatalyst to generate both alternative H2 energy and high-value chemicals. Full article
Show Figures

Graphical abstract

17 pages, 2373 KiB  
Article
Inhalable Microparticles Embedding Biocompatible Magnetic Iron-Doped Hydroxyapatite Nanoparticles
by Eride Quarta, Michele Chiappi, Alessio Adamiano, Anna Tampieri, Weijie Wang, Teresa D. Tetley, Francesca Buttini, Fabio Sonvico, Daniele Catalucci, Paolo Colombo, Michele Iafisco and Lorenzo Degli Esposti
J. Funct. Biomater. 2023, 14(4), 189; https://doi.org/10.3390/jfb14040189 - 28 Mar 2023
Cited by 4 | Viewed by 2698
Abstract
Recently, there has been increasing interest in developing biocompatible inhalable nanoparticle formulations, as they have enormous potential for treating and diagnosing lung disease. In this respect, here, we have studied superparamagnetic iron-doped calcium phosphate (in the form of hydroxyapatite) nanoparticles (FeCaP NPs) which [...] Read more.
Recently, there has been increasing interest in developing biocompatible inhalable nanoparticle formulations, as they have enormous potential for treating and diagnosing lung disease. In this respect, here, we have studied superparamagnetic iron-doped calcium phosphate (in the form of hydroxyapatite) nanoparticles (FeCaP NPs) which were previously proved to be excellent materials for magnetic resonance imaging, drug delivery and hyperthermia-related applications. We have established that FeCaP NPs are not cytotoxic towards human lung alveolar epithelial type 1 (AT1) cells even at high doses, thus proving their safety for inhalation administration. Then, D-mannitol spray-dried microparticles embedding FeCaP NPs have been formulated, obtaining respirable dry powders. These microparticles were designed to achieve the best aerodynamic particle size distribution which is a critical condition for successful inhalation and deposition. The nanoparticle-in-microparticle approach resulted in the protection of FeCaP NPs, allowing their release upon microparticle dissolution, with dimensions and surface charge close to the original values. This work demonstrates the use of spray drying to provide an inhalable dry powder platform for the lung delivery of safe FeCaP NPs for magnetically driven applications. Full article
(This article belongs to the Special Issue Functionalized Biomimetic Calcium Phosphates 2.0)
Show Figures

Figure 1

19 pages, 4137 KiB  
Article
Microfluidic Fabrication of Gadolinium-Doped Hydroxyapatite for Theragnostic Applications
by Manuel Somoza, Ramón Rial, Zhen Liu, Iago F. Llovo, Rui L. Reis, Jesús Mosqueira and Juan M. Ruso
Nanomaterials 2023, 13(3), 501; https://doi.org/10.3390/nano13030501 - 26 Jan 2023
Cited by 12 | Viewed by 2706
Abstract
Among the several possible uses of nanoparticulated systems in biomedicine, their potential as theragnostic agents has received significant interest in recent times. In this work, we have taken advantage of the medical applications of Gadolinium as a contrast agent with the versatility and [...] Read more.
Among the several possible uses of nanoparticulated systems in biomedicine, their potential as theragnostic agents has received significant interest in recent times. In this work, we have taken advantage of the medical applications of Gadolinium as a contrast agent with the versatility and huge array of possibilities that microfluidics can help to create doped Hydroxyapatite nanoparticles with magnetic properties in an efficient and functional way. First, with the help of Computational Fluid Dynamics (CFD), we performed a complete and precise study of all the elements and phases of our device to guarantee that our microfluidic system worked in the laminar regime and was not affected by the presence of nanoparticles through the flow requisite that is essential to guarantee homogeneous diffusion between the elements or phases in play. Then the obtained biomaterials were physiochemically characterized by means of XRD, FE-SEM, EDX, confocal Raman microscopy, and FT-IR, confirming the successful incorporation of the lanthanide element Gadolinium in part of the Ca (II) binding sites. Finally, the magnetic characterization confirmed the paramagnetic behaviour of the nanoparticles, demonstrating that, with a simple and automatized system, it is possible to obtain advanced nanomaterials that can offer a promising and innovative solution in theragnostic applications. Full article
Show Figures

Figure 1

18 pages, 41259 KiB  
Article
Development of Biomaterials Based on Biomimetic Trace Elements Co-Doped Hydroxyapatite: Physical, In Vitro Osteoblast-like Cell Growth and In Vivo Cytotoxicity in Zebrafish Studies
by Tanatsaparn Tithito, Siwapech Sillapaprayoon, Wittaya Pimtong, Jirawan Thongbunchoo, Narattaphol Charoenphandhu, Nateetip Krishnamra, Aurachat Lert-itthiporn, Weerakanya Maneeprakorn and Weeraphat Pon-On
Nanomaterials 2023, 13(2), 255; https://doi.org/10.3390/nano13020255 - 6 Jan 2023
Cited by 10 | Viewed by 2664
Abstract
Synthesized hydroxyapatite (sHA)—calcium phosphate (CaP) based biomaterials play a vital role and have been widely used in the process of bone regeneration for bone defect repair, due to their similarities to the inorganic components of human bones. However, for bone tissue engineering purpose, [...] Read more.
Synthesized hydroxyapatite (sHA)—calcium phosphate (CaP) based biomaterials play a vital role and have been widely used in the process of bone regeneration for bone defect repair, due to their similarities to the inorganic components of human bones. However, for bone tissue engineering purpose, the composite components, physical and biological properties, efficacy and safety of sHA still need further improvements. In this work, we synthesized inhomogeneous hydroxyapatite based on biomimetic trace elements (Mg, Fe, Zn, Mn, Cu, Ni, Mo, Sr, Co, BO33−, and CO32−) co-doped into HA (THA) (Ca10−δMδ(PO4)5.5(CO3)0.5(OH)2, M = trace elements) via co-precipitation from an ionic solution. The physical properties, their bioactivities using in vitro osteoblast cells, and in vivo cytotoxicity using zebrafish were studied. By introducing biomimetic trace elements, the as-prepared THA samples showed nanorod (needle-like) structures, having a positively charged surface (6.49 meV), and showing paramagnetic behavior. The bioactivity studies demonstrated that the THA substrate can induce apatite particles to cover its surface and be in contact with surrounding simulated body fluid (SBF). In vitro biological assays revealed that the osteoblast-like UMR-106 cells were well-attached with growth and proliferation on the substrate’s surface. Upon differentiation, enhanced ALP (alkaline phosphatase) activity was observed for bone cells on the surface of the THA compared with that on the control substrates (sHA). The in vivo performance in embryonic zebrafish studies showed that the synthesized THA particles are nontoxic based on the measurements of essential parameters such as survivability, hatching rate, and the morphology of the embryo. The mechanism of the ions release profile using digital conductivity measurement revealed that sustained controlled release was successfully achieved. These preliminary results indicated that the synthesized THA could be a promising material for potential practical applications in bone tissue engineering. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

10 pages, 981 KiB  
Article
Environmental Hazards of Nanobiomaterials (Hydroxyapatite-Based NMs)—A Case Study with Folsomia candida—Effects from Long Term Exposure
by Bruno Guimarães, Susana I. L. Gomes, Elisabetta Campodoni, Monica Sandri, Simone Sprio, Magda Blosi, Anna L. Costa, Mónica J. B. Amorim and Janeck J. Scott-Fordsmand
Toxics 2022, 10(11), 704; https://doi.org/10.3390/toxics10110704 - 18 Nov 2022
Cited by 6 | Viewed by 2016
Abstract
Hydroxyapatite (HA) is a calcium phosphate used in many fields, including biomedical applications. In particular, ion-doped HA nanomaterials (nHA) are developed for their increased bioactivity, particularly in the fields of regenerative medicine and nanomedicine. In this study, we assessed the ecotoxicological impact of [...] Read more.
Hydroxyapatite (HA) is a calcium phosphate used in many fields, including biomedical applications. In particular, ion-doped HA nanomaterials (nHA) are developed for their increased bioactivity, particularly in the fields of regenerative medicine and nanomedicine. In this study, we assessed the ecotoxicological impact of five nHA materials: a synthesized calcium hydroxyapatite (CaP-HA), superparamagnetic iron-doped hydroxyapatite (Fe-HA), titanium-doped hydroxyapatite (Ti-HA), alginate/titanium-doped hydroxyapatite hybrid composite (Ti-HA-Alg), and a commercial HA. The soil ecotoxicology model species Folsomia candida (Collembola) was used, and besides the standard reproduction test (28 days), an extension to the standard for one more generation was performed (56 days). Assessed endpoints included the standard survival and reproduction, and additionally, growth. Exposure via the standard (28 days) did not cause toxicity, but reproduction increased in commercial HA (significantly at 320 mg HA/kg) whereas via the extension (56 days) it decreased in all tested concentrations. Juveniles’ size (56 days) was reduced in all tested nHA materials, except commercial HA. nHA materials seem to trigger a compromise between reproduction and growth. Long-term effects could not be predicted based on the standard shorter exposure; hence, the testing of at least two generations (56 days) is recommended to assess the toxicity of nanomaterials, particularly in F. candida. Further, we found that the inclusion of size as additional endpoint is highly relevant. Full article
(This article belongs to the Special Issue Assessment of the (Eco)Toxicity of Nanomaterials)
Show Figures

Figure 1

6 pages, 2027 KiB  
Proceeding Paper
Metal-Catechol Network (MCN) Based Bioactive Surface Engineering of Iron Reinforced Hydroxyapatite Nanorods for Bone Tissue Engineering
by Zahid Hussain, Ismat Ullah, Zhuangzhuang Zhang and Renjun Pei
Mater. Proc. 2022, 9(1), 16; https://doi.org/10.3390/materproc2022009016 - 22 Apr 2022
Viewed by 1604
Abstract
Hydroxyapatite (HAp) is a calcium phosphate-based inorganic constitute in bones and teeth. The synthesis of nanostructured rods that mimic the natural bone apatite has attracted significant attention. Unfortunately, pristine HAp is unsuitable for clinical translation due to its brittleness, limited strength, uncontrolled leaching, [...] Read more.
Hydroxyapatite (HAp) is a calcium phosphate-based inorganic constitute in bones and teeth. The synthesis of nanostructured rods that mimic the natural bone apatite has attracted significant attention. Unfortunately, pristine HAp is unsuitable for clinical translation due to its brittleness, limited strength, uncontrolled leaching, and poor surface properties. These limitations necessitate size reduction, surface modification, and ion incorporation to expand their scope in bone reconstruction. Herein, iron-reinforced hydroxyapatite nanorods (Fe-HAp) were used as an inorganic component, and catechol-modified gelatin methacryloyl was employed as a surface functional modifier agent. Our study highlighted that Fe-doped HAp nanomaterials are more promising for developing bioactive surfaces than other ion-incorporated nanomaterials due to their metal-catechol network (MCN) surface engineering. Nanostructural, surface chemistries, cytocompatibility, and matrix mineralization characteristics of Fe-HAp and Fe-HAp/MCN nanorods have been comparatively studied. The results support that MCN-coated nanorod surfaces improved HAp cytocompatibility, bioactivity, and phase compatibility between organic/inorganic nanomaterials, which could be crucial for bone reconstruction. Full article
(This article belongs to the Proceedings of The 3rd International Online-Conference on Nanomaterials)
Show Figures

Figure 1

19 pages, 23637 KiB  
Article
Iron in Hydroxyapatite: Interstitial or Substitution Sites?
by Leon Avakyan, Ekaterina Paramonova, Vladimir Bystrov, José Coutinho, Sandrine Gomes and Guillaume Renaudin
Nanomaterials 2021, 11(11), 2978; https://doi.org/10.3390/nano11112978 - 5 Nov 2021
Cited by 23 | Viewed by 3278
Abstract
Iron-doped hydroxyapatite (Fe-HAp) is regarded as a promising magnetic material with innate biocompatibility. Despite the many studies reported in the literature, a detailed theoretical description of Fe inclusions is still missing. There is even no consensual view on what kind of Fe defects [...] Read more.
Iron-doped hydroxyapatite (Fe-HAp) is regarded as a promising magnetic material with innate biocompatibility. Despite the many studies reported in the literature, a detailed theoretical description of Fe inclusions is still missing. There is even no consensual view on what kind of Fe defects take place in Fe-HAp—iron interstitial or calcium substitutions? In order to address these questions, we employ modern first-principles methodologies, including hybrid density functional theory, to find the geometry, electronic, magnetic and thermodynamic properties of iron impurities in Fe-HAp. We consider a total of 26 defect configurations, including substitutional (phosphorus and calcium sites) and interstitial defects. Formation energies are estimated considering the boundaries of chemical potentials in stable hydroxyapatite. We show that the most probable defect configurations are: Fe3+ and Fe2+ substitutions of Ca(I) and Ca(II) sites under Ca-poor conditions. Conversely, Fe interstitials near the edge of the hydroxyl channel are favored in Ca-rich material. Substitutional Fe on the P site is also a probable defect, and unlike the other forms of Fe, it adopts a low-spin state. The analysis of Fe K-XANES spectra available in the literature shows that Fe-HAp usually contains iron in different configurations. Full article
(This article belongs to the Special Issue Simulation and Modeling of Nanomaterials)
Show Figures

Graphical abstract

7 pages, 2771 KiB  
Communication
Incorporation of Iron(II) and (III) in Hydroxyapatite—A Theoretical Study
by Olga Nikolaevna Makshakova, Daria Vladimirovna Shurtakova, Alexey Vladimirovich Vakhin, Peter Olegovich Grishin and Marat Revgerovich Gafurov
Crystals 2021, 11(10), 1219; https://doi.org/10.3390/cryst11101219 - 9 Oct 2021
Cited by 19 | Viewed by 3515
Abstract
Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) doped with various transition metals has generated great interest in view of its potential application in a wide variety of fields, including in catalysis as a support with a series of attractive [...] Read more.
Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) doped with various transition metals has generated great interest in view of its potential application in a wide variety of fields, including in catalysis as a support with a series of attractive properties. Despite a large number of experimental works devoted to the synthesis and application of iron-substituted hydroxyapatites, problems concerning the location, introduced defects, and charge compensation schemes for Fe2+ and/or Fe3+ cations in the crystal structure of HAp remain unclear. This paper is devoted to the comprehensive analysis of iron (II) and (III) introduction into the HAp lattice by density functional theory (DFT) calculations. We show that the inclusion of Fe2+ in the Ca(1) and Ca(2) positions of HAp is energetically comparable. For the Fe3+, there is a clear preference to be included in the Ca(2) position. The inclusion of iron results in cell contraction, which is more pronounced in the case of Fe3+. In addition, Fe3+ may form a shorter linkage to oxygen atoms. The incorporation of both Fe2+ and Fe3+ leads to notable local reorganization in the HAp cell. Full article
(This article belongs to the Special Issue Hydroxyapatite Base Nanocomposites (Volume II))
Show Figures

Figure 1

17 pages, 5305 KiB  
Article
Bioactivity and Antibacterial Behaviors of Nanostructured Lithium-Doped Hydroxyapatite for Bone Scaffold Application
by Pardis Keikhosravani, Hossein Maleki-Ghaleh, Amir Kahaie Khosrowshahi, Mahdi Bodaghi, Ziba Dargahi, Majid Kavanlouei, Pooriya Khademi-Azandehi, Ali Fallah, Younes Beygi-Khosrowshahi and M. Hossein Siadati
Int. J. Mol. Sci. 2021, 22(17), 9214; https://doi.org/10.3390/ijms22179214 - 26 Aug 2021
Cited by 35 | Viewed by 4696
Abstract
The material for bone scaffold replacement should be biocompatible and antibacterial to prevent scaffold-associated infection. We biofunctionalized the hydroxyapatite (HA) properties by doping it with lithium (Li). The HA and 4 Li-doped HA (0.5, 1.0, 2.0, 4.0 wt.%) samples were investigated to find [...] Read more.
The material for bone scaffold replacement should be biocompatible and antibacterial to prevent scaffold-associated infection. We biofunctionalized the hydroxyapatite (HA) properties by doping it with lithium (Li). The HA and 4 Li-doped HA (0.5, 1.0, 2.0, 4.0 wt.%) samples were investigated to find the most suitable Li content for both aspects. The synthesized nanoparticles, by the mechanical alloying method, were cold-pressed uniaxially and then sintered for 2 h at 1250 °C. Characterization using field-emission scanning electron microscopy (FE-SEM) revealed particle sizes in the range of 60 to 120 nm. The XRD analysis proved the formation of HA and Li-doped HA nanoparticles with crystal sizes ranging from 59 to 89 nm. The bioactivity of samples was investigated in simulated body fluid (SBF), and the growth of apatite formed on surfaces was evaluated using SEM and EDS. Cellular behavior was estimated by MG63 osteoblast-like cells. The results of apatite growth and cell analysis showed that 1.0 wt.% Li doping was optimal to maximize the bioactivity of HA. Antibacterial characteristics against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were performed by colony-forming unit (CFU) tests. The results showed that Li in the structure of HA increases its antibacterial properties. HA biofunctionalized by Li doping can be considered a suitable option for the fabrication of bone scaffolds due to its antibacterial and unique bioactivity properties. Full article
(This article belongs to the Special Issue Materials for Infectious Diseases)
Show Figures

Figure 1

21 pages, 30687 KiB  
Article
Mesoporous Iron(III)-Doped Hydroxyapatite Nanopowders Obtained via Iron Oxalate
by Margarita A. Goldberg, Marat R. Gafurov, Fadis F. Murzakhanov, Alexander S. Fomin, Olga S. Antonova, Dinara R. Khairutdinova, Andrew V. Pyataev, Olga N. Makshakova, Anatoliy A. Konovalov, Alexander V. Leonov, Suraya A. Akhmedova, Irina K. Sviridova, Natalia S. Sergeeva, Sergey M. Barinov and Vladimir S. Komlev
Nanomaterials 2021, 11(3), 811; https://doi.org/10.3390/nano11030811 - 22 Mar 2021
Cited by 29 | Viewed by 4885
Abstract
Mesoporous hydroxyapatite (HA) and iron(III)-doped HA (Fe-HA) are attractive materials for biomedical, catalytic, and environmental applications. In the present study, the nanopowders of HA and Fe-HA with a specific surface area up to 194.5 m2/g were synthesized by a simple precipitation [...] Read more.
Mesoporous hydroxyapatite (HA) and iron(III)-doped HA (Fe-HA) are attractive materials for biomedical, catalytic, and environmental applications. In the present study, the nanopowders of HA and Fe-HA with a specific surface area up to 194.5 m2/g were synthesized by a simple precipitation route using iron oxalate as a source of Fe3+ cations. The influence of Fe3+ amount on the phase composition, powders morphology, Brunauer–Emmett–Teller (BET) specific surface area (S), and pore size distribution were investigated, as well as electron paramagnetic resonance and Mössbauer spectroscopy analysis were performed. According to obtained data, the Fe3+ ions were incorporated in the HA lattice, and also amorphous Fe oxides were formed contributed to the gradual increase in the S and pore volume of the powders. The Density Functional Theory calculations supported these findings and revealed Fe3+ inclusion in the crystalline region with the hybridization among Fe-3d and O-2p orbitals and a partly covalent bond formation, whilst the inclusion of Fe oxides assumed crystallinity damage and rather occurred in amorphous regions of HA nanomaterial. In vitro tests based on the MG-63 cell line demonstrated that the introduction of Fe3+ does not cause cytotoxicity and led to the enhanced cytocompatibility of HA. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

18 pages, 6690 KiB  
Article
Development of Iron-Doped Hydroxyapatite Coatings
by Daniela Predoi, Simona Liliana Iconaru, Steluta Carmen Ciobanu, Silviu-Adrian Predoi, Nicolas Buton, Christelle Megier and Mircea Beuran
Coatings 2021, 11(2), 186; https://doi.org/10.3390/coatings11020186 - 5 Feb 2021
Cited by 42 | Viewed by 4670
Abstract
It is known that iron is found as a trace element in bone tissue, the main inorganic constituent of which is hydroxyapatite. Therefore, iron-doped hydroxyapatite (HApFe) materials could be new alternatives for many biomedical applications. A facile dip coating process was used to [...] Read more.
It is known that iron is found as a trace element in bone tissue, the main inorganic constituent of which is hydroxyapatite. Therefore, iron-doped hydroxyapatite (HApFe) materials could be new alternatives for many biomedical applications. A facile dip coating process was used to elaborate the iron-doped hydroxyapatite (HApFe) nanocomposite coatings. The HApFe suspension used to prepare the coatings was achieved using a co-precipitation method, which was adapted in the laboratory. The quality of the HApFe suspension was assessed through dynamic light scattering (DLS), ultrasonic measurements, and zeta potential values. The hydroxyapatite XRD patterns were observed in the HApFe nanocomposite with no significant shifting of peak positions, thus suggesting that the incorporation of iron did not significantly modify the hydroxyapatite structure. The morphology of the HApFe nanoparticles was evaluated using transmission electron microscopy (TEM). Scanning electron microscopy (SEM) was used in order to investigate the morphologies of HApFe particles and coatings, while their chemical compositions were assessed using energy-dispersive X-ray spectroscopy (EDS). The SEM results suggested that the HApFe consists mainly of spherical nanometric particles and that the surfaces of the coatings are continuous and homogeneous. Additionally, the EDS spectra highlighted the purity of the samples and confirmed the presence of calcium, phosphorous, and iron in the analyzed sample. The in vitro cytotoxicity of the HApFe suspensions and coatings was evidenced using osteoblast cells. The MTT assay showed that both the HApFe suspensions and coatings exhibited biocompatible properties. Full article
(This article belongs to the Special Issue Hydroxyapatite Based Coatings for Biomedical Applications)
Show Figures

Figure 1

14 pages, 4365 KiB  
Article
Preparation and Characterization of Iron-Doped Tricalcium Silicate-Based Bone Cement as a Bone Repair Material
by Yanan Zhang, Jiapan Luan, Yin Zhang, Shuai Sha, Sha Li, Shanqi Xu and Dongqing Xu
Materials 2020, 13(17), 3670; https://doi.org/10.3390/ma13173670 - 19 Aug 2020
Cited by 12 | Viewed by 2763
Abstract
Iron is one of the trace elements required by human body, and its deficiency can lead to abnormal bone metabolism. In this study, the effect of iron ions on the properties of tricalcium silicate bone cement (Fe/C3Ss) was investigated. It effectively [...] Read more.
Iron is one of the trace elements required by human body, and its deficiency can lead to abnormal bone metabolism. In this study, the effect of iron ions on the properties of tricalcium silicate bone cement (Fe/C3Ss) was investigated. It effectively solved the problems of high pH value and low biological activity of calcium silicate bone cement. The mechanical properties, in vitro mineralization ability and biocompatibility of the materials were systematically characterized. The results indicate that tricalcium silicate bone cement containing 5 mol% iron displayed good self-setting ability, mechanical properties and biodegradation performance in vitro. Compared with pure calcium silicate bone cement (C3Ss), Fe/C3Ss showed lower pH value (8.80) and higher porosity (45%), which was suitable for subsequent cell growth. Immersion test in vitro also confirmed its good ability to induce hydroxyapatite formation. Furthermore, cell culture experiments performed with Fe/C3Ss ion extracts clearly stated that the material had excellent cell proliferation abilities compared to C3Ss and low toxicity. The findings reveal that iron-doped tricalcium silicate bone cement is a promising bioactive material in bone repair applications. Full article
Show Figures

Figure 1

16 pages, 3676 KiB  
Article
Development of Magnetically Active Scaffolds for Bone Regeneration
by Esperanza Díaz, Mᵃ Blanca Valle, Sylvie Ribeiro, Senentxu Lanceros-Mendez and José Manuel Barandiarán
Nanomaterials 2018, 8(9), 678; https://doi.org/10.3390/nano8090678 - 30 Aug 2018
Cited by 24 | Viewed by 3946
Abstract
This work reports on the synthesis, with the thermally induced phase separation (TIPS) technique, of poly (l-lactide) (PLLA) scaffolds containing Fe-doped hydroxyapatite (FeHA) particles for bone regeneration. Magnetization curves and X-ray diffraction indicate two magnetic particle phases: FeHA and magnetite Fe [...] Read more.
This work reports on the synthesis, with the thermally induced phase separation (TIPS) technique, of poly (l-lactide) (PLLA) scaffolds containing Fe-doped hydroxyapatite (FeHA) particles for bone regeneration. Magnetization curves and X-ray diffraction indicate two magnetic particle phases: FeHA and magnetite Fe3O4. Magnetic nanoparticles (MNPs) are approximately 30 ± 5 nm in width and 125 ± 25 nm in length, and show typical ferromagnetic properties, including coercivity and rapid saturation magnetization. Scanning electron microscopy (SEM) images of the magnetic scaffolds reveal their complex morphology changes with MNP concentration. Similarly, at compositions of approximately 20% MNPs, the phase separation changes, passing from solid–liquid to liquid–liquid as revealed by the hill-like structures, with low peaks that give the walls in the SEM images a surface pattern of micro-ruggedness typical of nucleation mechanisms and growth. In vitro degradation experiments, carried out for more than 28 weeks, demonstrated that the MNPs delay the scaffold degradation process. Cytotoxicity is appreciated for FeHA content above 20%. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles in Biological Applications)
Show Figures

Graphical abstract

16 pages, 3888 KiB  
Article
Metal Ion-Loaded Nanofibre Matrices for Calcification Inhibition in Polyurethane Implants
by Charanpreet Singh and Xungai Wang
J. Funct. Biomater. 2017, 8(3), 22; https://doi.org/10.3390/jfb8030022 - 23 Jun 2017
Cited by 4 | Viewed by 7497
Abstract
Pathologic calcification leads to structural deterioration of implant materials via stiffening, stress cracking, and other structural disintegration mechanisms, and the effect can be critical for implants intended for long-term or permanent implantation. This study demonstrates the potential of using specific metal ions (MI)s [...] Read more.
Pathologic calcification leads to structural deterioration of implant materials via stiffening, stress cracking, and other structural disintegration mechanisms, and the effect can be critical for implants intended for long-term or permanent implantation. This study demonstrates the potential of using specific metal ions (MI)s for inhibiting pathological calcification in polyurethane (PU) implants. The hypothesis of using MIs as anti-calcification agents was based on the natural calcium-antagonist role of Mg2+ ions in human body, and the anti-calcification effect of Fe3+ ions in bio-prosthetic heart valves has previously been confirmed. In vitro calcification results indicated that a protective covering mesh of MI-doped PU can prevent calcification by preventing hydroxyapatite crystal growth. However, microstructure and mechanical characterisation revealed oxidative degradation effects from Fe3+ ions on the mechanical properties of the PU matrix. Therefore, from both a mechanical and anti-calcification effects point of view, Mg2+ ions are more promising candidates than Fe3+ ions. The in vitro MI release experiments demonstrated that PU microphase separation and the structural design of PU-MI matrices were important determinants of release kinetics. Increased phase separation in doped PU assisted in consistent long-term release of dissolved MIs from both hard and soft segments of the PU. The use of a composite-sandwich mesh design prevented an initial burst release which improved the late (>20 days) release rate of MIs from the matrix. Full article
(This article belongs to the Special Issue Journal of Functional Biomaterials: Feature Papers 2016)
Show Figures

Figure 1

Back to TopTop