Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = FTIT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6807 KiB  
Article
Study on Properties of Micro-Nano Magnetic Composite Prepared by Mechanochemical Method of NdFeB Secondary Waste and Removal of As (V) from Mine Water
by Xiujuan Feng and Yicheng Rao
Water 2024, 16(9), 1234; https://doi.org/10.3390/w16091234 - 25 Apr 2024
Viewed by 1590
Abstract
The secondary waste produced by NdFeB waste after rare earth recycling, with an annual output of more than tens of thousands of tons, is the largest solid waste emission source in the rare earth industry, and long-term storage causes land resource occupation and [...] Read more.
The secondary waste produced by NdFeB waste after rare earth recycling, with an annual output of more than tens of thousands of tons, is the largest solid waste emission source in the rare earth industry, and long-term storage causes land resource occupation and environmental pollution. Arsenic-containing mine wastewater has serious harm, wide distribution, and long duration of pollution. In this study, the mechanical ball milling method was used to activate NdFeB secondary waste to prepare micro-nano magnetic composite materials, the main components of which are Fe2O3, Fe3O4, and C. Under mechanical mechanochemical action, the particles are more dispersed, the particle size decreases, the specific surface area increases significantly, the crystal structure changes to amorphous structure, the degree of amorphous shape increases, and the content of Fe-OH increases. Applied to the treatment of As (V) in simulated mine water, it was found that the removal of As (V) by this material was mainly based on chemisorption and monolayer adsorption, and the maximum adsorption amount reached 10.477 mg/g. Zeta, FT-IT, and XPS characterization confirmed that the removal of As (V) was a coordination exchange reaction between the material and As (V) to form an inner sphere complex. The removal rate of As (V) decreased from 94.33% to 73.56% when the initial concentration of solution was 10 mg/L, pH value was 3.0, and material dosage was 1 g/L after 5 times of regrowth. This study provides a new way for the application of NdFeB secondary waste, which has low cost, green environmental protection, and wide application prospects. Full article
(This article belongs to the Special Issue Water, Wastewater and Waste Management for Sustainable Development)
Show Figures

Figure 1

23 pages, 5911 KiB  
Article
Delivery of Melittin as a Lytic Agent via Graphene Nanoparticles as Carriers to Breast Cancer Cells
by Karolina Daniluk, Agata Lange, Michał Pruchniewski, Artur Małolepszy, Ewa Sawosz and Sławomir Jaworski
J. Funct. Biomater. 2022, 13(4), 278; https://doi.org/10.3390/jfb13040278 - 7 Dec 2022
Cited by 10 | Viewed by 3190
Abstract
Melittin, as an agent to lyse biological membranes, may be a promising therapeutic agent in the treatment of cancer. However, because of its nonspecific actions, there is a need to use a delivery method. The conducted research determined whether carbon nanoparticles, such as [...] Read more.
Melittin, as an agent to lyse biological membranes, may be a promising therapeutic agent in the treatment of cancer. However, because of its nonspecific actions, there is a need to use a delivery method. The conducted research determined whether carbon nanoparticles, such as graphene and graphene oxide, could be carriers for melittin to breast cancer cells. The studies included the analysis of intracellular pH, the potential of cell membranes, the type of cellular transport, and the expression of receptor proteins. By measuring the particle size, zeta potential, and FT-IT analysis, we found that the investigated nanoparticles are connected by electrostatic interactions. The level of melittin encapsulation with graphene was 86%, while with graphene oxide it was 78%. A decrease in pHi was observed for all cell lines after administration of melittin and its complex with graphene. The decrease in membrane polarization was demonstrated for all lines treated with melittin and its complex with graphene and after exposure to the complex of melittin with graphene oxide for the MDA-MB-231 and HFFF2 lines. The results showed that the investigated melittin complexes and the melittin itself act differently on different cell lines (MDA-MB-231 and MCF-7). It has been shown that in MDA-MD-231 cells, melittin in a complex with graphene is transported to cells via caveolin-dependent endocytosis. On the other hand, the melittin–graphene oxide complex can reach breast cancer cells through various types of transport. Other differences in protein expression changes were also observed for tumor lines after exposure to melittin and complexes. Full article
Show Figures

Figure 1

19 pages, 6519 KiB  
Article
Miscibility and Solubility of Caffeine and Theophylline in Hydroxypropyl Methylcellulose
by Edyta Leyk and Marek Wesolowski
Pharmaceutics 2021, 13(11), 1836; https://doi.org/10.3390/pharmaceutics13111836 - 2 Nov 2021
Cited by 5 | Viewed by 2756
Abstract
As amorphization may improve the solubility and bioavailability of a drug substance, the aim of this work was to assess to what extent the crystallinity of caffeine (CAF) and theophylline (TF) can be reduced by homogenization with a polymeric excipient. To realize this [...] Read more.
As amorphization may improve the solubility and bioavailability of a drug substance, the aim of this work was to assess to what extent the crystallinity of caffeine (CAF) and theophylline (TF) can be reduced by homogenization with a polymeric excipient. To realize this purpose, the physical mixtures of both methylxanthines with hydroxypropyl methylcellulose (HPMC) were examined using differential scanning calorimetry (DSC), hot-stage microscopy (HSM), Fourier-transform infrared (FTIR) and Raman spectroscopy. Moreover, phase diagrams for the physical mixtures were calculated using theoretical data. Results of DSC experiments suggested that both CAF and TF underwent amorphization, which indicated proportional loss of crystallinity for methylxanthines in the mixtures with HPMC. Additionally, HSM revealed that no other crystalline or amorphous phases were created other than those observed for CAF and TF. FTIR and Raman spectra displayed all the bands characteristic for methylxanthines in mixtures with HPMC, thereby excluding changes in their chemical structures. However, changes to the intensity of the bands created by hydrogen bonds imply the formation of hydrogen bonding in the carbonyl group of methylxanthines and the methyl polymer group. This is consistent with data obtained using principal component analysis. The findings of these studies revealed the quantities of methylxanthines which may be dissolved in the polymer at a given temperature and the composition at which methylxanthines and polymer are sufficiently miscible to form a solid solution. Full article
Show Figures

Graphical abstract

14 pages, 8668 KiB  
Article
Green and Facile Synthesis of Dendritic and Branched Gold Nanoparticles by Gelatin and Investigation of Their Biocompatibility on Fibroblast Cells
by Quoc Khuong Vo, My Nuong Nguyen Thi, Phuong Phong Nguyen Thi and Duy Trinh Nguyen
Processes 2019, 7(9), 631; https://doi.org/10.3390/pr7090631 - 18 Sep 2019
Cited by 11 | Viewed by 6137
Abstract
In this work, gold nanostar (AuNPs) and gold nanodendrites were synthesized by one-pot and environmentally friendly approach in the presence of gelatin. Influence of gelatin concentrations and reaction conditions on the growth of branched (AuNPs) were investigated further. Interestingly, the conversion of morphology [...] Read more.
In this work, gold nanostar (AuNPs) and gold nanodendrites were synthesized by one-pot and environmentally friendly approach in the presence of gelatin. Influence of gelatin concentrations and reaction conditions on the growth of branched (AuNPs) were investigated further. Interestingly, the conversion of morphology between dendritic and branched nanostructure can be attained by changing the pH value of gelatin solution. The role of gelatin as a protecting agent through the electrostatic and steric interaction was also revealed. Branched nanoparticles were characterized by surface plasmon resonance spectroscopy (SPR), transmission electron microscopy (TEM), XRD, dynamic light scattering (DLS) and zeta-potential. The chemical interaction of gelatin with branched gold nanoparticles was analyzed by Fourier transform infrared spectroscopy (FT-IT) technique. Ultraviolet visible spectroscopy results indicated the formation of branched gold nanoparticles with the maximum surface plasmon resonance peak at 575–702 nm. The structure of both nanodendrites and nanostars were determined by TEM. The crystal sizes of nano-star ranged from 42 to 55 nm and the nanodendrites sizes were about 75–112 nm. Based on the characterizations, a growth mechanism could be proposed to explain morphology evolutions of branched AuNPs. Moreover, the branched AuNPs is high viability at 100 μg/mL concentration when performed by the SRB assay with human foreskin fibroblast cells. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Biomedical Materials)
Show Figures

Figure 1

Back to TopTop