Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = FSHD1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2282 KiB  
Article
Increased METTL3 Expression and m6A Methylation in Myoblasts of Facioscapulohumeral Muscular Dystrophy
by Nikolaos Settas, Adam J Bittel and Yi-Wen Chen
Int. J. Mol. Sci. 2025, 26(11), 5170; https://doi.org/10.3390/ijms26115170 - 28 May 2025
Viewed by 877
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the aberrant expression of the double homeobox 4 (DUX4) gene. In this study, an analysis of human FSHD muscle biopsies revealed differential expressions of six m6A regulators, including writers, readers and eraser proteins. In [...] Read more.
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the aberrant expression of the double homeobox 4 (DUX4) gene. In this study, an analysis of human FSHD muscle biopsies revealed differential expressions of six m6A regulators, including writers, readers and eraser proteins. In immortalized human FSHD myoblasts, we found higher levels of mRNA and protein expression of a major m6A regulator, methyltransferase-like protein 3 (METTL3), in comparison with myoblasts from unaffected siblings (UASbs). Quantification of the overall RNA m6A levels in the FSHD myoblasts revealed significant elevation compared with their UASb, which was reversed to UASb levels following treatment with an antisense oligonucleotide targeting the DUX4 mRNA. Using Oxford Nanopore direct-RNA sequencing, we mapped m6A across the transcriptome and identified genes harboring differential methylated m6A sites, including several involved in iron homeostasis. Western blot protein quantification showed that FSHD myoblasts had higher levels of ferritin-heavy chain-207 isoform and mitoferrin-1. In addition, our data showed elevation in mitochondrial ferrous iron in FSHD myoblasts. Our findings suggest that m6A RNA modifications play a pivotal role in FSHD pathophysiology and may serve as biomarker for this disease. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 7715 KiB  
Communication
Dux Is Dispensable for Skeletal Muscle Regeneration: A Study Inspired by a “Red Flagged” Publication and Editorial Oversight
by Kenric Chen, Erdong Wei, Ana Mitanoska, Micah D. Gearhart, Michael Kyba and Darko Bosnakovski
Cells 2025, 14(10), 695; https://doi.org/10.3390/cells14100695 - 12 May 2025
Viewed by 1001
Abstract
Double homeobox (DUX) genes are key embryonic regulators that are silenced after the early cleavage stages of embryogenesis. Aberrant expression of DUX4 in skeletal muscle is linked to facioscapulohumeral muscular dystrophy (FSHD). A recent study reported that Dux, the murine ortholog of DUX4, [...] Read more.
Double homeobox (DUX) genes are key embryonic regulators that are silenced after the early cleavage stages of embryogenesis. Aberrant expression of DUX4 in skeletal muscle is linked to facioscapulohumeral muscular dystrophy (FSHD). A recent study reported that Dux, the murine ortholog of DUX4, contributes to the dystrophic phenotype in mdx mice, a Duchenne muscular dystrophy (DMD) model, and that its deletion enhances muscle regeneration by reducing oxidative stress. However, convincing evidence of Dux expression in either intact or injured muscle of wild-type (WT) and mdx mice remains lacking, raising questions about its role in muscle homeostasis. To investigate this, we assessed Dux expression in WT and mdx mice and used Dux knockout (DuxΔ/Δ) mice to evaluate its function during regeneration following cardiotoxin (CTX)-induced injury. Contrary to prior reports, Dux was not expressed in either WT or mdx mice. Moreover, Dux deletion did not enhance muscle regeneration or affect the expression of the oxidative stress regulator Nrf2 following CTX injury. Lastly, we confirmed that neither DUX4 nor its target genes were induced in muscle biopsies from DMD patients, excluding a role for DUX4 in DMD pathology. Collectively, our results demonstrate that Dux does not impact skeletal muscle regeneration or DUX4 contribution to the DMD dystrophic phenotype, directly challenging the conclusions of a previously published study. We comment on issues of editorial oversight that led to the publication of that study and highlight the deleterious impact of the growing wave of fraudulent publications. Full article
Show Figures

Figure 1

16 pages, 631 KiB  
Review
State-of-the-Art and Future Challenges for Nutritional Interventions in Facioscapulohumeral Dystrophy: A Narrative Review
by Venere Quintiero, Oscar Crisafulli, Daniele Diotti, Rossella Tupler, Massimo Negro, Emanuela Lavaselli and Giuseppe D’Antona
Nutrients 2025, 17(6), 1056; https://doi.org/10.3390/nu17061056 - 17 Mar 2025
Cited by 1 | Viewed by 1911
Abstract
Facioscapulohumeral dystrophy (FSHD), the second most common inherited muscular dystrophy in adulthood, is characterized by progressive muscle loss, accompanied by an increase in fat mass. Beyond these alterations in body composition, which contribute to the risk of sarcopenic obesity, FSHD is associated with [...] Read more.
Facioscapulohumeral dystrophy (FSHD), the second most common inherited muscular dystrophy in adulthood, is characterized by progressive muscle loss, accompanied by an increase in fat mass. Beyond these alterations in body composition, which contribute to the risk of sarcopenic obesity, FSHD is associated with systemic inflammation and oxidative stress. These interconnected mechanisms may worsen muscle atrophy, leading to a decline in physical efficiency and quality of life. While the therapeutic benefits of physical therapy and exercise have been investigated, the impact of dietary interventions remains underexplored. Given the established role of nutrition in managing various chronic diseases, there is growing interest in understanding how it might influence the clinical management of FSHD. By addressing current gaps in the literature, this review aims to investigate the potential role of dietary patterns and specific nutrients in modulating muscle metabolism within the context of FSHD. Some studies have indicated various compounds (flavonoids, curcumin, L-carnitine, coenzyme Q10, and omega-3), vitamins (C and E), and minerals (zinc and selenium) with antioxidant and anti-inflammatory properties as promising treatment strategies for FSHD. Instead, few data regarding the effects of proteins and creatine supplementation are available. Furthermore, the potential benefits of essentials amino acids, β-hydroxy-β-methylbutyrate, and vitamin D in contrasting muscle atrophy and enhancing muscle function remain unexplored. Despite these preliminary findings, the existing body of evidence is limited. Identifying novel therapeutic strategies to complement existing treatments could provide a more comprehensive management framework, aimed at improving the long-term health outcomes and quality of life of FSHD patients. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

14 pages, 1765 KiB  
Article
Comparative Analysis of Splicing Alterations in Three Muscular Dystrophies
by Vanessa Todorow, Stefan Hintze, Benedikt Schoser and Peter Meinke
Biomedicines 2025, 13(3), 606; https://doi.org/10.3390/biomedicines13030606 - 1 Mar 2025
Viewed by 1133
Abstract
Background/Objectives: Missplicing caused by toxic DMPK-mRNA is described as a hallmark of myotonic dystrophy type 1 (DM1). Yet, there is an expressional misregulation of additional splicing factors described in DM1, and missplicing has been observed in other myopathies. Here, we compare [...] Read more.
Background/Objectives: Missplicing caused by toxic DMPK-mRNA is described as a hallmark of myotonic dystrophy type 1 (DM1). Yet, there is an expressional misregulation of additional splicing factors described in DM1, and missplicing has been observed in other myopathies. Here, we compare the expressional misregulation of splicing factors and the resulting splicing profiles between three different hereditary myopathies. Methods: We used publicly available RNA-sequencing datasets for the three muscular dystrophies—DM1, facioscapulohumeral muscular dystrophy (FSHD) and Emery–Dreifuss muscular dystrophy (EDMD)—to compare the splicing factor expression and missplicing genome-wide using DESeq2 and MAJIQ. Results: Upregulation of alternative splicing factors and downregulation of constitutive splicing factors were detected for all three myopathies, but to different degrees. Correspondingly, the missplicing events were mostly alternative exon usage and skipping events. In DM1, most events were alternative exon usage and intron retention, while exon skipping was prevalent in FSHD, with EDMD being in between the two other myopathies in terms of splice factor regulation as well as missplicing. Accordingly, the missplicing events were only partially shared between these three myopathies, sometimes with the same locus being spliced differently. Conclusions: This indicates a combination of primary (toxic RNA) and more downstream effects (splicing factor expression) resulting in the DM1 missplicing phenotype. Furthermore, this analysis allows the distinction between disease-specific missplicing and general myopathic splicing alteration to be used as biomarkers. Full article
Show Figures

Figure 1

18 pages, 2460 KiB  
Review
The Unexplored Role of Connexin Hemichannels in Promoting Facioscapulohumeral Muscular Dystrophy Progression
by Macarena Díaz-Ubilla and Mauricio A. Retamal
Int. J. Mol. Sci. 2025, 26(1), 373; https://doi.org/10.3390/ijms26010373 - 4 Jan 2025
Viewed by 1462
Abstract
DUX4 is typically a repressed transcription factor, but its aberrant activation in Facioscapulohumeral Muscular Dystrophy (FSHD) leads to cell death by disrupting muscle homeostasis. This disruption affects crucial processes such as myogenesis, sarcolemma integrity, gene regulation, oxidative stress, immune response, and many other [...] Read more.
DUX4 is typically a repressed transcription factor, but its aberrant activation in Facioscapulohumeral Muscular Dystrophy (FSHD) leads to cell death by disrupting muscle homeostasis. This disruption affects crucial processes such as myogenesis, sarcolemma integrity, gene regulation, oxidative stress, immune response, and many other biological pathways. Notably, these disrupted processes have been associated, in other pathological contexts, with the presence of connexin (Cx) hemichannels—transmembrane structures that mediate communication between the intracellular and extracellular environments. Thus, hemichannels have been implicated in skeletal muscle atrophy, as observed in human biopsies and animal models of Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, and Dysferlinopathies, suggesting a potentially shared mechanism of muscle atrophy that has not yet been explored in FSHD. Despite various therapeutic strategies proposed to manage FSHD, no treatment or cure is currently available. This review summarizes the current understanding of the mechanisms underlying FSHD progression, with a focus on hormones, inflammation, reactive oxygen species (ROS), and mitochondrial function. Additionally, it explores the potential of targeting hemichannels as a therapeutic strategy to slow disease progression by preventing the spread of pathogenic factors between muscle cells. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Biology in Chile, 2nd Edition)
Show Figures

Figure 1

32 pages, 2311 KiB  
Article
Muscle Proteome Analysis of Facioscapulohumeral Dystrophy Patients Reveals a Metabolic Rewiring Promoting Oxidative/Reductive Stress Contributing to the Loss of Muscle Function
by Manuela Moriggi, Lucia Ruggiero, Enrica Torretta, Dario Zoppi, Beatrice Arosio, Evelyn Ferri, Alessandra Castegna, Chiara Fiorillo, Cecilia Gelfi and Daniele Capitanio
Antioxidants 2024, 13(11), 1406; https://doi.org/10.3390/antiox13111406 - 16 Nov 2024
Cited by 3 | Viewed by 1737
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic de-repression of the double homeobox 4 (DUX4) gene, leading to asymmetric muscle weakness and atrophy that begins in the facial and scapular muscles and progresses to the lower limbs. This incurable condition can severely [...] Read more.
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic de-repression of the double homeobox 4 (DUX4) gene, leading to asymmetric muscle weakness and atrophy that begins in the facial and scapular muscles and progresses to the lower limbs. This incurable condition can severely impair muscle function, ultimately resulting in a loss of ambulation. A thorough analysis of molecular factors associated with the varying degrees of muscle impairment in FSHD is still lacking. This study investigates the molecular mechanisms and biomarkers in the biceps brachii of FSHD patients, classified according to the FSHD clinical score, the A-B-C-D classification scheme, and global proteomic variation. Our findings reveal distinct metabolic signatures and compensatory responses in patients. In severe cases, we observe pronounced metabolic dysfunction, marked by dysregulated glycolysis, activation of the reductive pentose phosphate pathway (PPP), a shift toward a reductive TCA cycle, suppression of oxidative phosphorylation, and an overproduction of antioxidants that is not matched by an increase in the redox cofactors needed for their function. This imbalance culminates in reductive stress, exacerbating muscle wasting and inflammation. In contrast, mild cases show metabolic adaptations that mitigate stress by activating polyols and the oxidative PPP, preserving partial energy flow through the oxidative TCA cycle, which supports mitochondrial function and energy balance. Furthermore, activation of the hexosamine biosynthetic pathway promotes autophagy, protecting muscle cells from apoptosis. In conclusion, our proteomic data indicate that specific metabolic alterations characterize both mild and severe FSHD patients. Molecules identified in mild cases may represent potential diagnostic and therapeutic targets for FSHD. Full article
Show Figures

Figure 1

33 pages, 462 KiB  
Review
Hereditary Neuromuscular Disorders in Reproductive Medicine
by Agnese Luglio, Elena Maggi, Francesco Nicola Riviello, Alessandro Conforti, Ugo Sorrentino and Daniela Zuccarello
Genes 2024, 15(11), 1409; https://doi.org/10.3390/genes15111409 - 30 Oct 2024
Cited by 2 | Viewed by 2066
Abstract
Neuromuscular disorders (NMDs) encompass a broad range of hereditary and acquired conditions that affect motor units, significantly impacting patients’ quality of life and reproductive health. This narrative review aims to explore in detail the reproductive challenges associated with major hereditary NMDs, including Charcot–Marie–Tooth [...] Read more.
Neuromuscular disorders (NMDs) encompass a broad range of hereditary and acquired conditions that affect motor units, significantly impacting patients’ quality of life and reproductive health. This narrative review aims to explore in detail the reproductive challenges associated with major hereditary NMDs, including Charcot–Marie–Tooth disease (CMT), dystrophinopathies, Myotonic Dystrophy (DM), Facioscapulohumeral Muscular Dystrophy (FSHD), Spinal Muscular Atrophy (SMA), Limb–Girdle Muscular Dystrophy (LGMD), and Amyotrophic Lateral Sclerosis (ALS). Specifically, it discusses the stages of diagnosis and genetic testing, recurrence risk estimation, options for preimplantation genetic testing (PGT) and prenatal diagnosis (PND), the reciprocal influence between pregnancy and disease, potential obstetric complications, and risks to the newborn. Full article
(This article belongs to the Special Issue Feature Papers in Human Genomics and Genetic Diseases 2024)
19 pages, 6292 KiB  
Article
Molecular, Histological, and Functional Changes in Acta1-MCM;FLExDUX4/+ Mice
by Solene Sohn, Sophie Reid, Maximilien Bowen, Emilio Corbex, Laura Le Gall, Eva Sidlauskaite, Christophe Hourde, Baptiste Morel, Virginie Mariot and Julie Dumonceaux
Int. J. Mol. Sci. 2024, 25(21), 11377; https://doi.org/10.3390/ijms252111377 - 23 Oct 2024
Viewed by 1862
Abstract
DUX4 is the major gene responsible for facioscapulohumeral dystrophy (FSHD). Several mouse models expressing DUX4 have been developed, the most commonly used by academic laboratories being ACTA1-MCM/FLExDUX4. In this study, molecular and histological modifications in the tibialis anterior and quadriceps muscles were investigated [...] Read more.
DUX4 is the major gene responsible for facioscapulohumeral dystrophy (FSHD). Several mouse models expressing DUX4 have been developed, the most commonly used by academic laboratories being ACTA1-MCM/FLExDUX4. In this study, molecular and histological modifications in the tibialis anterior and quadriceps muscles were investigated in this model at different time points. We investigated several changes that could be used as markers of therapeutic efficacy. Our results confirm the progressive muscular dystrophy previously described but also highlight biases associated with tamoxifen injections and the complexity of choosing the genes used to calculate a DUX4-pathway gene composite score. We also developed a comprehensive force test that better reflects the movements made in everyday life. This functional force–velocity–endurance model, which describes the force production capacities at all velocity and fatigue levels, was applied on 12–13-week-old animals without tamoxifen. Our data highlight that previously unsuspected muscle properties are also affected by the expression of DUX4, leading to a weaker muscle with a lower initial muscle force but with preserved power and endurance capacity. Importantly, this force–velocity–endurance approach can be used in humans for clinical evaluations. Full article
Show Figures

Figure 1

15 pages, 1336 KiB  
Review
Deciphering the Complexity of FSHD: A Multimodal Approach as a Model for Rare Disorders
by Domenica Megalizzi, Giulia Trastulli, Luca Colantoni, Emma Proietti Piorgo, Guido Primiano, Cristina Sancricca, Carlo Caltagirone, Raffaella Cascella, Claudia Strafella and Emiliano Giardina
Int. J. Mol. Sci. 2024, 25(20), 10949; https://doi.org/10.3390/ijms252010949 - 11 Oct 2024
Cited by 1 | Viewed by 1637
Abstract
Rare diseases are heterogeneous diseases characterized by various symptoms and signs. Due to the low prevalence of such conditions (less than 1 in 2000 people), medical expertise is limited, knowledge is poor and patients’ care provided by medical centers is inadequate. An accurate [...] Read more.
Rare diseases are heterogeneous diseases characterized by various symptoms and signs. Due to the low prevalence of such conditions (less than 1 in 2000 people), medical expertise is limited, knowledge is poor and patients’ care provided by medical centers is inadequate. An accurate diagnosis is frequently challenging and ongoing research is also insufficient, thus complicating the understanding of the natural progression of the rarest disorders. This review aims at presenting the multimodal approach supported by the integration of multiple analyses and disciplines as a valuable solution to clarify complex genotype–phenotype correlations and promote an in-depth examination of rare disorders. Taking into account the literature from large-scale population studies and ongoing technological advancement, this review described some examples to show how a multi-skilled team can improve the complex diagnosis of rare diseases. In this regard, Facio-Scapulo-Humeral muscular Dystrophy (FSHD) represents a valuable example where a multimodal approach is essential for a more accurate and precise diagnosis, as well as for enhancing the management of patients and their families. Given their heterogeneity and complexity, rare diseases call for a distinctive multidisciplinary approach to enable diagnosis and clinical follow-up. Full article
Show Figures

Figure 1

13 pages, 1031 KiB  
Review
Therapeutic Strategy and Clinical Path of Facioscapulohumeral Muscular Dystrophy: Review of the Current Literature
by Qi Xie, Guangmei Ma and Yafeng Song
Appl. Sci. 2024, 14(18), 8222; https://doi.org/10.3390/app14188222 - 12 Sep 2024
Viewed by 3007
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant genetic disease, which is caused by the mistaken expression of double homeobox protein 4 protein 4 (DUX4) in skeletal muscle. Patients with FSHD are usually accompanied by degenerative changes in the face, shoulders, and upper [...] Read more.
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant genetic disease, which is caused by the mistaken expression of double homeobox protein 4 protein 4 (DUX4) in skeletal muscle. Patients with FSHD are usually accompanied by degenerative changes in the face, shoulders, and upper muscles, gradually accumulating in the lower limb muscles. The severity of patients is quite different, and most patients end up using wheelchairs and losing their self-care ability. At present, the exploration of treatment strategies for FSHD has shifted from relieving symptoms to gene therapy, which brings hope to the future of patients, but the current gene therapy is only in the clinical trial stage. Here, we conducted a comprehensive search of the relevant literature using the keywords FSHD, DUX4, and gene therapy methods including ASOs, CRISPR, and RNAi in the PubMed and Web of Science databases. We discussed the current advancements in treatment strategies for FSHD, as well as ongoing preclinical and clinical trials related to FSHD. Additionally, we evaluated the advantages and limitations of various gene therapy approaches targeting DUX4 aimed at correcting the underlying genetic defect. Full article
Show Figures

Figure 1

15 pages, 1069 KiB  
Article
Characterizing Mechanical Changes in the Biceps Brachii Muscle in Mild Facioscapulohumeral Muscular Dystrophy Using Shear Wave Elastography
by Benedict Kleiser, Manuela Zimmer, Filiz Ateş and Justus Marquetand
Diagnostics 2024, 14(17), 1985; https://doi.org/10.3390/diagnostics14171985 - 8 Sep 2024
Cited by 1 | Viewed by 3476
Abstract
There is no general consensus on evaluating disease progression in facioscapulohumeral muscular dystrophy (FSHD). Recently, shear wave elastography (SWE) has been proposed as a noninvasive diagnostic tool to assess muscle stiffness in vivo. Therefore, this study aimed to characterize biceps brachii (BB) muscle [...] Read more.
There is no general consensus on evaluating disease progression in facioscapulohumeral muscular dystrophy (FSHD). Recently, shear wave elastography (SWE) has been proposed as a noninvasive diagnostic tool to assess muscle stiffness in vivo. Therefore, this study aimed to characterize biceps brachii (BB) muscle mechanics in mild-FSHD patients using SWE. Eight patients with mild FSHD, the BB were assessed using SWE, surface electromyography (sEMG), elbow moment measurements during rest, maximum voluntary contraction (MVC), and isometric ramp contractions at 25%, 50%, and 75% MVC across five elbow positions (60°, 90°, 120°, 150°, and 180° flexion). The mean absolute percentage deviation (MAPD) was analyzed as a measure of force control during ramp contractions. The shear elastic modulus of the BB in FSHD patients increased from flexed to extended elbow positions (e.g., p < 0.001 at 25% MVC) and with increasing contraction intensity (e.g., p < 0.001 at 60°). MAPD was highly variable, indicating significant deviation from target values during ramp contractions. SWE in mild FSHD is influenced by contraction level and joint angle, similar to findings of previous studies in healthy subjects. Moreover, altered force control could relate to the subjective muscle weakness reported by patients with dystrophies. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

12 pages, 2361 KiB  
Article
D4Z4 Hypomethylation in Human Germ Cells
by Ramya Potabattula, Jana Durackova, Sarah Kießling, Alina Michler, Thomas Hahn, Martin Schorsch, Tom Trapphoff, Stefan Dieterle and Thomas Haaf
Cells 2024, 13(17), 1497; https://doi.org/10.3390/cells13171497 - 6 Sep 2024
Viewed by 1425
Abstract
Expression of the double homeobox 4 (DUX4) transcription factor is highly regulated in early embryogenesis and is subsequently epigenetically silenced. Ectopic expression of DUX4 due to hypomethylation of the D4Z4 repeat array on permissive chromosome 4q35 alleles is associated with facioscapulohumeral [...] Read more.
Expression of the double homeobox 4 (DUX4) transcription factor is highly regulated in early embryogenesis and is subsequently epigenetically silenced. Ectopic expression of DUX4 due to hypomethylation of the D4Z4 repeat array on permissive chromosome 4q35 alleles is associated with facioscapulohumeral muscular dystrophy (FSHD). In peripheral blood samples from 188 healthy individuals, D4Z4 methylation was highly variable, ranging from 19% to 76%, and was not affected by age. In 48 FSHD2 patients, D4Z4 methylation varied from 3% to 30%. Given that DUX4 is one of the earliest transcribed genes after fertilization, the D4Z4 array is expected to be unmethylated in mature germ cells. Deep bisulfite sequencing of 188 mainly normozoospermic sperm samples revealed an average methylation of 2.5% (range 0.3–22%). Overall, the vast majority (78%) of individual sperm cells displayed no methylation at all. In contrast, only 19 (17.5%) of 109 individual germinal vesicle (GV) oocytes displayed D4Z4 methylation <2.5%. However, it is not unexpected that immature GV oocytes which are not usable for assisted reproduction are endowed with D4Z4 (up to 74%) hypermethylation and/or abnormal (PEG3 and GTL2) imprints. Although not significant, it is interesting to note that the pregnancy rate after assisted reproduction was higher for donors of sperm samples and oocytes with <2.5% methylation. Full article
Show Figures

Graphical abstract

23 pages, 1542 KiB  
Review
Oligonucleotide Therapies for Facioscapulohumeral Muscular Dystrophy: Current Preclinical Landscape
by Samuel L. Beck and Toshifumi Yokota
Int. J. Mol. Sci. 2024, 25(16), 9065; https://doi.org/10.3390/ijms25169065 - 21 Aug 2024
Cited by 2 | Viewed by 3271
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy, characterized by progressive and asymmetric muscle atrophy, primarily affecting muscles of the face, shoulder girdle, and upper arms before affecting muscles of the lower extremities with age and greater disease severity. FSHD is a disabling [...] Read more.
Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy, characterized by progressive and asymmetric muscle atrophy, primarily affecting muscles of the face, shoulder girdle, and upper arms before affecting muscles of the lower extremities with age and greater disease severity. FSHD is a disabling condition, and patients may also present with various extramuscular symptoms. FSHD is caused by the aberrant expression of double homeobox 4 (DUX4) in skeletal muscle, arising from compromised epigenetic repression of the D4Z4 array. DUX4 encodes the DUX4 protein, a transcription factor that activates myotoxic gene programs to produce the FSHD pathology. Therefore, sequence-specific oligonucleotides aimed at reducing DUX4 levels in patients is a compelling therapeutic approach, and one that has received considerable research interest over the last decade. This review aims to describe the current preclinical landscape of oligonucleotide therapies for FSHD. This includes outlining the mechanism of action of each therapy and summarizing the preclinical results obtained regarding their efficacy in cellular and/or murine disease models. The scope of this review is limited to oligonucleotide-based therapies that inhibit the DUX4 gene, mRNA, or protein in a way that does not involve gene editing. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 1503 KiB  
Article
Maximal Oxygen Consumption Is Negatively Associated with Fat Mass in Facioscapulohumeral Dystrophy
by Oscar Crisafulli, Luca Grattarola, Giorgio Bottoni, Jessica Lacetera, Emanuela Lavaselli, Matteo Beretta-Piccoli, Rossella Tupler, Emiliano Soldini and Giuseppe D’Antona
Int. J. Environ. Res. Public Health 2024, 21(8), 979; https://doi.org/10.3390/ijerph21080979 - 26 Jul 2024
Cited by 6 | Viewed by 1574
Abstract
Facioscapulohumeral dystrophy (FSHD) leads to progressive changes in body composition such as loss of muscle mass and increase in adiposity. In healthy subjects, anthropometric parameters are associated with the maximum volume of oxygen consumed per minute (VO2max), which is a health [...] Read more.
Facioscapulohumeral dystrophy (FSHD) leads to progressive changes in body composition such as loss of muscle mass and increase in adiposity. In healthy subjects, anthropometric parameters are associated with the maximum volume of oxygen consumed per minute (VO2max), which is a health and function indicator in several populations of subjects, both healthy and pathological. Since VO2max can be difficult to test in patients with FSHD due to exercise intolerance, the identification of associated anthropometric parameters could provide new easily obtainable elements for the patients’ clinical stratification. The aim of this study was to evaluate whether anthropometric and body composition parameters are associated with VO2max in patients with FSHD. A total of 22 subjects with a molecular genetics-based diagnosis of FSHD (6 females, 16 males, mean age of 35.18 years) were recruited for the study. VO2max was measured by cardiopulmonary exercise tests (CPETs) on a cycle ergometer, utilizing a step incremental technique (15 Watts (W) every 30 s). Weight (Kg) and height (m) were obtained and utilized to calculate body mass index (BMI). Body composition parameters (fat mass (FM), fat free mass (FFM), and body cell mass (BCM)) were obtained by bioelectrical impedance analysis (BIA). Significant negative associations were found between VO2max and FM (Spearman correlation coefficient (SCC) −0.712), BMI (SCC −0.673), age (SCC −0.480), and weight (SCC −0.634), unlike FFM and BCM. Our results indicate that FM, BMI, age, and body weight are negatively associated with VO2max in patients with FSHD. This evidence may help practitioners to better stratify patients with FSHD. Full article
(This article belongs to the Section Health Care Sciences)
Show Figures

Figure 1

15 pages, 2534 KiB  
Article
Systemic Pharmacotherapeutic Treatment of the ACTA1-MCM/FLExDUX4 Preclinical Mouse Model of FSHD
by Ngoc Lu-Nguyen, Stuart Snowden, Linda Popplewell and Alberto Malerba
Int. J. Mol. Sci. 2024, 25(13), 6994; https://doi.org/10.3390/ijms25136994 - 26 Jun 2024
Cited by 2 | Viewed by 2365
Abstract
Aberrant expression of the double homeobox 4 (DUX4) gene in skeletal muscle predominantly drives the pathogenesis of facioscapulohumeral muscular dystrophy (FSHD). We recently demonstrated that berberine, an herbal extract known for its ability to stabilize guanine–quadruplex structures, effectively downregulates DUX4 expression [...] Read more.
Aberrant expression of the double homeobox 4 (DUX4) gene in skeletal muscle predominantly drives the pathogenesis of facioscapulohumeral muscular dystrophy (FSHD). We recently demonstrated that berberine, an herbal extract known for its ability to stabilize guanine–quadruplex structures, effectively downregulates DUX4 expression in FSHD patient-derived myoblasts and in mice overexpressing exogenous DUX4 after viral vector-based treatment. Here, we sought to confirm berberine’s inhibitory efficacy on DUX4 in the widely used FSHD-like transgenic mouse model, ACTA1-MCM/FLExDUX4, where DUX4 is induced at pathogenic levels using tamoxifen. Animals repeatedly treated with berberine via intraperitoneal injections for 4 weeks exhibited significant reductions in both mRNA and protein levels of DUX4, and in mRNA expression of murine DUX4-related genes. This inhibition translated into improved forelimb muscle strength and positive alterations in important FSHD-relevant cellular pathways, although its impact on muscle mass and histopathology was less pronounced. Collectively, our data confirm the efficacy of berberine in downregulating DUX4 expression in the most relevant FSHD mouse model. However, further optimization of dosing regimens and new studies to enhance the bioavailability of berberine in skeletal muscle are warranted to fully leverage its therapeutic potential for FSHD treatment. Full article
Show Figures

Figure 1

Back to TopTop