Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = FRP-strengthened steel structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 6318 KiB  
Review
A Review of External Confinement Methods for Enhancing the Strength of Concrete Columns
by Oliwia Sikora and Krzysztof Adam Ostrowski
Materials 2025, 18(14), 3222; https://doi.org/10.3390/ma18143222 - 8 Jul 2025
Viewed by 311
Abstract
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability [...] Read more.
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability to be tailored to complex geometries. This paper provides a comprehensive review of current technologies used to strengthen concrete columns, with a particular focus on the application of fiber-reinforced polymer (FRP) tubes in composite column systems. The manufacturing processes of FRP composites are discussed, emphasizing the influence of resin types and fabrication methods on the mechanical properties and durability of composite elements. This review also analyzes how factors such as fiber type, orientation, thickness, and application method affect the load-bearing capacity of both newly constructed and retrofitted damaged concrete elements. Furthermore, the paper identifies research gaps concerning the use of perforated CFRP tubes as internal reinforcement components. Considering the increasing interest in innovative column strengthening methods, this paper highlights future research directions, particularly the application of perforated CFRP tubes combined with external composite strengthening and self-compacting concrete (SCC). Full article
Show Figures

Graphical abstract

39 pages, 11665 KiB  
Review
Sustainable Masonry Retrofitting and Upgrading Techniques: A Review
by Arnas Majumder, Flavio Stochino, Monica Valdes, Giovanna Concu, Marco Pepe and Enzo Martinelli
Fibers 2025, 13(6), 68; https://doi.org/10.3390/fib13060068 - 23 May 2025
Viewed by 1641
Abstract
This study presents a comprehensive review of various advanced methodologies that have been used to enhance the structural and thermal performance of masonry walls through innovative and sustainable retrofitting/upgrading techniques. Focusing on three primary approaches—mechanical/structural retrofitting, thermal retrofitting, and integrated (structural and thermal) [...] Read more.
This study presents a comprehensive review of various advanced methodologies that have been used to enhance the structural and thermal performance of masonry walls through innovative and sustainable retrofitting/upgrading techniques. Focusing on three primary approaches—mechanical/structural retrofitting, thermal retrofitting, and integrated (structural and thermal) retrofitting, this paper critically examines various masonry-strengthening strategies. Retrofitting techniques are categorized by material use and objectives. Fiber-based solutions include insulation materials, fiber composite mortar for strength, FRP for high-strength reinforcement, and TRM for durability. According to the relevant objectives, retrofitting can enhance structural stability (FRP, TRM), improve thermal insulation, or combine both for integrated performance. Particular emphasis is placed on the effectiveness of TRM systems, with a comparative analysis of man-made (glass, steel textile) and natural fiber-based TRM solutions. Regarding integrating natural fibers into TRM systems, this study highlights their potential as eco-friendly alternatives that reduce environmental impact while maintaining or improving structural integrity. Furthermore, it highlights and examines techniques for testing masonry walls. In this context, this review highlights the applicability of natural fiber as a sustainable building material in various retrofitting/upgrading solutions. Full article
Show Figures

Figure 1

20 pages, 8397 KiB  
Article
Low-Velocity Impact-Load-Carrying Behavior of Reinforced Concrete Beams Strengthened in Flexure by Bonding a Carbon Fiber-Reinforced Polymer Sheet to the Tension-Side Surface
by Tomoki Kawarai, Masato Komuro and Norimitsu Kishi
Buildings 2025, 15(10), 1713; https://doi.org/10.3390/buildings15101713 - 18 May 2025
Viewed by 404
Abstract
Currently, there are many infrastructures for which these design service lives are expired. These lifespans have been extended through retrofitting and strengthening. Usually, the existing reinforced concrete (RC) structures are strengthened by applying steel plate bonding and concrete enlargement methods. However, since fiber-reinforced [...] Read more.
Currently, there are many infrastructures for which these design service lives are expired. These lifespans have been extended through retrofitting and strengthening. Usually, the existing reinforced concrete (RC) structures are strengthened by applying steel plate bonding and concrete enlargement methods. However, since fiber-reinforced polymer (FRP) composite materials have properties that are better than those of steel and concrete materials, i.e., being light weight, with anticorrosive material, a high ratio of strength to weight, and better workability, FRP sheet bonding methods for RC members have been developed, and practical applications have been gradually increased worldwide, statically. The methods may also have some potential to strengthen the members under impact and blast loading. In this paper, to rationally improve the impact resistance of RC beams under flexure, beams were strengthened by bonding an FRP sheet to the bottom tension side. Then, low-velocity impact loading tests (hereafter referred to as impact loading tests) using a 300 kg steel weight were carried out on the beams strengthened with carbon FRP (CFRP) sheets of different areal masses to investigate the failure mode at the ultimate state of the beams, in which the areal mass is physically similar to the amount of the sheet reinforcing RC beams and hereafter referred to as the sheet volume. Two sheet volumes (one is an areal mass of 300 g/m2 having a 0.17 mm thickness and the other is of 600 g/m2 having a 0.33 mm thickness) were compared, and two static failure modes, concrete crushing-intermediate crack (IC) debonding and premature IC debonding, were observed. The following results were obtained from this study: taking a static calculated moment ratio My/Mu of the rebar yield-moment My to the ultimate moment Mu for each beam, in the case of the beams having an My/Mu (=0.67) larger than 0.65 that went through static failure in the concrete crushing-IC debonding mode, the beams failed in sheet rupturing mode subjected to an impact load. When the sheet volume was comparatively large and a static calculated moment ratio My/Mu (=0.6) was less than 0.65, the beams collapsed in the premature IC debonding mode under not only static but also impact loading, and the impact resistance of the beams was enhanced with an increasing sheet volume; this increase was greater in the impact loading case than in the static loading case. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 3098 KiB  
Article
Testing Protocols and Procedures for Undertaking Fire Resistance Tests on Concrete Structures Incorporating Fiber-Reinforced Polymers
by Venkatesh Kodur, M. Z. Naser and Hee Sun Kim
Polymers 2025, 17(3), 404; https://doi.org/10.3390/polym17030404 - 3 Feb 2025
Viewed by 1067
Abstract
Fiber-reinforced polymers (FRPs) are often incorporated as internal (primary) reinforcement in new concrete constructions or as external (secondary) reinforcement in retrofitting and strengthening of existing concrete structures. Under fire conditions, the response of FRP-incorporated concrete structures are altered due to the presence of [...] Read more.
Fiber-reinforced polymers (FRPs) are often incorporated as internal (primary) reinforcement in new concrete constructions or as external (secondary) reinforcement in retrofitting and strengthening of existing concrete structures. Under fire conditions, the response of FRP-incorporated concrete structures are altered due to the presence of FRPs; thus, their fire performance is different from that of concrete structures with conventional metallic reinforcement. However, the fire resistance of these FRP-incorporated structural members continues to be evaluated through standard fire resistance tests, which are similar to conventional steel and concrete structural members. Despite the complexity of this testing approach and its drawbacks, standard fire testing remains a cornerstone in evaluating FRP-incorporated concrete structural members. Thus, this paper sheds more light on the fire testing procedure and discusses the distinctive factors that differentiate the fire performance of FRP-incorporated concrete structures from that of conventional concrete structures and the need for additional provisions to test such structures. To address the current shortcomings, a set of additional testing protocols and procedures for undertaking fire resistance tests on FRP-incorporated concrete structural members are presented. The performance criteria to be applied to evaluate the failure of FRP–RC structural members under fire conditions are discussed. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

28 pages, 10795 KiB  
Article
Advanced Structural Technologies Implementation in Designing and Constructing RC Elements with C-FRP Bars, Protected Through SHM Assessment
by Georgia M. Angeli, Maria C. Naoum, Nikos A. Papadopoulos, Parthena-Maria K. Kosmidou, George M. Sapidis, Chris G. Karayannis and Constantin E. Chalioris
Fibers 2024, 12(12), 108; https://doi.org/10.3390/fib12120108 - 5 Dec 2024
Cited by 1 | Viewed by 1303
Abstract
The need to strengthen the existing reinforced concrete (RC) elements is becoming increasingly crucial for modern cities as they strive to develop resilient and sustainable structures and infrastructures. In recent years, various solutions have been proposed to limit the undesirable effects of corrosion [...] Read more.
The need to strengthen the existing reinforced concrete (RC) elements is becoming increasingly crucial for modern cities as they strive to develop resilient and sustainable structures and infrastructures. In recent years, various solutions have been proposed to limit the undesirable effects of corrosion in RC elements. While C-FRP has shown promise in corrosion-prone environments, its use in structural applications is limited by cost, bonding, and anchorage challenges with concrete. To address these, the present research investigates the structural performance of RC beams reinforced with C-FRP bars under static loading using Structural Health Monitoring (SHM) with an Electro-Mechanical Impedance (EMI) system employing Lead Zirconate Titanate (PZT) piezoelectric transducers which are applied to detect damage development and enhance the protection of RC elements and overall, RC structures. This study underscores the potential of C-FRP bars for durable tensile reinforcement in RC structures, particularly in hybrid designs that leverage steel for compression strength. The study focuses on critical factors such as stiffness, maximum load capacity, deflection at each loading stage, and the development of crack widths, all analyzed through voltage responses recorded by the PZT sensors. Particular emphasis is placed on the bond conditions and anchorage lengths of the tensile C-FRP bars, exploring how local confinement conditions along the anchorage length influence the overall behavior of the beams. Full article
Show Figures

Figure 1

27 pages, 10269 KiB  
Article
Fatigue Life Predictions Using a Novel Adaptive Meshing Technique in Non-Linear Finite Element Analysis
by M. Thiruvannamalai, P. Vincent @ Venkatesan and Maheswaran Chellapandian
Buildings 2024, 14(10), 3063; https://doi.org/10.3390/buildings14103063 - 25 Sep 2024
Viewed by 1511
Abstract
Fatigue is a common issue in steel elements, leading to microstructural fractures and causing failure below the yield point of the material due to cyclic loading. High fatigue loads in steel building structures can cause brittle failure at the joints and supports, potentially [...] Read more.
Fatigue is a common issue in steel elements, leading to microstructural fractures and causing failure below the yield point of the material due to cyclic loading. High fatigue loads in steel building structures can cause brittle failure at the joints and supports, potentially leading to partial or total damage. The present study deals with accurate prediction of the fatigue life and stress intensity factor (SIF) of pre-cracked steel beams, which is crucial for ensuring their structural integrity and durability under cyclic loading. A computationally efficient adaptive meshing tool, known as Separative Morphing Adaptive Remeshing Technology (SMART), in ANSYS APDL is employed to create a reliable three-dimensional finite element model (FEM) that simulates fatigue crack growth with a stress ratio of “R = 0”. The objective of this research is to examine the feasibility of using a non-linear FE model with an adaptive meshing technique, SMART, to predict the crack growth, fatigue life, and SIF on pre-cracked steel beams strengthened with FRP. Through a comprehensive parametric analysis, the effects of different types of FRPs (carbon and glass) and fiber orientations (θ = 0° to 90°) on both the SIF and fatigue life are evaluated. The results reveal that the use of longitudinally oriented FRP (θ = 0°) significantly reduces the SIF, resulting in substantial improvements in the fatigue life of up to 15 times with CFRP and 4.5 times with GFRP. The results of this study demonstrate that FRP strengthening significantly extends the fatigue life of pre-cracked steel beams, and the developed FE model is a reliable tool for predicting crack growth, SIF, and fatigue life. Full article
Show Figures

Figure 1

19 pages, 13623 KiB  
Article
An Innovative Technique for the Strengthening of RC Columns and Their Connections with Beams Using C-FRP ROPES
by Chris Karayannis and Emmanuil Golias
Appl. Sci. 2024, 14(18), 8395; https://doi.org/10.3390/app14188395 - 18 Sep 2024
Cited by 5 | Viewed by 1606
Abstract
The application of the innovative C-FRP ropes for the strengthening of reinforced concrete columns is experimentally examined. Two real-scale specimens with the same geometrical characteristics and the same steel reinforcements were constructed for the needs of this investigation. The primary objective of the [...] Read more.
The application of the innovative C-FRP ropes for the strengthening of reinforced concrete columns is experimentally examined. Two real-scale specimens with the same geometrical characteristics and the same steel reinforcements were constructed for the needs of this investigation. The primary objective of the study is to investigate the efficacy of the use of C-FRP ropes as externally mounted reinforcement for the strengthening of deficient external columns. In this direction, (a) C-FRP ropes are applied as longitudinal reinforcement of the column for the increase in the flexural strength, (b) C-FRP ropes are applied as external confining stirrups in the critical end parts of the column for the improvement of the concrete strength and the development of local element ductility, and finally (c) C-FRP ropes are applied as external stirrups in the form of diagonal X-shaped reinforcement for the increase in the capacity of the part of the column connected with the beam (joint panel). Both specimens are tested under the same cyclic loading procedure that comprises seven steps and each step includes three full loading cycles. The maximum loads of the strengthened specimen at the three loading cycles of the seventh step were 40%, 72% and 87% higher than the corresponding ones of the unstrengthened specimen. On the other hand, the measured shear deformations of the joint panel of the pilot (unstrengthened) specimen at the sixth and the seventh steps were 43% and 44% higher than the corresponding ones of the strengthened specimen. In general, it is concluded that the strengthened column exhibited improved hysteretic response and the whole behavior was apparently improved compared to the pilot specimen without strengthening in terms of maximum loads per loading step, dissipated energy, and shear deformations of the joint panel. In particular, it is stressed that the measured shear deformations of the joint panel and strain gauge measurements have substantiated that the column and the connection panel of the strengthened specimen remain almost intact, whereas damage and eventually failure have been located in the column and the joint panel of the pilot specimen. Additionally, it is emphasized that the C-FRP ropes can easily be applied in structures with complex configuration without any geometrical restraints. Full article
(This article belongs to the Special Issue Advances in Building Materials and Concrete, 2nd Edition)
Show Figures

Figure 1

22 pages, 12819 KiB  
Article
Experimental Analysis of Shear-Strengthened RC Beams with Jute and Jute–Glass Hybrid FRPs Using the EBR Technique
by Luciana P. Maciel, Paulo S. B. Leão Júnior, Manoel J. M. Pereira Filho, Wassim R. El Banna, Roberto T. Fujiyama, Maurício P. Ferreira and Aarão F. Lima Neto
Buildings 2024, 14(9), 2893; https://doi.org/10.3390/buildings14092893 - 12 Sep 2024
Cited by 3 | Viewed by 1288
Abstract
The hybridisation of fibre-reinforced polymers (FRPs), particularly with the combination of natural and synthetic fibres, is a prominent option for their development. In the context of the construction industry, there is a notable gap in research on the use of jute and glass [...] Read more.
The hybridisation of fibre-reinforced polymers (FRPs), particularly with the combination of natural and synthetic fibres, is a prominent option for their development. In the context of the construction industry, there is a notable gap in research on the use of jute and glass fibres for the strengthening of concrete structures. This paper presents comprehensive experimental results from tests on seven reinforced concrete (RC) beams strengthened for shear using synthetic, natural, and hybrid jute–glass FRP composites. The beams were reinforced using the externally bonded reinforcement (EBR) technique with U-wrap bonding. A beam without any strengthening was tested and set as a reference for the other beams. Two beams were tested with synthetic FRP shear strengthenings, one with carbon fibre-reinforced polymer (CFRP) and another with glass fibre-reinforced polymer (GFRP). The remaining tests were on RC beams strengthened with natural jute fibre-reinforced polymer (JFRP) and hybrid jute–glass FRP. The paper discusses the experimental behaviour of the tested beams in terms of vertical displacements, crack widths, and strains on steel bars, concrete, and FRP. The experimental strengths are also compared with theoretical estimates obtained using ACI 440.2R and fib Bulletin 90. The tests confirm the effectiveness of natural jute FRP and jute–glass hybrid FRP as an option for the shear strengthening of reinforced concrete beams. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 6934 KiB  
Review
Feasibility of Repairing Concrete with Ultra-High Molecular Weight Polyethylene Fiber Cloth: A Comprehensive Literature Review
by Zengrui Pan, Rabin Tuladhar, Shi Yin, Feng Shi and Faning Dang
Buildings 2024, 14(6), 1631; https://doi.org/10.3390/buildings14061631 - 2 Jun 2024
Cited by 4 | Viewed by 1846
Abstract
This review explores the use of Ultra-High Molecular Weight Polyethylene (UHMWPE) fiber cloth as an innovative solution for the repair and reinforcement of concrete structures. UHMWPE is a polymer formed from a very large number of repeated ethylene (C2H4) [...] Read more.
This review explores the use of Ultra-High Molecular Weight Polyethylene (UHMWPE) fiber cloth as an innovative solution for the repair and reinforcement of concrete structures. UHMWPE is a polymer formed from a very large number of repeated ethylene (C2H4) units with higher molecular weight and long-chain crystallization than normal high-density polyethylene. With its superior tensile strength, elongation, and energy absorption capabilities, UHMWPE emerges as a promising alternative to traditional reinforcement materials like glass and carbon fibers. The paper reviews existing literature on fiber-reinforced polymer (FRP) applications in concrete repair in general, highlighting the unique benefits and potential of UHMWPE fiber cloth compared to other commonly used methods of strengthening concrete structures, such as enlarging concrete sections, near-surface embedded reinforcement, and externally bonded steel plate or other FRPs. Despite the scarcity of experimental data on UHMWPE for concrete repair, this review underscores its feasibility and calls for further research to fully harness its capabilities in civil engineering applications. Full article
Show Figures

Figure 1

17 pages, 9700 KiB  
Article
An Experimental Study Incorporating Carbon Fiber Composite Bars and Wraps for Concrete Performance and Failure Insight
by Ali Akbarpour, Jeffery Volz and Shreya Vemuganti
J. Compos. Sci. 2024, 8(5), 174; https://doi.org/10.3390/jcs8050174 - 9 May 2024
Cited by 20 | Viewed by 2018
Abstract
Corrosion of conventional steel reinforcement is responsible for numerous structurally deficient bridges, which is a multi-billion-dollar challenge that creates a vicious cycle of maintenance, repair, and replacement of infrastructure. Repair of existing structures with fiber-reinforced polymer (FRP) has become widespread due to multiple [...] Read more.
Corrosion of conventional steel reinforcement is responsible for numerous structurally deficient bridges, which is a multi-billion-dollar challenge that creates a vicious cycle of maintenance, repair, and replacement of infrastructure. Repair of existing structures with fiber-reinforced polymer (FRP) has become widespread due to multiple advantages. Carbon FRP’s superior tensile strength and stiffness make it particularly effective in shear and flexural strengthening of reinforced concrete (RC) beams. This experimental study incorporates carbon fiber polymer composite bars and wraps to study and report on the flexural behavior of RC beams. By employing a combination of CFRP bar and wrap for strengthening RC beams, this study observed an approximate 95% improvement in flexural load capacity relative to control RC beams without strengthening. This substantial enhancement highlights the effectiveness of integrating CFRP in structural applications. Nevertheless, the key observation is the failure mode due to this combination providing significant insights into the changes facilitated by this combination approach. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, Volume III)
Show Figures

Figure 1

22 pages, 10937 KiB  
Article
Numerical Investigation on Strengthening of Steel Beams for Corrosion Damage or Web Openings Using Carbon Fiber Reinforced Polymer Sheets
by Prabin Kumar Silwal, Azadeh Parvin and Mohannad Alhusban
Buildings 2024, 14(4), 1069; https://doi.org/10.3390/buildings14041069 - 11 Apr 2024
Cited by 5 | Viewed by 1777
Abstract
Fiber-reinforced polymers (FRPs) have been widely used to strengthen steel structures, which could suffer from corrosion or the introduction of web openings, for utilities such as ductwork, plumbing, electrical conduits, and HVAC systems. The present numerical study involves the application of unidirectional carbon [...] Read more.
Fiber-reinforced polymers (FRPs) have been widely used to strengthen steel structures, which could suffer from corrosion or the introduction of web openings, for utilities such as ductwork, plumbing, electrical conduits, and HVAC systems. The present numerical study involves the application of unidirectional carbon FRP (CFRP) sheets to steel I-beams, damaged due to corrosion or web openings, to regain their lost load-carrying capacity. Finite element analysis (FEA) was utilized to develop and validate three beam models against existing experimentally tested specimens. Subsequently, a parametric study was conducted investigating the effect of various corrosion levels and the number of circular web openings on the yield and ultimate load capacities of the beams. The optimum number of CFRP layers needed to strengthen corroded beams was determined and six CFRP strengthening scenarios were adopted to determine the best configurations to retrofit steel beams with openings (SBWOs). The results revealed that corrosion, introduced by thinning the bottom flange, reduced both yield and ultimate load capacities, with a nearly perfect linear reduction in ultimate load for each 2.5% thickness loss. The optimum number of CFRP layers depended on the level of corrosion damage. Furthermore, while maintaining a constant total opening area, beams with a greater number of smaller circular web openings demonstrated higher yield and ultimate load capacities than those with fewer larger openings. Out of the six adopted CFRP strengthening scenarios, three configurations that involved applying CFRP sheets to both flanges and the web effectively restored the strength of SBWOs, when adequate CFRP layers were used. Full article
Show Figures

Figure 1

22 pages, 7771 KiB  
Article
Seismic Retrofit of Concrete Buildings Damaged by Corrosion: A Case Study in Southern Italy
by Michele Fabio Granata
Buildings 2024, 14(4), 1064; https://doi.org/10.3390/buildings14041064 - 11 Apr 2024
Cited by 7 | Viewed by 2871
Abstract
A case study of a building in southern Italy, subjected to high degradation by corrosion and waiting to be assessed for retrofit interventions, is presented. The owner required modifications to the building configuration, including a new layout of the floors and retrofitting for [...] Read more.
A case study of a building in southern Italy, subjected to high degradation by corrosion and waiting to be assessed for retrofit interventions, is presented. The owner required modifications to the building configuration, including a new layout of the floors and retrofitting for a high level of seismic load. A double strategy of an assessment and retrofit was carried out: dynamic linear and static non-linear analyses were performed, and the results were compared. Afterwards, a global strategy of mass and stiffness redistribution was implemented together with different retrofit interventions on the foundations, columns, and beams of the framed structure, such as reinforced concrete and steel jacketing, the application of FRP plates and fabrics, new steel elements, and steel–concrete composite floors. The results of the intervention are discussed and the implications of corrosion on the structures are explored. From the results obtained, it is possible to see how the use of different techniques for strengthening and passive seismic protection strategy can allow engineers to obtain the result of structural adaptation to earthquakes with low-cost interventions. The widespread adoption of steel jackets, coupled with the construction of floors using a steel–concrete composite structure, grants a good confinement of the beam–column r.c. joints, together with the overall strengthening of the existing structure. The adoption of CFRP wrapping at the lower edge of the beams implies a limited increase in thickness and the limited interventions of partial demolition from the existing structural members. A critical review of the steel jacketing aspects in terms of bending and shear strengthening is reported by considering this technique in the form of a steel exoskeleton containing the damaged concrete structure, by confining concrete elements, and by increasing the performance for both gravitational and seismic loads. Full article
Show Figures

Figure 1

18 pages, 6775 KiB  
Article
Experimental Study on the Effect of Steel Reinforcement Ration on the Cracking Behaviour of FRP-Strengthened RC Elements
by Andrea Armonico, Laurent Michel, Mohamed Saidi and Emmanuel Ferrier
Buildings 2024, 14(4), 950; https://doi.org/10.3390/buildings14040950 - 30 Mar 2024
Cited by 7 | Viewed by 1484
Abstract
This paper examines the cracking behaviour of reinforced concrete beams strengthened by externally bonded fiber-reinforced polymer. The crack opening of RC structures is a key parameter for the durability of concrete structures. It is of vital importance for designers to be able to [...] Read more.
This paper examines the cracking behaviour of reinforced concrete beams strengthened by externally bonded fiber-reinforced polymer. The crack opening of RC structures is a key parameter for the durability of concrete structures. It is of vital importance for designers to be able to make correct estimations of the crack opening values of strengthened structures. FRP strengthening affects the cracking behaviour of RC beams with different steel percentages. Beams have been tested under four-point bending mechanical tests until failure with three steel ratios and two layers of externally bonded wet carbon fibers (CFRP). In order to measure the crack opening during loading, Digital Image Correlation is used to obtain the crack opening along the beam during load functioning. The results allow for a comparison of the RC beams with and without FRP and enhance the effect of FRP on crack opening. The crack width was compared with the theoretical values obtained based on the relation proposed by Eurocode 2 (EC2). The comparison enhanced the need to propose a modified relation. Subsequently, an empirical model was established as a modification of EC2, considering the presence of a CFRP system. The corresponding results were compared and discussed to validate the model. For the same level of loads, the crack opening can be reduced by 20 to 50% depending on the level of steel ratio. Full article
Show Figures

Figure 1

38 pages, 6246 KiB  
Review
A State-of-the-Art Review on Structural Strengthening Techniques with FRPs: Effectiveness, Shortcomings, and Future Research Directions
by Muhammad Hammad, Alireza Bahrami, Sikandar Ali Khokhar and Rao Arsalan Khushnood
Materials 2024, 17(6), 1408; https://doi.org/10.3390/ma17061408 - 19 Mar 2024
Cited by 9 | Viewed by 4290
Abstract
In the pursuit of creating more sustainable and resilient structures, the exploration of construction materials and strengthening methodologies is imperative. Traditional methods of relying on steel for strengthening proved to be uneconomical and unsustainable, prompting the investigation of innovative composites. Fiber-reinforced polymers (FRPs), [...] Read more.
In the pursuit of creating more sustainable and resilient structures, the exploration of construction materials and strengthening methodologies is imperative. Traditional methods of relying on steel for strengthening proved to be uneconomical and unsustainable, prompting the investigation of innovative composites. Fiber-reinforced polymers (FRPs), known for their lightweight and high-strength properties, gained prominence among structural engineers in the 1980s. This period saw the development of novel approaches, such as near-surface mounted and externally bonded reinforcement, for strengthening of concrete structures using FRPs. In recent decades, additional methods, including surface curvilinearization and external prestressing, have been discovered, demonstrating significant additional benefits. While these techniques have shown the enhanced performance, their full potential remains untapped. This article presents a comprehensive review of current approaches employed in the fortification of reinforced cement concrete structures using FRPs. It concludes by identifying key areas that warrant in-depth research to establish a sustainable methodology for structural strengthening, positioning FRPs as an effective replacement for conventional retrofitting materials. This review aims to contribute to the ongoing discourse on modern structural strengthening strategies, highlight the properties of FRPs, and propose avenues for future research in this dynamic field. Full article
(This article belongs to the Special Issue Strengthening and Rehabilitation of Concrete and Masonry Structures)
Show Figures

Figure 1

16 pages, 4481 KiB  
Article
Flexural Performance and Stress Calculation of External Prestressed Fiber-Reinforced Polymer-Bar-Strengthened One-Way Concrete Slabs
by Dong Fang, Danying Gao, Chong Ding, Zhiqiang Gu, Peibo You and Jiyu Tang
Materials 2024, 17(5), 1130; https://doi.org/10.3390/ma17051130 - 29 Feb 2024
Viewed by 1530
Abstract
External prestressing is widely employed in structural strengthening engineering due to its numerous advantages. However, external prestressed steel bars are prone to corrosion when exposed to the service environment. This paper is dedicated to examining the use of fiber-reinforced polymer (FRP) bars as [...] Read more.
External prestressing is widely employed in structural strengthening engineering due to its numerous advantages. However, external prestressed steel bars are prone to corrosion when exposed to the service environment. This paper is dedicated to examining the use of fiber-reinforced polymer (FRP) bars as external prestressing materials to strengthen one-way concrete slabs. Five one-way concrete slabs were strengthened with externally prestressed FRP bars with different prestress levels and different amounts of FRP bars, while one non-strengthened slab was used for comparison. The effects of strengthening on the flexural behavior, specifically the cracking load, ultimate load, stiffness and failure mode, were analyzed systematically. Moreover, the ductility and cost–benefit optimizing properties of the reinforcing design were discussed. The results show that external prestressed FRP bars significantly improve the cracking load, ultimate load and stiffness of one-way concrete slabs. The absence of a bond between the concrete and FRP bars overcomes the brittleness of the FRP bars, while the strengthened slabs exhibit satisfactory ductility and a higher post-yield stiffness and bearing capacity. Additionally, the cost/benefit ratio is optimized by increasing the prestress level, while a higher number of prestressed FRP bars is beneficial to ductility. Finally, a method for calculating the stress in prestressed FRP bars at ultimate loads was proposed. Irrespective of the prestressing material, this method is applicable to both strengthened beams and one-way slabs. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop