Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = FRP-strengthened steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 6318 KiB  
Review
A Review of External Confinement Methods for Enhancing the Strength of Concrete Columns
by Oliwia Sikora and Krzysztof Adam Ostrowski
Materials 2025, 18(14), 3222; https://doi.org/10.3390/ma18143222 - 8 Jul 2025
Viewed by 315
Abstract
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability [...] Read more.
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability to be tailored to complex geometries. This paper provides a comprehensive review of current technologies used to strengthen concrete columns, with a particular focus on the application of fiber-reinforced polymer (FRP) tubes in composite column systems. The manufacturing processes of FRP composites are discussed, emphasizing the influence of resin types and fabrication methods on the mechanical properties and durability of composite elements. This review also analyzes how factors such as fiber type, orientation, thickness, and application method affect the load-bearing capacity of both newly constructed and retrofitted damaged concrete elements. Furthermore, the paper identifies research gaps concerning the use of perforated CFRP tubes as internal reinforcement components. Considering the increasing interest in innovative column strengthening methods, this paper highlights future research directions, particularly the application of perforated CFRP tubes combined with external composite strengthening and self-compacting concrete (SCC). Full article
Show Figures

Graphical abstract

39 pages, 11665 KiB  
Review
Sustainable Masonry Retrofitting and Upgrading Techniques: A Review
by Arnas Majumder, Flavio Stochino, Monica Valdes, Giovanna Concu, Marco Pepe and Enzo Martinelli
Fibers 2025, 13(6), 68; https://doi.org/10.3390/fib13060068 - 23 May 2025
Viewed by 1657
Abstract
This study presents a comprehensive review of various advanced methodologies that have been used to enhance the structural and thermal performance of masonry walls through innovative and sustainable retrofitting/upgrading techniques. Focusing on three primary approaches—mechanical/structural retrofitting, thermal retrofitting, and integrated (structural and thermal) [...] Read more.
This study presents a comprehensive review of various advanced methodologies that have been used to enhance the structural and thermal performance of masonry walls through innovative and sustainable retrofitting/upgrading techniques. Focusing on three primary approaches—mechanical/structural retrofitting, thermal retrofitting, and integrated (structural and thermal) retrofitting, this paper critically examines various masonry-strengthening strategies. Retrofitting techniques are categorized by material use and objectives. Fiber-based solutions include insulation materials, fiber composite mortar for strength, FRP for high-strength reinforcement, and TRM for durability. According to the relevant objectives, retrofitting can enhance structural stability (FRP, TRM), improve thermal insulation, or combine both for integrated performance. Particular emphasis is placed on the effectiveness of TRM systems, with a comparative analysis of man-made (glass, steel textile) and natural fiber-based TRM solutions. Regarding integrating natural fibers into TRM systems, this study highlights their potential as eco-friendly alternatives that reduce environmental impact while maintaining or improving structural integrity. Furthermore, it highlights and examines techniques for testing masonry walls. In this context, this review highlights the applicability of natural fiber as a sustainable building material in various retrofitting/upgrading solutions. Full article
Show Figures

Figure 1

20 pages, 8397 KiB  
Article
Low-Velocity Impact-Load-Carrying Behavior of Reinforced Concrete Beams Strengthened in Flexure by Bonding a Carbon Fiber-Reinforced Polymer Sheet to the Tension-Side Surface
by Tomoki Kawarai, Masato Komuro and Norimitsu Kishi
Buildings 2025, 15(10), 1713; https://doi.org/10.3390/buildings15101713 - 18 May 2025
Viewed by 405
Abstract
Currently, there are many infrastructures for which these design service lives are expired. These lifespans have been extended through retrofitting and strengthening. Usually, the existing reinforced concrete (RC) structures are strengthened by applying steel plate bonding and concrete enlargement methods. However, since fiber-reinforced [...] Read more.
Currently, there are many infrastructures for which these design service lives are expired. These lifespans have been extended through retrofitting and strengthening. Usually, the existing reinforced concrete (RC) structures are strengthened by applying steel plate bonding and concrete enlargement methods. However, since fiber-reinforced polymer (FRP) composite materials have properties that are better than those of steel and concrete materials, i.e., being light weight, with anticorrosive material, a high ratio of strength to weight, and better workability, FRP sheet bonding methods for RC members have been developed, and practical applications have been gradually increased worldwide, statically. The methods may also have some potential to strengthen the members under impact and blast loading. In this paper, to rationally improve the impact resistance of RC beams under flexure, beams were strengthened by bonding an FRP sheet to the bottom tension side. Then, low-velocity impact loading tests (hereafter referred to as impact loading tests) using a 300 kg steel weight were carried out on the beams strengthened with carbon FRP (CFRP) sheets of different areal masses to investigate the failure mode at the ultimate state of the beams, in which the areal mass is physically similar to the amount of the sheet reinforcing RC beams and hereafter referred to as the sheet volume. Two sheet volumes (one is an areal mass of 300 g/m2 having a 0.17 mm thickness and the other is of 600 g/m2 having a 0.33 mm thickness) were compared, and two static failure modes, concrete crushing-intermediate crack (IC) debonding and premature IC debonding, were observed. The following results were obtained from this study: taking a static calculated moment ratio My/Mu of the rebar yield-moment My to the ultimate moment Mu for each beam, in the case of the beams having an My/Mu (=0.67) larger than 0.65 that went through static failure in the concrete crushing-IC debonding mode, the beams failed in sheet rupturing mode subjected to an impact load. When the sheet volume was comparatively large and a static calculated moment ratio My/Mu (=0.6) was less than 0.65, the beams collapsed in the premature IC debonding mode under not only static but also impact loading, and the impact resistance of the beams was enhanced with an increasing sheet volume; this increase was greater in the impact loading case than in the static loading case. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 3098 KiB  
Article
Testing Protocols and Procedures for Undertaking Fire Resistance Tests on Concrete Structures Incorporating Fiber-Reinforced Polymers
by Venkatesh Kodur, M. Z. Naser and Hee Sun Kim
Polymers 2025, 17(3), 404; https://doi.org/10.3390/polym17030404 - 3 Feb 2025
Viewed by 1070
Abstract
Fiber-reinforced polymers (FRPs) are often incorporated as internal (primary) reinforcement in new concrete constructions or as external (secondary) reinforcement in retrofitting and strengthening of existing concrete structures. Under fire conditions, the response of FRP-incorporated concrete structures are altered due to the presence of [...] Read more.
Fiber-reinforced polymers (FRPs) are often incorporated as internal (primary) reinforcement in new concrete constructions or as external (secondary) reinforcement in retrofitting and strengthening of existing concrete structures. Under fire conditions, the response of FRP-incorporated concrete structures are altered due to the presence of FRPs; thus, their fire performance is different from that of concrete structures with conventional metallic reinforcement. However, the fire resistance of these FRP-incorporated structural members continues to be evaluated through standard fire resistance tests, which are similar to conventional steel and concrete structural members. Despite the complexity of this testing approach and its drawbacks, standard fire testing remains a cornerstone in evaluating FRP-incorporated concrete structural members. Thus, this paper sheds more light on the fire testing procedure and discusses the distinctive factors that differentiate the fire performance of FRP-incorporated concrete structures from that of conventional concrete structures and the need for additional provisions to test such structures. To address the current shortcomings, a set of additional testing protocols and procedures for undertaking fire resistance tests on FRP-incorporated concrete structural members are presented. The performance criteria to be applied to evaluate the failure of FRP–RC structural members under fire conditions are discussed. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 2857 KiB  
Article
Fatigue Life Prediction of FRP-Strengthened Reinforced Concrete Beams Based on Soft Computing Techniques
by Zhimei Zhang and Xiaobo Wang
Materials 2025, 18(2), 230; https://doi.org/10.3390/ma18020230 - 7 Jan 2025
Cited by 1 | Viewed by 1061
Abstract
This paper establishes fatigue life prediction models using the soft computing method to address insufficient parameter consideration and limited computational accuracy in predicting the fatigue life of fiber-reinforced polymer (FRP) strengthened concrete beams. Five different input forms were proposed by collecting 117 sets [...] Read more.
This paper establishes fatigue life prediction models using the soft computing method to address insufficient parameter consideration and limited computational accuracy in predicting the fatigue life of fiber-reinforced polymer (FRP) strengthened concrete beams. Five different input forms were proposed by collecting 117 sets of fatigue test data of FRP-strengthened concrete beams from the existing literature and integrating the outcomes from Pearson correlation analysis and significance testing. Using Gene Expression Programming (GEP), the effects of various input configurations on the accuracy of model predictions were examined. The model prediction results were also evaluated using five statistical indicators. The GEP model used concrete compressive strength, the steel reinforcement stress range ratio to the yield strength, and the stiffness factor as input parameters. Subsequently, using the same input parameters, the Multi-Objective Genetic Algorithm Evolutionary Polynomial Regression (MOGA-EPR) method was then employed to develop a fatigue life prediction model. Sensitivity analyses of the GEP and MOGA-EPR models revealed that both could precisely capture the fundamental connections between fatigue life and multiple contributing variables. Compared to existing models, the proposed ones have higher prediction accuracy with a coefficient of determination reaching 0.8, significantly enhancing the accuracy of fatigue life predictions for FRP-strengthened concrete beams. Full article
Show Figures

Figure 1

28 pages, 10795 KiB  
Article
Advanced Structural Technologies Implementation in Designing and Constructing RC Elements with C-FRP Bars, Protected Through SHM Assessment
by Georgia M. Angeli, Maria C. Naoum, Nikos A. Papadopoulos, Parthena-Maria K. Kosmidou, George M. Sapidis, Chris G. Karayannis and Constantin E. Chalioris
Fibers 2024, 12(12), 108; https://doi.org/10.3390/fib12120108 - 5 Dec 2024
Cited by 1 | Viewed by 1307
Abstract
The need to strengthen the existing reinforced concrete (RC) elements is becoming increasingly crucial for modern cities as they strive to develop resilient and sustainable structures and infrastructures. In recent years, various solutions have been proposed to limit the undesirable effects of corrosion [...] Read more.
The need to strengthen the existing reinforced concrete (RC) elements is becoming increasingly crucial for modern cities as they strive to develop resilient and sustainable structures and infrastructures. In recent years, various solutions have been proposed to limit the undesirable effects of corrosion in RC elements. While C-FRP has shown promise in corrosion-prone environments, its use in structural applications is limited by cost, bonding, and anchorage challenges with concrete. To address these, the present research investigates the structural performance of RC beams reinforced with C-FRP bars under static loading using Structural Health Monitoring (SHM) with an Electro-Mechanical Impedance (EMI) system employing Lead Zirconate Titanate (PZT) piezoelectric transducers which are applied to detect damage development and enhance the protection of RC elements and overall, RC structures. This study underscores the potential of C-FRP bars for durable tensile reinforcement in RC structures, particularly in hybrid designs that leverage steel for compression strength. The study focuses on critical factors such as stiffness, maximum load capacity, deflection at each loading stage, and the development of crack widths, all analyzed through voltage responses recorded by the PZT sensors. Particular emphasis is placed on the bond conditions and anchorage lengths of the tensile C-FRP bars, exploring how local confinement conditions along the anchorage length influence the overall behavior of the beams. Full article
Show Figures

Figure 1

17 pages, 4231 KiB  
Article
Flexural Behavior of an RC Beam Externally Strengthened with a Steel- and CFRP-Based Method
by Yu Lin, Yang Wei, Zihan Gong, Wenping Xu and Kang Zhao
Appl. Sci. 2024, 14(20), 9281; https://doi.org/10.3390/app14209281 - 12 Oct 2024
Cited by 1 | Viewed by 1303
Abstract
Reinforced concrete beam bridges are usually retrofitted by a steel plate or FRP. However, these two methods tend to result in disadvantages, e.g., construction complexity and debonding failure, owing to the corresponding material properties. In this study, a steel- and CFRP-based method is [...] Read more.
Reinforced concrete beam bridges are usually retrofitted by a steel plate or FRP. However, these two methods tend to result in disadvantages, e.g., construction complexity and debonding failure, owing to the corresponding material properties. In this study, a steel- and CFRP-based method is proposed to achieve the merits of typical retrofitting methods by combining a CFRP plate, a steel plate, and angle steel. To investigate the effect of the cooperative strengthening, six full-scale beam specimens were designed and are evaluated through a monotonic four-point bending test. The failure mode, load–deflection relationship, critical parameters, and crack development are systematically and sequentially analyzed. Finally, a predicting method is proposed to calculate the flexural capacity. The retrofitted beam is characterized by an acceptable load-bearing capacity and deformation capacity. With continuous retrofitting, the crack load and ultimate load can be improved up to 84.9% and 4.41 times, respectively. The steel plate and angle steel function in both the load bearing and the anchorage to the CFRP plate contributes more to the ultimate bearing capacity after the steel components yield. Finally, a calculating model is shown to accurately predict the ultimate bearing capacity after retrofitting, with an average error of 4.03%. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

27 pages, 10269 KiB  
Article
Fatigue Life Predictions Using a Novel Adaptive Meshing Technique in Non-Linear Finite Element Analysis
by M. Thiruvannamalai, P. Vincent @ Venkatesan and Maheswaran Chellapandian
Buildings 2024, 14(10), 3063; https://doi.org/10.3390/buildings14103063 - 25 Sep 2024
Viewed by 1516
Abstract
Fatigue is a common issue in steel elements, leading to microstructural fractures and causing failure below the yield point of the material due to cyclic loading. High fatigue loads in steel building structures can cause brittle failure at the joints and supports, potentially [...] Read more.
Fatigue is a common issue in steel elements, leading to microstructural fractures and causing failure below the yield point of the material due to cyclic loading. High fatigue loads in steel building structures can cause brittle failure at the joints and supports, potentially leading to partial or total damage. The present study deals with accurate prediction of the fatigue life and stress intensity factor (SIF) of pre-cracked steel beams, which is crucial for ensuring their structural integrity and durability under cyclic loading. A computationally efficient adaptive meshing tool, known as Separative Morphing Adaptive Remeshing Technology (SMART), in ANSYS APDL is employed to create a reliable three-dimensional finite element model (FEM) that simulates fatigue crack growth with a stress ratio of “R = 0”. The objective of this research is to examine the feasibility of using a non-linear FE model with an adaptive meshing technique, SMART, to predict the crack growth, fatigue life, and SIF on pre-cracked steel beams strengthened with FRP. Through a comprehensive parametric analysis, the effects of different types of FRPs (carbon and glass) and fiber orientations (θ = 0° to 90°) on both the SIF and fatigue life are evaluated. The results reveal that the use of longitudinally oriented FRP (θ = 0°) significantly reduces the SIF, resulting in substantial improvements in the fatigue life of up to 15 times with CFRP and 4.5 times with GFRP. The results of this study demonstrate that FRP strengthening significantly extends the fatigue life of pre-cracked steel beams, and the developed FE model is a reliable tool for predicting crack growth, SIF, and fatigue life. Full article
Show Figures

Figure 1

19 pages, 13623 KiB  
Article
An Innovative Technique for the Strengthening of RC Columns and Their Connections with Beams Using C-FRP ROPES
by Chris Karayannis and Emmanuil Golias
Appl. Sci. 2024, 14(18), 8395; https://doi.org/10.3390/app14188395 - 18 Sep 2024
Cited by 5 | Viewed by 1610
Abstract
The application of the innovative C-FRP ropes for the strengthening of reinforced concrete columns is experimentally examined. Two real-scale specimens with the same geometrical characteristics and the same steel reinforcements were constructed for the needs of this investigation. The primary objective of the [...] Read more.
The application of the innovative C-FRP ropes for the strengthening of reinforced concrete columns is experimentally examined. Two real-scale specimens with the same geometrical characteristics and the same steel reinforcements were constructed for the needs of this investigation. The primary objective of the study is to investigate the efficacy of the use of C-FRP ropes as externally mounted reinforcement for the strengthening of deficient external columns. In this direction, (a) C-FRP ropes are applied as longitudinal reinforcement of the column for the increase in the flexural strength, (b) C-FRP ropes are applied as external confining stirrups in the critical end parts of the column for the improvement of the concrete strength and the development of local element ductility, and finally (c) C-FRP ropes are applied as external stirrups in the form of diagonal X-shaped reinforcement for the increase in the capacity of the part of the column connected with the beam (joint panel). Both specimens are tested under the same cyclic loading procedure that comprises seven steps and each step includes three full loading cycles. The maximum loads of the strengthened specimen at the three loading cycles of the seventh step were 40%, 72% and 87% higher than the corresponding ones of the unstrengthened specimen. On the other hand, the measured shear deformations of the joint panel of the pilot (unstrengthened) specimen at the sixth and the seventh steps were 43% and 44% higher than the corresponding ones of the strengthened specimen. In general, it is concluded that the strengthened column exhibited improved hysteretic response and the whole behavior was apparently improved compared to the pilot specimen without strengthening in terms of maximum loads per loading step, dissipated energy, and shear deformations of the joint panel. In particular, it is stressed that the measured shear deformations of the joint panel and strain gauge measurements have substantiated that the column and the connection panel of the strengthened specimen remain almost intact, whereas damage and eventually failure have been located in the column and the joint panel of the pilot specimen. Additionally, it is emphasized that the C-FRP ropes can easily be applied in structures with complex configuration without any geometrical restraints. Full article
(This article belongs to the Special Issue Advances in Building Materials and Concrete, 2nd Edition)
Show Figures

Figure 1

22 pages, 12819 KiB  
Article
Experimental Analysis of Shear-Strengthened RC Beams with Jute and Jute–Glass Hybrid FRPs Using the EBR Technique
by Luciana P. Maciel, Paulo S. B. Leão Júnior, Manoel J. M. Pereira Filho, Wassim R. El Banna, Roberto T. Fujiyama, Maurício P. Ferreira and Aarão F. Lima Neto
Buildings 2024, 14(9), 2893; https://doi.org/10.3390/buildings14092893 - 12 Sep 2024
Cited by 3 | Viewed by 1292
Abstract
The hybridisation of fibre-reinforced polymers (FRPs), particularly with the combination of natural and synthetic fibres, is a prominent option for their development. In the context of the construction industry, there is a notable gap in research on the use of jute and glass [...] Read more.
The hybridisation of fibre-reinforced polymers (FRPs), particularly with the combination of natural and synthetic fibres, is a prominent option for their development. In the context of the construction industry, there is a notable gap in research on the use of jute and glass fibres for the strengthening of concrete structures. This paper presents comprehensive experimental results from tests on seven reinforced concrete (RC) beams strengthened for shear using synthetic, natural, and hybrid jute–glass FRP composites. The beams were reinforced using the externally bonded reinforcement (EBR) technique with U-wrap bonding. A beam without any strengthening was tested and set as a reference for the other beams. Two beams were tested with synthetic FRP shear strengthenings, one with carbon fibre-reinforced polymer (CFRP) and another with glass fibre-reinforced polymer (GFRP). The remaining tests were on RC beams strengthened with natural jute fibre-reinforced polymer (JFRP) and hybrid jute–glass FRP. The paper discusses the experimental behaviour of the tested beams in terms of vertical displacements, crack widths, and strains on steel bars, concrete, and FRP. The experimental strengths are also compared with theoretical estimates obtained using ACI 440.2R and fib Bulletin 90. The tests confirm the effectiveness of natural jute FRP and jute–glass hybrid FRP as an option for the shear strengthening of reinforced concrete beams. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 7393 KiB  
Article
Strain Behavior of Short Concrete Columns Reinforced with GFRP Spirals
by Loai Alkhattabi, Ahmed H. Ali, Hamdy M. Mohamed and Ahmed Gouda
Buildings 2024, 14(7), 2180; https://doi.org/10.3390/buildings14072180 - 15 Jul 2024
Cited by 6 | Viewed by 1869
Abstract
This paper presents a comprehensive study focused on evaluating the strain generated within short concrete columns reinforced with glass-fiber-reinforced polymer (GFRP) bars and spirals under concentric compressive axial loads. This research was motivated by the lack of sufficient data in the literature regarding [...] Read more.
This paper presents a comprehensive study focused on evaluating the strain generated within short concrete columns reinforced with glass-fiber-reinforced polymer (GFRP) bars and spirals under concentric compressive axial loads. This research was motivated by the lack of sufficient data in the literature regarding strain in such columns. Five full-scale RC columns were cast and tested, comprising four strengthened with GFRP reinforcement and one reference column reinforced with steel bars and spirals. This study thoroughly examined the influence of various test parameters, such as the reinforcement type, longitudinal reinforcement ratio, and spacing of spiral reinforcement, on the strain in concrete, GFRP bars, and spirals. The experimental results showed that GFRP–RC columns exhibited similar strain behavior to steel–RC columns up to 85% of their peak loads. The study also highlighted that the bearing capacity of the columns increased by up to 25% with optimized reinforcement ratios and spiral spacing, while the failure mode transitioned from a ductile to a more brittle nature as the reinforcement ratio increased. Additionally, it is preferable to limit the compressive strain in GFRP bars to less than 20% of their ultimate tensile strain and the strain in GFRP spirals to less than 12% of their ultimate strain to ensure the safe and reliable use of these materials in RC columns. This research also considers the prediction of the axial load capacities using established design standards permitting the use of FRP bars in compressive members, namely ACI 440.11-22, CSA-S806-12, and JSCE-97, and underscores their limitations in accurately predicting GFRP–RC columns’ failure capacities. This study proposes an equation to enhance the prediction accuracy for GFRP–RC columns, considering the contributions of concrete, spiral confinement, and the axial stiffness of longitudinal GFRP bars. This equation addresses the shortcomings of existing design standards and provides a more accurate assessment of the axial load capacities for GFRP–RC columns. The proposed equation outperformed numerous other equations suggested by various researchers when employed to estimate the strength of 42 columns gathered from the literature. Full article
Show Figures

Figure 1

20 pages, 6934 KiB  
Review
Feasibility of Repairing Concrete with Ultra-High Molecular Weight Polyethylene Fiber Cloth: A Comprehensive Literature Review
by Zengrui Pan, Rabin Tuladhar, Shi Yin, Feng Shi and Faning Dang
Buildings 2024, 14(6), 1631; https://doi.org/10.3390/buildings14061631 - 2 Jun 2024
Cited by 4 | Viewed by 1860
Abstract
This review explores the use of Ultra-High Molecular Weight Polyethylene (UHMWPE) fiber cloth as an innovative solution for the repair and reinforcement of concrete structures. UHMWPE is a polymer formed from a very large number of repeated ethylene (C2H4) [...] Read more.
This review explores the use of Ultra-High Molecular Weight Polyethylene (UHMWPE) fiber cloth as an innovative solution for the repair and reinforcement of concrete structures. UHMWPE is a polymer formed from a very large number of repeated ethylene (C2H4) units with higher molecular weight and long-chain crystallization than normal high-density polyethylene. With its superior tensile strength, elongation, and energy absorption capabilities, UHMWPE emerges as a promising alternative to traditional reinforcement materials like glass and carbon fibers. The paper reviews existing literature on fiber-reinforced polymer (FRP) applications in concrete repair in general, highlighting the unique benefits and potential of UHMWPE fiber cloth compared to other commonly used methods of strengthening concrete structures, such as enlarging concrete sections, near-surface embedded reinforcement, and externally bonded steel plate or other FRPs. Despite the scarcity of experimental data on UHMWPE for concrete repair, this review underscores its feasibility and calls for further research to fully harness its capabilities in civil engineering applications. Full article
Show Figures

Figure 1

17 pages, 9700 KiB  
Article
An Experimental Study Incorporating Carbon Fiber Composite Bars and Wraps for Concrete Performance and Failure Insight
by Ali Akbarpour, Jeffery Volz and Shreya Vemuganti
J. Compos. Sci. 2024, 8(5), 174; https://doi.org/10.3390/jcs8050174 - 9 May 2024
Cited by 20 | Viewed by 2026
Abstract
Corrosion of conventional steel reinforcement is responsible for numerous structurally deficient bridges, which is a multi-billion-dollar challenge that creates a vicious cycle of maintenance, repair, and replacement of infrastructure. Repair of existing structures with fiber-reinforced polymer (FRP) has become widespread due to multiple [...] Read more.
Corrosion of conventional steel reinforcement is responsible for numerous structurally deficient bridges, which is a multi-billion-dollar challenge that creates a vicious cycle of maintenance, repair, and replacement of infrastructure. Repair of existing structures with fiber-reinforced polymer (FRP) has become widespread due to multiple advantages. Carbon FRP’s superior tensile strength and stiffness make it particularly effective in shear and flexural strengthening of reinforced concrete (RC) beams. This experimental study incorporates carbon fiber polymer composite bars and wraps to study and report on the flexural behavior of RC beams. By employing a combination of CFRP bar and wrap for strengthening RC beams, this study observed an approximate 95% improvement in flexural load capacity relative to control RC beams without strengthening. This substantial enhancement highlights the effectiveness of integrating CFRP in structural applications. Nevertheless, the key observation is the failure mode due to this combination providing significant insights into the changes facilitated by this combination approach. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, Volume III)
Show Figures

Figure 1

25 pages, 10396 KiB  
Article
Seismic Response of RC Beam-Column Joints Strengthened with FRP ROPES, Using 3D Finite Element: Verification with Real Scale Tests
by Emmanouil Golias, Paul Touratzidis and Chris G. Karayannis
CivilEng 2024, 5(2), 395-419; https://doi.org/10.3390/civileng5020020 - 30 Apr 2024
Cited by 3 | Viewed by 1997
Abstract
A 3D-finite element analysis within the numerical program ABAQUS is adopted in order to simulate the seismic behavior of reinforced concrete beam-column joints and beam-column joints strengthened with CFRP ropes. The suitability of the adopted approach is investigated herein. For this purpose, experimental [...] Read more.
A 3D-finite element analysis within the numerical program ABAQUS is adopted in order to simulate the seismic behavior of reinforced concrete beam-column joints and beam-column joints strengthened with CFRP ropes. The suitability of the adopted approach is investigated herein. For this purpose, experimental and numerical cyclic tests were performed. The experiments include four reinforced concrete (RC) joints with the same ratio of shear closed-stirrup reinforcement and two different volumetric ratios of longitudinal steel reinforcing bars. Two joints were tested as-built, and the other two were strengthened with CFRP ropes. The ropes were applied as Near Surface Mounted (NSM) reinforcement, forming an X-shape around the joint body and further as flexural reinforcement at the top and bottom of the beam. The purpose of the externally mounted CFRP ropes is to allow the development of higher values of concrete principal stresses inside the joint core, compared with the specimens without ropes, and also to reduce the developing shear deformation in the joint. From the results, it is concluded that X-shaped ropes reduced the shear deformation in the joint body remarkably, especially in high drifts. Further, as a result of the comparisons between the yielded outcome from the attempted nonlinear analysis and the observed response from the tests, it is deduced that the adopted method sufficiently describes the whole behavior of the RC beam-column connections. In particular, comparisons between experimental and numerical results of principal stresses developing in the joint body of all examined specimens, along with similar comparisons of force displacement envelopes and shear deformations of the joint body, confirmed the adequacy of the applied finite element approach for the investigation of the use of CFRP-ropes as an efficient and easy-to-apply strengthening technique. The findings also reveal that the connections that have been strengthened with the FRP ropes demonstrated improved performance, and the crack system preserved its load capacity during the reversal loading tests. Full article
(This article belongs to the Special Issue Feature Papers in CivilEng)
Show Figures

Figure 1

19 pages, 21188 KiB  
Article
Study on CFRP-Strengthened Welded Steel Plates with Inclined Welds Considering Welding Residual Stress
by Xinyu Ding, Xu Liang, Man-Tai Chen and Lili Hu
Materials 2024, 17(8), 1804; https://doi.org/10.3390/ma17081804 - 14 Apr 2024
Cited by 5 | Viewed by 1731
Abstract
Welded steel plates are widely used in various structural applications, and the presence of inclined welds is often encountered in practical scenarios. Carbon fiber reinforced polymer (CFRP) has been proven to be effective for strengthening steel structures. However, the behavior of CFRP-strengthened welded [...] Read more.
Welded steel plates are widely used in various structural applications, and the presence of inclined welds is often encountered in practical scenarios. Carbon fiber reinforced polymer (CFRP) has been proven to be effective for strengthening steel structures. However, the behavior of CFRP-strengthened welded steel plates with inclined welds, particularly considering the influence of welding residual stress, is limited. This paper aims to investigate the tensile behavior of CFRP-strengthened welded Q355 steel plates with inclined welds considering welding residual stress (WRS). First, WRS data were obtained by the X-ray diffraction (XRD) method at different locations. The maximum tensile and compressive residual stresses are 0.39 and 0.14 times the yield strength of the steel, respectively. Then, finite element models were established to investigate the effects of weld angles, weld width, and height on the WRS distribution of welded steel plates. Finally, the tensile performance of CFRP-strengthened welded plates with WRS was studied by numerical simulation. The results showed that the weld angles have little effect on the distribution pattern of residual stress but significantly affect the peak tensile WRS. When the weld angle changes from 0° to 60°, the peak tensile WRS decreases significantly from 0.32 to 0.06 times the yield strength of steel; furthermore, the influence of weld width and height on WRS is relatively limited. Under tension loading, the maximum stress occurs near the weld. The ends of the weld enter the yielding state later than the middle part of the weld due to the distribution of the WRS. As the weld angle increases and the length of the weld increases, the stress in the weld zone decreases, while the stress in the base material zone correspondingly increases. In addition, CFRP strengthening can reduce the magnitude of stress. This study provides preliminary references for understanding the tensile behavior of CFRP-strengthened welded steel plates with inclined welds. Full article
Show Figures

Figure 1

Back to TopTop