Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = FRET-based biosensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2815 KiB  
Article
Simulation and Optimization of the Antenna Designs for Glucose Biosensing FRET Mechanisms in Endoscopic Capsules
by Rajaa B. Naeem and Doğu Çağdaş Atilla
Micromachines 2025, 16(6), 641; https://doi.org/10.3390/mi16060641 - 28 May 2025
Viewed by 506
Abstract
An optimized design of photodetectors and antennas for Förster Resonance Energy Transfer (FRET)-based glucose biosensing in endoscopic capsules is presented. The compact antenna design is tailored for the visible optical frequencies (~526 THz) associated with FRET-based glucose monitoring and integrates structural flexibility to [...] Read more.
An optimized design of photodetectors and antennas for Förster Resonance Energy Transfer (FRET)-based glucose biosensing in endoscopic capsules is presented. The compact antenna design is tailored for the visible optical frequencies (~526 THz) associated with FRET-based glucose monitoring and integrates structural flexibility to conform to the spatial constraints of endoscopic capsules, such as mechanical bending features. The antenna is embedded in a multimode medium artificial tissue simulating a glucose environment with several layers, providing efficient coupling to the FRET emission signal for glucose sensing. Stable S11 parameters and a maximum gain of 9 dBi are realized by statelier mesh settings, bend adaptation, and cautious SAR constraint handlers. Results of the Specific Absorption Rate (SAR) confirm the limited energy absorption within permissible bounds, confirming its application for biomedical purposes. These results affirm the feasibility of non-invasive glucose measurement in interstitial fluid in this configuration that can be operable through an endoscope with improved sensitivity and functionality. Full article
(This article belongs to the Special Issue Advanced Photonic Biosensors: From Materials Research to Applications)
Show Figures

Figure 1

22 pages, 10336 KiB  
Review
Recent Advances in Fluorescence Resonance Energy Transfer (FRET) Biosensors for Exosomes
by Feng Huang, Zhenyu Xie, Qianjiao Zhang, Shah Zada, Ruhan Lin, Yanmei Deng, Qifeng Liu, Huizhi Chen, Hui Zhou, Huilai Miao and Yubin Zhou
Curr. Issues Mol. Biol. 2025, 47(4), 235; https://doi.org/10.3390/cimb47040235 - 28 Mar 2025
Cited by 2 | Viewed by 1535
Abstract
Cancer is a significant global health challenge, where early diagnosis is crucial for enhancing patient survival and mitigating the treatment burden on patients. Exosomes are extracellular vesicles released through the fusion of multivesicular bodies with cell membranes, carrying disease-associated information from donor cells. [...] Read more.
Cancer is a significant global health challenge, where early diagnosis is crucial for enhancing patient survival and mitigating the treatment burden on patients. Exosomes are extracellular vesicles released through the fusion of multivesicular bodies with cell membranes, carrying disease-associated information from donor cells. This makes exosomes a key biomarker in liquid biopsy analysis, particularly for early cancer detection. Developing cost-effective, straightforward, and sensitive exosome biosensing technologies is of significant practical importance. To date, a large number of fluorescence-based exosome biosensors have relied on the Fluorescence Resonance Energy Transfer (FRET) principle. This review introduces the basic background of the field and the principle of FRET-based exosome sensors, followed by a systematic summary of their progress categorized by different transduction elements or mechanisms. Finally, this work discusses the current challenges in the field and proposes potential solutions and future prospects, aiming to encourage and inspire the development of new approaches for advanced FRET exosome biosensors. Full article
(This article belongs to the Special Issue Exosomes in Tissue Regeneration and Disease Therapy)
Show Figures

Figure 1

36 pages, 5572 KiB  
Review
Optical Biosensor Based on Graphene and Its Derivatives for Detecting Biomolecules
by Guangmin Ji, Jingkun Tian, Fei Xing and Yu Feng
Int. J. Mol. Sci. 2022, 23(18), 10838; https://doi.org/10.3390/ijms231810838 - 16 Sep 2022
Cited by 32 | Viewed by 5257
Abstract
Graphene and its derivatives show great potential for biosensing due to their extraordinary optical, electrical and physical properties. In particular, graphene and its derivatives have excellent optical properties such as broadband and tunable absorption, fluorescence bursts, and strong polarization-related effects. Optical biosensors based [...] Read more.
Graphene and its derivatives show great potential for biosensing due to their extraordinary optical, electrical and physical properties. In particular, graphene and its derivatives have excellent optical properties such as broadband and tunable absorption, fluorescence bursts, and strong polarization-related effects. Optical biosensors based on graphene and its derivatives make nondestructive detection of biomolecules possible. The focus of this paper is to review the preparation of graphene and its derivatives, as well as recent advances in optical biosensors based on graphene and its derivatives. The working principle of face plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence resonance energy transfer (FRET) and colorimetric sensors are summarized, and the advantages and disadvantages of graphene and its derivatives applicable to various types of sensors are analyzed, and the methods of surface functionalization of graphene and its derivatives are introduced; these optical biosensors can be used for the detection of a range of biomolecules such as single cells, cellular secretions, proteins, nucleic acids, and antigen-antibodies; these new high-performance optical sensors are capable of detecting changes in surface structure and biomolecular interactions with the advantages of ultra-fast detection, high sensitivity, label-free, specific recognition, and the ability to respond in real-time. Problems in the current stage of application are discussed, as well as future prospects for graphene and its biosensors. Achieving the applicability, reusability and low cost of novel optical biosensors for a variety of complex environments and achieving scale-up production, which still faces serious challenges. Full article
(This article belongs to the Special Issue Cell-Material Interaction 2022)
Show Figures

Figure 1

14 pages, 2564 KiB  
Article
Niosome-Assisted Delivery of DNA Fluorescent Probe with Optimized Strand Displacement for Intracellular MicroRNA21 Imaging
by Zongwei Zhu, Hongqian Zhang, Xiaoxue Dong, Meng Lin and Chuanxu Yang
Biosensors 2022, 12(8), 557; https://doi.org/10.3390/bios12080557 - 24 Jul 2022
Cited by 4 | Viewed by 2797
Abstract
MicroRNAs play a vital role in cancer development and are considered as potential biomarkers for early prognostic assessment. Here, we propose a novel biosensing system to achieve fluorescence imaging of miRNA21 (miR21) in cancer cells. This system consists of two components: an optimized [...] Read more.
MicroRNAs play a vital role in cancer development and are considered as potential biomarkers for early prognostic assessment. Here, we propose a novel biosensing system to achieve fluorescence imaging of miRNA21 (miR21) in cancer cells. This system consists of two components: an optimized “off-on” double-stranded DNA (dsDNA) fluorescent for miR21 sensing by efficient strand-displacement reaction and a potent carrier vesicle, termed niosome (SPN), to facilitate the efficient intracellular delivery of the dsDNA probe. A series of dsDNA probes based on fluorescence energy resonance transfer (FRET) was assembled to target miR21. By optimizing the appropriate length of the reporter strand in the dsDNA probe, high accuracy and sensitivity for miR21 recognition are ensured. To overcome the cellular barrier, we synthesized SPN with the main components of a nonionic surfactant Span 80 and a cationic lipid DOTAP, which could efficiently load dsDNA probes via electrostatic interactions and potently deliver the dsDNA probes into cells with good biosafety. The SPN/dsDNA achieved efficient miR21 fluorescent imaging in living cells, and could discriminate cancer cells (MCF-7) from normal cells (L-02). Therefore, the proposed SPN/dsDNA system provides a powerful tool for intracellular miRNA biosensing, which holds great promise for early cancer diagnosis. Full article
(This article belongs to the Special Issue Biosensing and Diagnosis of Cancer)
Show Figures

Figure 1

24 pages, 4987 KiB  
Review
Fluorescent Biosensors for the Detection of Viruses Using Graphene and Two-Dimensional Carbon Nanomaterials
by Ahmed M. Salama, Ghulam Yasin, Mohammed Zourob and Jun Lu
Biosensors 2022, 12(7), 460; https://doi.org/10.3390/bios12070460 - 27 Jun 2022
Cited by 29 | Viewed by 5137
Abstract
Two-dimensional carbon nanomaterials have been commonly employed in the field of biosensors to improve their sensitivity/limits of detection and shorten the analysis time. These nanomaterials act as efficient transducers because of their unique characteristics, such as high surface area and optical, electrical, and [...] Read more.
Two-dimensional carbon nanomaterials have been commonly employed in the field of biosensors to improve their sensitivity/limits of detection and shorten the analysis time. These nanomaterials act as efficient transducers because of their unique characteristics, such as high surface area and optical, electrical, and magnetic properties, which in turn have been exploited to create simple, quick, and low-cost biosensing platforms. In this review, graphene and two-dimensional carbon material-based fluorescent biosensors are covered between 2010 and 2021, for the detection of different human viruses. This review specifically focuses on the new developments in graphene and two-dimensional carbon nanomaterials for fluorescent biosensing based on the Förster resonance energy transfer (FRET) mechanism. The high-efficiency quenching capability of graphene via the FRET mechanism enhances the fluorescent-based biosensors. The review provides a comprehensive reference for the different types of carbon nanomaterials employed for the detection of viruses such as Rotavirus, Ebola virus, Influenza virus H3N2, HIV, Hepatitis C virus (HCV), and Hepatitis B virus (HBV). This review covers the various multiplexing detection technologies as a new direction in the development of biosensing platforms for virus detection. At the end of the review, the different challenges in the use of fluorescent biosensors, as well as some insights into how to overcome them, are highlighted. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications)
Show Figures

Figure 1

16 pages, 3473 KiB  
Article
Plasmon-Emitter Hybrid Nanostructures of Gold Nanorod-Quantum Dots with Regulated Energy Transfer as a Universal Nano-Sensor for One-step Biomarker Detection
by Xuemeng Li, Yingshuting Wang, Quanying Fu, Yangyang Wang, Dongxu Ma, Bin Zhou and Jianhua Zhou
Nanomaterials 2020, 10(3), 444; https://doi.org/10.3390/nano10030444 - 1 Mar 2020
Cited by 10 | Viewed by 3692
Abstract
Recently, biosensing based on weak coupling in plasmon-emitter hybrid nanostructures exhibits the merits of simplicity and high sensitivity, and attracts increasing attention as an emerging nano-sensor. In this study, we propose an innovative plasmon-regulated fluorescence resonance energy transfer (plasmon-regulated FRET) sensing strategy based [...] Read more.
Recently, biosensing based on weak coupling in plasmon-emitter hybrid nanostructures exhibits the merits of simplicity and high sensitivity, and attracts increasing attention as an emerging nano-sensor. In this study, we propose an innovative plasmon-regulated fluorescence resonance energy transfer (plasmon-regulated FRET) sensing strategy based on a plasmon-emitter hybrid nanostructure of gold nanorod-quantum dots (Au NR-QDs) by partially modifying QDs onto the surfaces of Au NRs. The Au NR-QDs showed good sensitivity and reversibility against refractive index change. We successfully employed the Au NR-QDs to fabricate nano-sensors for detecting a cancer biomarker of alpha fetoprotein with a limit of detection of 0.30 ng/mL, which displays that the sensitivity of the Au NR-QDs nano-sensor was effectively improved compared with the Au NRs based plasmonic sensing. Additionally, to demonstrate the universality of the plasmon-regulated FRET sensing strategy, another plasmon-emitter hybrid nano-sensor of Au nano-prism-quantum dots (Au NP-QDs) were constructed and applied for detecting a myocardial infarction biomarker of cardiac troponin I. It was first reported that the change of absorption spectra of plasmonic structure in a plasmon-emitter hybrid nanostructure was employed for analytes detection. The plasmon-regulated FRET sensing strategy described herein has potential utility to develop general sensing platforms for chemical and biological analysis. Full article
Show Figures

Figure 1

14 pages, 2431 KiB  
Article
Preparation and Characterization of Freely-Suspended Graphene Nanomechanical Membrane Devices with Quantum Dots for Point-of-Care Applications
by Gorkem Memisoglu, Burhan Gulbahar and Ruben Fernandez Bello
Micromachines 2020, 11(1), 104; https://doi.org/10.3390/mi11010104 - 18 Jan 2020
Cited by 6 | Viewed by 3697
Abstract
We demonstrate freely suspended graphene-based nanomechanical membranes (NMMs) as acoustic sensors in the audible frequency range. Simple and low-cost procedures are used to fabricate NMMs with various thicknesses based on graphene layers grown by graphite exfoliation and solution processed graphene oxide. In addition, [...] Read more.
We demonstrate freely suspended graphene-based nanomechanical membranes (NMMs) as acoustic sensors in the audible frequency range. Simple and low-cost procedures are used to fabricate NMMs with various thicknesses based on graphene layers grown by graphite exfoliation and solution processed graphene oxide. In addition, NMMs are grafted with quantum dots (QDs) for characterizing mass sensitive vibrational properties. Thickness, roughness, deformation, deflection and emissions of NMMs with attached QDs are experimented and analyzed by utilizing atomic force microscopy, Raman spectroscopy, laser induced deflection analyzer and spectrophotometers. Förster resonance energy transfer (FRET) is experimentally achieved between the QDs attached on NMMs and nearby glass surfaces for illustrating acousto-optic utilization in future experimental implementations combining vibrational properties of NMMs with optical emission properties of QDs. This property denoted as vibrating FRET (VFRET) is previously introduced in theoretical studies while important experimental steps are for the first time achieved in this study for future VFRET implementations. The proposed modeling and experimental methodology are promising for future novel applications such as NMM based biosensing, photonics and VFRET based point-of-care (PoC) devices. Full article
(This article belongs to the Special Issue Point-of-Care Devices)
Show Figures

Figure 1

35 pages, 21221 KiB  
Review
In Vivo Biosensing Using Resonance Energy Transfer
by Shashi Bhuckory, Joshua C. Kays and Allison M. Dennis
Biosensors 2019, 9(2), 76; https://doi.org/10.3390/bios9020076 - 3 Jun 2019
Cited by 41 | Viewed by 12825
Abstract
Solution-phase and intracellular biosensing has substantially enhanced our understanding of molecular processes foundational to biology and pathology. Optical methods are favored because of the low cost of probes and instrumentation. While chromatographic methods are helpful, fluorescent biosensing further increases sensitivity and can be [...] Read more.
Solution-phase and intracellular biosensing has substantially enhanced our understanding of molecular processes foundational to biology and pathology. Optical methods are favored because of the low cost of probes and instrumentation. While chromatographic methods are helpful, fluorescent biosensing further increases sensitivity and can be more effective in complex media. Resonance energy transfer (RET)-based sensors have been developed to use fluorescence, bioluminescence, or chemiluminescence (FRET, BRET, or CRET, respectively) as an energy donor, yielding changes in emission spectra, lifetime, or intensity in response to a molecular or environmental change. These methods hold great promise for expanding our understanding of molecular processes not just in solution and in vitro studies, but also in vivo, generating information about complex activities in a natural, organismal setting. In this review, we focus on dyes, fluorescent proteins, and nanoparticles used as energy transfer-based optical transducers in vivo in mice; there are examples of optical sensing using FRET, BRET, and in this mammalian model system. After a description of the energy transfer mechanisms and their contribution to in vivo imaging, we give a short perspective of RET-based in vivo sensors and the importance of imaging in the infrared for reduced tissue autofluorescence and improved sensitivity. Full article
(This article belongs to the Special Issue FRET-Based Biosensors)
Show Figures

Figure 1

22 pages, 2728 KiB  
Review
Biosensing with Förster Resonance Energy Transfer Coupling between Fluorophores and Nanocarbon Allotropes
by Shaowei Ding, Allison A. Cargill, Suprem R. Das, Igor L. Medintz and Jonathan C. Claussen
Sensors 2015, 15(6), 14766-14787; https://doi.org/10.3390/s150614766 - 23 Jun 2015
Cited by 33 | Viewed by 9957
Abstract
Nanocarbon allotropes (NCAs), including zero-dimensional carbon dots (CDs), one-dimensional carbon nanotubes (CNTs) and two-dimensional graphene, exhibit exceptional material properties, such as unique electrical/thermal conductivity, biocompatibility and high quenching efficiency, that make them well suited for both electrical/electrochemical and optical sensors/biosensors alike. In particular, [...] Read more.
Nanocarbon allotropes (NCAs), including zero-dimensional carbon dots (CDs), one-dimensional carbon nanotubes (CNTs) and two-dimensional graphene, exhibit exceptional material properties, such as unique electrical/thermal conductivity, biocompatibility and high quenching efficiency, that make them well suited for both electrical/electrochemical and optical sensors/biosensors alike. In particular, these material properties have been exploited to significantly enhance the transduction of biorecognition events in fluorescence-based biosensing involving Förster resonant energy transfer (FRET). This review analyzes current advances in sensors and biosensors that utilize graphene, CNTs or CDs as the platform in optical sensors and biosensors. Widely utilized synthesis/fabrication techniques, intrinsic material properties and current research examples of such nanocarbon, FRET-based sensors/biosensors are illustrated. The future outlook and challenges for the research field are also detailed. Full article
(This article belongs to the Special Issue FRET Biosensors)
Show Figures

Graphical abstract

32 pages, 12900 KiB  
Review
Biosensing with Quantum Dots: A Microfluidic Approach
by Charles H. Vannoy, Anthony J. Tavares, M. Omair Noor, Uvaraj Uddayasankar and Ulrich J. Krull
Sensors 2011, 11(10), 9732-9763; https://doi.org/10.3390/s111009732 - 18 Oct 2011
Cited by 55 | Viewed by 13338
Abstract
Semiconductor quantum dots (QDs) have served as the basis for signal development in a variety of biosensing technologies and in applications using bioprobes. The use of QDs as physical platforms to develop biosensors and bioprobes has attracted considerable interest. This is largely due [...] Read more.
Semiconductor quantum dots (QDs) have served as the basis for signal development in a variety of biosensing technologies and in applications using bioprobes. The use of QDs as physical platforms to develop biosensors and bioprobes has attracted considerable interest. This is largely due to the unique optical properties of QDs that make them excellent choices as donors in fluorescence resonance energy transfer (FRET) and well suited for optical multiplexing. The large majority of QD-based bioprobe and biosensing technologies that have been described operate in bulk solution environments, where selective binding events at the surface of QDs are often associated with relatively long periods to reach a steady-state signal. An alternative approach to the design of biosensor architectures may be provided by a microfluidic system (MFS). A MFS is able to integrate chemical and biological processes into a single platform and allows for manipulation of flow conditions to achieve, by sample transport and mixing, reaction rates that are not entirely diffusion controlled. Integrating assays in a MFS provides numerous additional advantages, which include the use of very small amounts of reagents and samples, possible sample processing before detection, ultra-high sensitivity, high throughput, short analysis time, and in situ monitoring. Herein, a comprehensive review is provided that addresses the key concepts and applications of QD-based microfluidic biosensors with an added emphasis on how this combination of technologies provides for innovations in bioassay designs. Examples from the literature are used to highlight the many advantages of biosensing in a MFS and illustrate the versatility that such a platform offers in the design strategy. Full article
(This article belongs to the Special Issue Sensing with Quantum Dots)
Show Figures

29 pages, 2106 KiB  
Review
Biosensing with Luminescent Semiconductor Quantum Dots
by Kim E. Sapsford, Thomas Pons, Igor L. Medintz and Hedi Mattoussi
Sensors 2006, 6(8), 925-953; https://doi.org/10.3390/s6080925 - 24 Aug 2006
Cited by 400 | Viewed by 27636
Abstract
Luminescent semiconductor nanocrystals or quantum dots (QDs) are a recentlydeveloped class of nanomaterial whose unique photophysical properties are helping tocreate a new generation of robust fluorescent biosensors. QD properties of interest forbiosensing include high quantum yields, broad absorption spectra coupled to narrow sizetunablephotoluminescent [...] Read more.
Luminescent semiconductor nanocrystals or quantum dots (QDs) are a recentlydeveloped class of nanomaterial whose unique photophysical properties are helping tocreate a new generation of robust fluorescent biosensors. QD properties of interest forbiosensing include high quantum yields, broad absorption spectra coupled to narrow sizetunablephotoluminescent emissions and exceptional resistance to both photobleaching andchemical degradation. In this review, we examine the progress in adapting QDs for severalpredominantly in vitro biosensing applications including use in immunoassays, asgeneralized probes, in nucleic acid detection and fluorescence resonance energy transfer(FRET) - based sensing. We also describe several important considerations when workingwith QDs mainly centered on the choice of material(s) and appropriate strategies forattaching biomolecules to the QDs. Full article
(This article belongs to the Special Issue Supramolecular Sensors)
Show Figures

Back to TopTop