Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = FAB mass spectrometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2272 KiB  
Article
Antimicrobial Activity of Lavender Essential Oil from Lavandula angustifolia Mill.: In Vitro and In Silico Evaluation
by Sylvia Stamova, Neli Ermenlieva, Gabriela Tsankova and Emilia Georgieva
Antibiotics 2025, 14(7), 656; https://doi.org/10.3390/antibiotics14070656 - 28 Jun 2025
Viewed by 946
Abstract
The increasing prevalence of antimicrobial resistance (AMR) demands novel strategies, including the use of plant-derived agents. This study investigates the chemical profile and in vitro antimicrobial activity of essential oil from Lavandula angustifolia (LEO), cultivated in Northeastern Bulgaria. Gas chromatography–mass spectrometry (GC-MS) analysis [...] Read more.
The increasing prevalence of antimicrobial resistance (AMR) demands novel strategies, including the use of plant-derived agents. This study investigates the chemical profile and in vitro antimicrobial activity of essential oil from Lavandula angustifolia (LEO), cultivated in Northeastern Bulgaria. Gas chromatography–mass spectrometry (GC-MS) analysis confirmed the presence of a linalool/linalyl acetate chemotype, characteristic of high-quality lavender oil. LEO demonstrated significant inhibitory activity against Escherichia coli ATCC 25922, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 0.31% (v/v) and moderate to weak activity against other Gram-positive and fungal strains. Time–kill assays revealed a concentration-dependent bactericidal effect on E. coli. The addition of LEO at subinhibitory concentrations increased the inhibition zones for all antibiotics. In silico analysis identified functional protein clusters potentially modulated by LEO constituents, including targets related to membrane integrity and metabolic regulation. The findings indicate the potential of lavender essential oil as a natural antimicrobial adjuvant; however, additional in vivo and clinical investigations are necessary to validate its therapeutic use. Furthermore, molecular docking analysis revealed a high binding affinity of linalool and linalyl acetate towards the FabI protein of E.coli, suggesting a potential inhibitory mechanism at the molecular level. Full article
Show Figures

Figure 1

17 pages, 5284 KiB  
Article
Rapid Generation of Murine Bispecific Antibodies Using FAST-IgTM for Preclinical Screening of HER2/CD3 T-Cell Engagers
by Hikaru Koga, Haruka Kuroi, Rena Hirano, Hiroyuki Hirayama, Yoshiaki Nabuchi and Taichi Kuramochi
Antibodies 2024, 13(1), 3; https://doi.org/10.3390/antib13010003 - 2 Jan 2024
Cited by 1 | Viewed by 5066
Abstract
Bispecific antibodies (BsAbs) can bind to two different antigens, enabling therapeutic concepts that cannot be achieved with monoclonal antibodies. Immuno-competent mice are essential for validating drug discovery concepts, necessitating the development of surrogate mouse BsAbs. In this study, we explored the potential of [...] Read more.
Bispecific antibodies (BsAbs) can bind to two different antigens, enabling therapeutic concepts that cannot be achieved with monoclonal antibodies. Immuno-competent mice are essential for validating drug discovery concepts, necessitating the development of surrogate mouse BsAbs. In this study, we explored the potential of FAST-IgTM, a previously reported BsAb technology, for mouse BsAb production. We investigated charge-based orthogonal Fab mutations to facilitate the correct assembly of heavy and light chains of mouse antibodies and employed knobs-into-holes mutations to facilitate the heterodimerization of heavy chains. We combined five anti-CD3 and two anti-HER2 antibodies in mouse IgG1 and IgG2a subclasses. These 20 BsAbs were analyzed using mass spectrometry or ion exchange chromatography to calculate the percentages of BsAbs with correct chain pairing (BsAb yields). Using FAST-Ig, 19 out of the 20 BsAbs demonstrated BsAb yields of 90% or higher after simple protein A purification from transiently expressed antibodies in Expi293F cells. Importantly, the mouse BsAbs maintained their fundamental physicochemical properties and affinity against each antigen. A Jurkat NFAT-luciferase reporter cell assay demonstrated the combined effects of epitope, affinity, and subclasses. Our findings highlight the potential of FAST-Ig technology for efficiently generating mouse BsAbs for preclinical studies. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Figure 1

24 pages, 5297 KiB  
Article
High Mitochondrial Protein Expression as a Potential Predictor of Relapse Risk in Acute Myeloid Leukemia Patients with the Monocytic FAB Subtypes M4 and M5
by Frode Selheim, Elise Aasebø, Øystein Bruserud and Maria Hernandez-Valladares
Cancers 2024, 16(1), 8; https://doi.org/10.3390/cancers16010008 - 19 Dec 2023
Cited by 6 | Viewed by 2726
Abstract
AML is a highly aggressive and heterogeneous form of hematological cancer. Proteomics-based stratification of patients into more refined subgroups may contribute to a more precise characterization of the patient-derived AML cells. Here, we reanalyzed liquid chromatography-tandem mass spectrometry (LC-MS/MS) generated proteomic and phosphoproteomic [...] Read more.
AML is a highly aggressive and heterogeneous form of hematological cancer. Proteomics-based stratification of patients into more refined subgroups may contribute to a more precise characterization of the patient-derived AML cells. Here, we reanalyzed liquid chromatography-tandem mass spectrometry (LC-MS/MS) generated proteomic and phosphoproteomic data from 26 FAB-M4/M5 patients. The patients achieved complete hematological remission after induction therapy. Twelve of them later developed chemoresistant relapse (RELAPSE), and 14 patients were relapse-free (REL_FREE) long-term survivors. We considered not only the RELAPSE and REL_FREE characteristics but also integrated the French-American-British (FAB) classification, along with considering the presence of nucleophosmin 1 (NPM1) mutation and cytogenetically normal AML. We found a significant number of differentially enriched proteins (911) and phosphoproteins (257) between the various FAB subtypes in RELAPSE patients. Patients with the myeloblastic M1/M2 subtype showed higher levels of RNA processing-related routes and lower levels of signaling related to terms like translation and degranulation when compared with the M4/M5 subtype. Moreover, we found that a high abundance of proteins associated with mitochondrial translation and oxidative phosphorylation, particularly observed in the RELAPSE M4/M5 NPM1 mutated subgroup, distinguishes relapsing from non-relapsing AML patient cells with the FAB subtype M4/M5. Thus, the discovery of subtype-specific biomarkers through proteomic profiling may complement the existing classification system for AML and potentially aid in selecting personalized treatment strategies for individual patients. Full article
(This article belongs to the Special Issue Novel Insights in Acute Lymphoblastic and Myeloblastic Leukemia)
Show Figures

Figure 1

12 pages, 8915 KiB  
Article
Enhancement of SARS-CoV-2 Infection via Crosslinking of Adjacent Spike Proteins by N-Terminal Domain-Targeting Antibodies
by Tina Lusiany, Tohru Terada, Jun-ichi Kishikawa, Mika Hirose, David Virya Chen, Fuminori Sugihara, Hendra Saputra Ismanto, Floris J. van Eerden, Songling Li, Takayuki Kato, Hisashi Arase, Matsuura Yoshiharu, Masato Okada and Daron M. Standley
Viruses 2023, 15(12), 2421; https://doi.org/10.3390/v15122421 - 13 Dec 2023
Cited by 3 | Viewed by 2501
Abstract
The entry of SARS-CoV-2 into host cells is mediated by the interaction between the spike receptor-binding domain (RBD) and host angiotensin-converting enzyme 2 (ACE2). Certain human antibodies, which target the spike N-terminal domain (NTD) at a distant epitope from the host cell binding [...] Read more.
The entry of SARS-CoV-2 into host cells is mediated by the interaction between the spike receptor-binding domain (RBD) and host angiotensin-converting enzyme 2 (ACE2). Certain human antibodies, which target the spike N-terminal domain (NTD) at a distant epitope from the host cell binding surface, have been found to augment ACE2 binding and enhance SARS-CoV-2 infection. Notably, these antibodies exert their effect independently of the antibody fragment crystallizable (Fc) region, distinguishing their mode of action from previously described antibody-dependent infection-enhancing (ADE) mechanisms. Building upon previous hypotheses and experimental evidence, we propose that these NTD-targeting infection-enhancing antibodies (NIEAs) achieve their effect through the crosslinking of neighboring spike proteins. In this study, we present refined structural models of NIEA fragment antigen-binding region (Fab)–NTD complexes, supported by molecular dynamics simulations and hydrogen–deuterium exchange mass spectrometry (HDX-MS). Furthermore, we provide direct evidence confirming the crosslinking of spike NTDs by NIEAs. Collectively, our findings advance our understanding of the molecular mechanisms underlying NIEAs and their impact on SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Molecular Epidemiology of SARS-CoV-2: 2nd Edition)
Show Figures

Figure 1

10 pages, 1775 KiB  
Article
Antibody Binding Captures High Energy State of an Antigen: The Case of Nsp1 SARS-CoV-2 as Revealed by Hydrogen–Deuterium Exchange Mass Spectrometry
by Ravi Kant, Nawneet Mishra and Michael L. Gross
Int. J. Mol. Sci. 2023, 24(24), 17342; https://doi.org/10.3390/ijms242417342 - 11 Dec 2023
Cited by 2 | Viewed by 1445
Abstract
We describe an investigation using structural mass spectrometry (MS) of the impact of two antibodies, 15497 and 15498, binding the highly flexible SARS-CoV-2 Nsp1 protein. We determined the epitopes and paratopes involved in the antibody–protein interactions by using hydrogen–deuterium exchange MS (HDX-MS). Notably, [...] Read more.
We describe an investigation using structural mass spectrometry (MS) of the impact of two antibodies, 15497 and 15498, binding the highly flexible SARS-CoV-2 Nsp1 protein. We determined the epitopes and paratopes involved in the antibody–protein interactions by using hydrogen–deuterium exchange MS (HDX-MS). Notably, the Fab (Fragment antigen binding) for antibody 15498 captured a high energy form of the antigen exhibiting significant conformational changes that added flexibility over most of the Nsp1 protein. The Fab for antibody 15497, however, showed usual antigen binding behavior, revealing local changes presumably including the binding site. These findings illustrate an unusual antibody effect on an antigen and are consistent with the dynamic nature of the Nsp1 protein. Our studies suggest that this interaction capitalizes on the high flexibility of Nsp1 to undergo conformational change and be trapped in a higher energy state by binding with a specific antibody. Full article
(This article belongs to the Special Issue Virus Engineering and Applications: 2nd Edition)
Show Figures

Figure 1

14 pages, 1765 KiB  
Article
Optimization of a Quantitative Anti-Drug Antibodies against Infliximab Assay with the Liquid Chromatography-Tandem Mass Spectrometry: A Method Validation Study and Future Perspectives
by Erin H. Smeijsters, Kim C. M. van der Elst, Amy Visch, Camiel Göbel, Floris C. Loeff, Theo Rispens, Alwin D. R. Huitema, Matthijs van Luin and Mohsin El Amrani
Pharmaceutics 2023, 15(5), 1477; https://doi.org/10.3390/pharmaceutics15051477 - 12 May 2023
Cited by 4 | Viewed by 3359
Abstract
Monoclonal antibodies (mAbs), such as infliximab, are important treatment options for different diseases. Immunogenicity is a major risk, resulting in anti-drug antibodies (ADAs), being associated with adverse events and loss of response, influencing long-term outcomes. The development of ADAs against infliximab is primarily [...] Read more.
Monoclonal antibodies (mAbs), such as infliximab, are important treatment options for different diseases. Immunogenicity is a major risk, resulting in anti-drug antibodies (ADAs), being associated with adverse events and loss of response, influencing long-term outcomes. The development of ADAs against infliximab is primarily measured by immunoassays like radioimmunoassay (RIA). Although liquid chromatography-tandem mass spectrometry (LC-MS/MS) is increasingly utilized across different fields, this technique is currently not used for ADAs against infliximab measurements. Therefore, we developed the first LC-MS/MS method. Stable isotopically labeled infliximab antigen-binding fragments (SIL IFX F(ab’)2) were used to bind and measure ADAs indirectly. Protein A magnetic beads were used to capture IgG, including ADAs, whereafter SIL IFX F(ab’)2 was added for labeling. After washing, internal standard addition, elution, denaturation and digestion samples were measured by LC-MS/MS. Internal validation showed good linearity between 0.1 and 16 mg/L (R2 > 0.998). Sixty samples were used for cross-validation with RIA, and no significant difference between ADA concentrations was found. The methods had high correlation (R = 0.94, p < 0.001) and excellent agreement, intraclass correlation coefficient = 0.912 (95% confidence interval 0.858–0.947, p < 0.001). We present the first ADA against the infliximab LC-MS/MS method. The method is amendable for quantifying other ADAs, making it applicable as a template for future ADA methods. Full article
(This article belongs to the Special Issue Personalisation the Management of Inflammatory Diseases)
Show Figures

Figure 1

12 pages, 1255 KiB  
Article
Cuticular Wax Modification by Epichloë Endophyte in Achnatherum inebrians under Different Soil Moisture Availability
by Zhenrui Zhao, Yawen Ju, Mingzhu Kou, Mei Tian, Michael John Christensen, Xingxu Zhang and Zhibiao Nan
J. Fungi 2022, 8(7), 725; https://doi.org/10.3390/jof8070725 - 12 Jul 2022
Cited by 3 | Viewed by 2520
Abstract
The cuticular wax serves as the outermost hydrophobic barrier of plants against nonstomatal water loss and various environmental stresses. An objective of this study was to investigate the contribution of the mutualistic fungal endophyte Epichloë gansuensis to leaf cuticular wax of Achnatherum inebrians [...] Read more.
The cuticular wax serves as the outermost hydrophobic barrier of plants against nonstomatal water loss and various environmental stresses. An objective of this study was to investigate the contribution of the mutualistic fungal endophyte Epichloë gansuensis to leaf cuticular wax of Achnatherum inebrians under different soil moisture availability. Through a pot experiment and gas chromatography−mass spectrometry (GC−MS) analysis, our results indicated that the hydrocarbons were the dominant components of leaf cuticular wax, and the proportion of alcohols, aldehydes, amines, and ethers varied with the presence or absence of E. gansuensis and different soil moisture availability. Amines and ethers are unique in endophyte-free (EF) A. inebrians plants and endophyte-infected (EI) A. inebrians plants, respectively. By transcriptome analysis, we found a total of 13 differentially expressed genes (DEGs) related to cuticular biosynthesis, including FabG, desB, SSI2, fadD, BiP, KCS, KAR, FAR, and ABCB1. A model is proposed which provides insights for understanding cuticular wax biosynthesis in the association of A. inebrians plants with E. gansuensis. These results may help guide the functional analyses of candidate genes important for improving the protective layer of cuticular wax of endophyte-symbiotic plants. Full article
(This article belongs to the Special Issue Fungal Endophytes of Grasses)
Show Figures

Figure 1

23 pages, 4070 KiB  
Article
Characterization of Emissions in Fab Labs: An Additive Manufacturing Environment Issue
by Shirin Khaki, Maud Rio and Philippe Marin
Sustainability 2022, 14(5), 2900; https://doi.org/10.3390/su14052900 - 2 Mar 2022
Cited by 10 | Viewed by 3005
Abstract
The emergence of additive manufacturing (AM) technologies, such as 3D printing and laser cutting, has created opportunities for new design practices covering a wide range of fields and a diversity of learning and teaching settings. The potential health impact of particulate matter and [...] Read more.
The emergence of additive manufacturing (AM) technologies, such as 3D printing and laser cutting, has created opportunities for new design practices covering a wide range of fields and a diversity of learning and teaching settings. The potential health impact of particulate matter and volatile organic compounds (VOCs) emitted from AM technologies is, therefore, a growing concern for makers. The research behind this paper addresses this issue by applying an indoor air quality assessment protocol in an educational fabrication laboratory. The paper presents the evaluation of the particle emission rate of different AM technologies. Real-time monitoring of multiple three-dimensional Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS) and Thermoplastic Elastomers (TPE) printers and Polymethyl methacrylate (PMMA) laser cutters was performed in different usage scenarios. Non-contact electrical detectors and off-line gas chromatography–mass spectrometry (GC-MS) were used to detect VOCs. The results show that the emitted particle surface area concentrations vary between 294 and 406.2 μm2/cm3 for three-dimensional printers, and between 55.06 and 92.3 μm2/cm3 for laser cutters. The experiments demonstrate that the emission concentrations were highly dependent on the filtration systems in place. The highest quantities of VOCs emitted included Cyclohexene and Benzyl Alcohol for PLA, ABS and TPE 3D printers, and formic acid and Xylene for PMMA laser cutters. The experiment concludes that signature emissions are detectable for a given material type and an AM technology pair. A suitable mitigation strategy can be specified for each signature detected. Finally, this paper outlines some guidelines for improving indoor air quality in such specific environments. The data provided, as well as the proposed indoor air quality protocol, can be used as a baseline for future studies, and thus help to determine whether the proposed strategies can enhance operator and bystander safety. Full article
(This article belongs to the Topic Industrial Engineering and Management)
Show Figures

Figure 1

16 pages, 2626 KiB  
Article
Multi-Omic Analysis to Characterize Metabolic Adaptation of the E. coli Lipidome in Response to Environmental Stress
by Thomas Kralj, Madison Nuske, Vinzenz Hofferek, Marc-Antoine Sani, Tzong-Hsien Lee, Frances Separovic, Marie-Isabel Aguilar and Gavin E. Reid
Metabolites 2022, 12(2), 171; https://doi.org/10.3390/metabo12020171 - 11 Feb 2022
Cited by 19 | Viewed by 4614
Abstract
As an adaptive survival response to exogenous stress, bacteria undergo dynamic remodelling of their lipid metabolism pathways to alter the composition of their cellular membranes. Here, using Escherichia coli as a well characterised model system, we report the development and application of a [...] Read more.
As an adaptive survival response to exogenous stress, bacteria undergo dynamic remodelling of their lipid metabolism pathways to alter the composition of their cellular membranes. Here, using Escherichia coli as a well characterised model system, we report the development and application of a ‘multi-omics’ strategy for comprehensive quantitative analysis of the temporal changes in the lipidome and proteome profiles that occur under exponential growth phase versus stationary growth phase conditions i.e., nutrient depletion stress. Lipidome analysis performed using ‘shotgun’ direct infusion-based ultra-high resolution accurate mass spectrometry revealed a quantitative decrease in total lipid content under stationary growth phase conditions, along with a significant increase in the mol% composition of total cardiolipin, and an increase in ‘odd-numbered’ acyl-chain length containing glycerophospholipids. The inclusion of field asymmetry ion mobility spectrometry was shown to enable the enrichment and improved depth of coverage of low-abundance cardiolipins, while ultraviolet photodissociation-tandem mass spectrometry facilitated more complete lipid structural characterisation compared with conventional collision-induced dissociation, including unambiguous assignment of the odd-numbered acyl-chains as containing cyclopropyl modifications. Proteome analysis using data-dependent acquisition nano-liquid chromatography mass spectrometry and tandem mass spectrometry analysis identified 83% of the predicted E. coli lipid metabolism enzymes, which enabled the temporal dependence associated with the expression of key enzymes responsible for the observed adaptive lipid metabolism to be determined, including those involved in phospholipid metabolism (e.g., ClsB and Cfa), fatty acid synthesis (e.g., FabH) and degradation (e.g., FadA/B,D,E,I,J and M), and proteins involved in the oxidative stress response resulting from the generation of reactive oxygen species during β-oxidation or lipid degradation. Full article
(This article belongs to the Special Issue Mass Spectrometry-Based Lipidomics Volume 2)
Show Figures

Figure 1

18 pages, 2036 KiB  
Article
Gold(I) Complexes with P-Donor Ligands and Their Biological Evaluation
by Monika Richert, Renata Mikstacka, Mariusz Walczyk, Marcin Janusz Cieślak, Julia Kaźmierczak-Barańska, Karolina Królewska-Golińska, Tadeusz Mikołaj Muzioł and Stanisław Biniak
Processes 2021, 9(12), 2100; https://doi.org/10.3390/pr9122100 - 23 Nov 2021
Cited by 1 | Viewed by 3038
Abstract
Gold(I) complexes with phosphine ligands—[Au(TrippyPhos)Cl] (1) (TrippyPhos = 1-[2-[bis(tert-butyl)phosphino]phenyl]-3,5-diphenyl-1H-pyrazole), [Au(BippyPhos)Cl]0.5CH2Cl2 (2) (BippyPhos = 5-(di-tert-butylphosphino)-1, 3, 5-triphenyl-1H-[1,4]bipyrazole), and [Au(meCgPPh)Cl] (3) (meCgPPh = 1,3,5,7-tetramethyl-6-phenyl-2,4,8-trioxa-6-phosphaadamantane—were investigated as [...] Read more.
Gold(I) complexes with phosphine ligands—[Au(TrippyPhos)Cl] (1) (TrippyPhos = 1-[2-[bis(tert-butyl)phosphino]phenyl]-3,5-diphenyl-1H-pyrazole), [Au(BippyPhos)Cl]0.5CH2Cl2 (2) (BippyPhos = 5-(di-tert-butylphosphino)-1, 3, 5-triphenyl-1H-[1,4]bipyrazole), and [Au(meCgPPh)Cl] (3) (meCgPPh = 1,3,5,7-tetramethyl-6-phenyl-2,4,8-trioxa-6-phosphaadamantane—were investigated as types of bioactive gold metallodrugs. Complexes (1)–(3) were characterized using IR, 1H, 13C, 31P NMR spectroscopy, elemental analysis and mass spectrometry (FAB-MS). Complexes of (1) and (2) exhibited substantial in vitro cytotoxicity (IC50 = 0.5–7.0 μM) against both the cisplatin-sensitive and -resistant variants of the A2780 human ovarian carcinoma cell line, as well as against the A549 human lung carcinoma, K562 chronic myelogenous leukemia, and HeLa (human cervix carcinoma) cells. However, among the compounds studied, complex (2) showed the most promising biological properties: the highest stability in biologically relevant media, selectivity towards cancer cells over the non-cancer cells (HUVEC, human umbilical vein endothelial cells), and the highest inhibitory effect on cytosolic NADPH-dependent reductases in A2780 and A2780cis cells among the gold complexes under analysis. Full article
Show Figures

Graphical abstract

19 pages, 2645 KiB  
Article
Integrated N- and O-Glycomics of Acute Myeloid Leukemia (AML) Cell Lines
by Constantin Blöchl, Di Wang, Katarina Madunić, Guinevere S. M. Lageveen-Kammeijer, Christian G. Huber, Manfred Wuhrer and Tao Zhang
Cells 2021, 10(11), 3058; https://doi.org/10.3390/cells10113058 - 6 Nov 2021
Cited by 19 | Viewed by 4625
Abstract
Acute myeloid leukemia (AML) is characterized by a dysregulated expansion of poorly differentiated myeloid cells. Although patients are usually treated effectively by chemotherapy, a high rate of relapsed or refractory disease poses a major hurdle in its treatment. Recently, several studies have proposed [...] Read more.
Acute myeloid leukemia (AML) is characterized by a dysregulated expansion of poorly differentiated myeloid cells. Although patients are usually treated effectively by chemotherapy, a high rate of relapsed or refractory disease poses a major hurdle in its treatment. Recently, several studies have proposed implications of protein glycosylation in the pathobiology of AML including chemoresistance. Accordingly, associations have been found between specific glycan epitopes and the outcome of the disease. To advance this poorly studied field, we performed an exploratory glycomics study characterizing 21 widely used AML cell lines. Exploiting the benefits of porous graphitized carbon chromatography coupled to tandem mass spectrometry (PGC nano-LC-MS2), we qualitatively and quantitatively profiled N- and O-linked glycans. AML cell lines exhibited distinct glycan fingerprints differing in relevant glycan traits correlating with their cellular phenotype as classified by the FAB system. By implementing transcriptomics data, specific glycosyltransferases and hematopoietic transcription factors were identified, which are candidate drivers of the glycan phenotype of these cells. In conclusion, we report the varying expression of glycan structures across a high number of AML cell lines, including those associated with poor prognosis, identified underlying glycosyltransferases and transcription factors, and provide insights into the regulation of the AML glycan repertoire. Full article
Show Figures

Graphical abstract

23 pages, 12730 KiB  
Article
Glycan Profile Analysis of Engineered Trastuzumab with Rationally Added Glycosylation Sequons Presents Significantly Increased Glycan Complexity
by Esteban Cruz, Vicki Sifniotis, Zeynep Sumer-Bayraktar, Mouhamad Reslan, Lorna Wilkinson-White, Stuart Cordwell and Veysel Kayser
Pharmaceutics 2021, 13(11), 1747; https://doi.org/10.3390/pharmaceutics13111747 - 20 Oct 2021
Cited by 3 | Viewed by 3237
Abstract
Protein aggregation constitutes a recurring complication in the manufacture and clinical use of therapeutic monoclonal antibodies (mAb) and mAb derivatives. Antibody aggregates can reduce production yield, cause immunogenic reactions, decrease the shelf-life of the pharmaceutical product and impair the capacity of the antibody [...] Read more.
Protein aggregation constitutes a recurring complication in the manufacture and clinical use of therapeutic monoclonal antibodies (mAb) and mAb derivatives. Antibody aggregates can reduce production yield, cause immunogenic reactions, decrease the shelf-life of the pharmaceutical product and impair the capacity of the antibody monomer to bind to its cognate antigen. A common strategy to tackle protein aggregation involves the identification of surface-exposed aggregation-prone regions (APR) for replacement through protein engineering. It was shown that the insertion of N-glycosylation sequons on amino acids proximal to an aggregation-prone region can increase the physical stability of the protein by shielding the APR, thus preventing self-association of antibody monomers. We recently implemented this approach in the Fab region of full-size adalimumab and demonstrated that the thermodynamic stability of the Fab domain increases upon N-glycosite addition. Previous experimental data reported for this technique have lacked appropriate confirmation of glycan occupancy and structural characterization of the ensuing glycan profile. Herein, we mutated previously identified candidate positions on the Fab domain of Trastuzumab and employed tandem mass spectrometry to confirm attachment and obtain a detailed N-glycosylation profile of the mutants. The Trastuzumab glycomutants displayed a glycan profile with significantly higher structural heterogeneity compared to the HEK Trastuzumab antibody, which contains a single N-glycosylation site per heavy chain located in the CH2 domain of the Fc region. These findings suggest that Fab N-glycosites have higher accessibility to enzymes responsible for glycan maturation. Further, we have studied effects on additional glycosylation on protein stability via accelerated studies by following protein folding and aggregation propensities and observed that additional glycosylation indeed enhances physical stability and prevent protein aggregation. Our findings shed light into mAb glycobiology and potential implications in the application of this technique for the development of “biobetter” antibodies. Full article
(This article belongs to the Special Issue Recombinant Therapeutic Proteins for Drug Delivery)
Show Figures

Figure 1

16 pages, 1345 KiB  
Article
Spirostanol Sapogenins and Saponins from Convallaria majalis L. Structural Characterization by 2D NMR, Theoretical GIAO DFT Calculations and Molecular Modeling
by Karolina Dąbrowska-Balcerzak, Jadwiga Nartowska, Iwona Wawer, Paweł Siudem and Katarzyna Paradowska
Molecules 2021, 26(10), 2999; https://doi.org/10.3390/molecules26102999 - 18 May 2021
Cited by 6 | Viewed by 3582
Abstract
Two new spirostanol sapogenins (5β-spirost-25(27)-en-1β,2β,3β,5β-tetrol 3 and its 25,27-dihydro derivative, (25S)-spirostan-1β,2β,3β,5β-tetrol 4) and four new saponins were isolated from the roots and rhizomes of Convallaria majalis L. together with known sapogenins (isolated from Liliaceae): 5β-spirost-25(27)-en-1β,3β-diol 1, (25S)-spirostan-1β,3β-diol 2, 5β-spirost-25(27)-en-1β,3β,4β,5β-tetrol [...] Read more.
Two new spirostanol sapogenins (5β-spirost-25(27)-en-1β,2β,3β,5β-tetrol 3 and its 25,27-dihydro derivative, (25S)-spirostan-1β,2β,3β,5β-tetrol 4) and four new saponins were isolated from the roots and rhizomes of Convallaria majalis L. together with known sapogenins (isolated from Liliaceae): 5β-spirost-25(27)-en-1β,3β-diol 1, (25S)-spirostan-1β,3β-diol 2, 5β-spirost-25(27)-en-1β,3β,4β,5β-tetrol 5, (25S)-spirostan-1β,3β,4β,5β-tetrol 6, 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 7 and (25S)-spirostan-1β,2β,3β,4β,5β-pentol 8. New steroidal saponins were found to be pentahydroxy 5-O-glycosides; 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 5-O-β-galactopyranoside 9, 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 5-O-β-arabinonoside 11, 5β-(25S)-spirostan-1β,2β,3β,4β,5β-pentol 5-O-galactoside 10 and 5β-(25S)-spirostan-1β,2β,3β,4β,5β-pentol 5-O-arabinoside 12 were isolated for the first time. The structures of those compounds were determined by NMR spectroscopy, including 2D COSY, HMBC, HSQC, NOESY, ROESY experiments, theoretical calculations of shielding constants by GIAO DFT, and mass spectrometry (FAB/LSI HR MS). An attempt was made to test biological activity, particularly as potential chemotherapeutic agents, using in silico methods. A set of 12 compounds was docked to the PDB structures of HER2 receptor and tubulin. The results indicated that diols have a higher affinity to the analyzed targets than tetrols and pentols. Two compounds (25S)-spirosten-1β,3β-diol 1 and 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 5-O-galactoside 9 were selected for further evaluation of biological activity. Full article
Show Figures

Figure 1

13 pages, 2412 KiB  
Article
Guaianolide Sesquiterpene Lactones from Centaurothamnus maximus
by Taha A. Hussien, Tarik A. Mohamed, Abdelsamed I. Elshamy, Mahmoud F. Moustafa, Hesham R. El-Seedi, Paul W. Pare and Mohamed-Elamir F. Hegazy
Molecules 2021, 26(7), 2055; https://doi.org/10.3390/molecules26072055 - 3 Apr 2021
Cited by 10 | Viewed by 4601
Abstract
Centaurothamnus maximus (family Asteraceae), is a leafy shrub indigenous to the southwestern Arabian Peninsula. With a paucity of phytochemical data on this species, we set out to chemically characterize the plant. From the aerial parts, two newly identified guaianolides were isolated: 3β-hydroxy-4α(acetoxy)-4β(hydroxymethyl)-8α-(4-hydroxy methacrylate)-1α [...] Read more.
Centaurothamnus maximus (family Asteraceae), is a leafy shrub indigenous to the southwestern Arabian Peninsula. With a paucity of phytochemical data on this species, we set out to chemically characterize the plant. From the aerial parts, two newly identified guaianolides were isolated: 3β-hydroxy-4α(acetoxy)-4β(hydroxymethyl)-8α-(4-hydroxy methacrylate)-1αH,5αH, 6αH-gual-10(14),11(13)-dien-6,12-olide (1) and 15-descarboxy picrolide A (2). Seven previously reported compounds were also isolated: 3β, 4α, 8α-trihydroxy-4-(hydroxymethyl)-lαH, 5αH, 6βH, 7αH-guai-10(14),11(13)-dien-6,12-olide (3), chlorohyssopifolin B (4), cynaropikrin (5), hydroxyjanerin (6), chlorojanerin (7), isorhamnetin (8), and quercetagetin-3,6-dimethyl ether-4’-O-β-d-pyranoglucoside (9). Chemical structures were elucidated using spectroscopic techniques, including High Resolution Fast Atom Bombardment Mass Spectrometry (HR-FAB-MS), 1D NMR; 1H, 13C NMR, Distortionless Enhancement by Polarization Transfer (DEPT), and 2D NMR (1H-1H COSY, HMQC, HMBC) analyses. In addition, a biosynthetic pathway for compounds 19 is proposed. The chemotaxonomic significance of the reported sesquiterpenoids and flavonoids considering reports from other Centaurea species is examined. Full article
Show Figures

Figure 1

5 pages, 866 KiB  
Short Note
2-Propyl-N′-[1,7,7-trimethylbicyclo[2.2.1]hept-2-ylidene]pentanehydrazide
by Mariia Nesterkina, Dmytro Barbalat, Ildar Rakipov and Iryna Kravchenko
Molbank 2020, 2020(4), M1164; https://doi.org/10.3390/M1164 - 26 Oct 2020
Cited by 1 | Viewed by 2684
Abstract
2-Propyl-N′-[1,7,7-trimethylbicyclo[2.2.1]hept-2-ylidene]pentanehydrazide was obtained in 80% yield via the Einhorn variation of the Schotten–Baumann method by (+)-camphor hydrazide condensation with valproic acid (VPA) chloride. The structure of the titled compound was verified by Raman, FTIR, 1H-NMR, and 13C-NMR spectral analysis [...] Read more.
2-Propyl-N′-[1,7,7-trimethylbicyclo[2.2.1]hept-2-ylidene]pentanehydrazide was obtained in 80% yield via the Einhorn variation of the Schotten–Baumann method by (+)-camphor hydrazide condensation with valproic acid (VPA) chloride. The structure of the titled compound was verified by Raman, FTIR, 1H-NMR, and 13C-NMR spectral analysis along with FAB-mass spectrometry. Thermal properties of synthesized derivative were elucidated by DSC and its purity by HPLC. The compound was successfully tested as a potential anticonvulsant agent based on models of chemically- and electrically-induced seizures. Full article
(This article belongs to the Special Issue Synthesis of Flavonoids or Other Nature-Inspired Small Molecules)
Show Figures

Graphical abstract

Back to TopTop