Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = F-doped tin oxide films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10963 KiB  
Article
Label-Free Electrochemical Dopamine Biosensor Based on Electrospun Nanofibers of Polyaniline/Carbon Nanotube Composites
by Chanaporn Kaewda and Saengrawee Sriwichai
Biosensors 2024, 14(7), 349; https://doi.org/10.3390/bios14070349 - 18 Jul 2024
Cited by 4 | Viewed by 2382
Abstract
The development of conducting polymer incorporated with carbon materials-based electrochemical biosensors has been intensively studied due to their excellent electrical, optical, thermal, physical and chemical properties. In this work, a label-free electrochemical dopamine (DA) biosensor based on polyaniline (PANI) and its aminated derivative, [...] Read more.
The development of conducting polymer incorporated with carbon materials-based electrochemical biosensors has been intensively studied due to their excellent electrical, optical, thermal, physical and chemical properties. In this work, a label-free electrochemical dopamine (DA) biosensor based on polyaniline (PANI) and its aminated derivative, i.e., poly(3-aminobenzylamine) (PABA), composited with functionalized multi-walled carbon nanotubes (f-CNTs), was developed to utilize a conducting polymer as a transducing material. The electrospun nanofibers of the composites were fabricated on the surface of fluorine-doped tin oxide (FTO)-coated glass substrate under the optimized condition. The PANI/f-CNTs and PABA/f-CNTs electrospun nanofibers were characterized by attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which confirmed the existence of f-CNTs in the composites. The electroactivity of the electrospun nanofibers was investigated in phosphate buffer saline solution using cyclic voltammetry (CV) before being employed for label-free electrochemical detection of DA using differential pulse voltammetry (DPV). The sensing performances including sensitivity, selectivity, stability, repeatability and reproducibility of the fabricated electrospun nanofiber films were also electrochemically evaluated. The electrochemical DA biosensor based on PANI/f-CNTs and PABA/f-CNTs electrospun nanofibers exhibited a sensitivity of 6.88 µA·cm−2·µM−1 and 7.27 µA·cm−2·µM−1 in the linear range of 50–500 nM (R2 = 0.98) with a limit of detection (LOD) of 0.0974 µM and 0.1554 µM, respectively. The obtained DA biosensor showed great stability, repeatability and reproducibility with precious selectivity under the common interferences, i.e., glucose, ascorbic acid and uric acid. Moreover, the developed electrochemical DA biosensor also showed the good reliability under detection of DA in artificial urine. Full article
(This article belongs to the Special Issue Biomaterials for Biosensing Applications)
Show Figures

Graphical abstract

12 pages, 4531 KiB  
Communication
Antibacterial Hydrophilic ZnO Microstructure Film with Underwater Oleophobic and Self-Cleaning Antifouling Properties
by Yannan Li, Yu Xue, Jie Wang, Dan Zhang, Yan Zhao and Jun-Jie Liu
Nanomaterials 2024, 14(2), 150; https://doi.org/10.3390/nano14020150 - 10 Jan 2024
Cited by 1 | Viewed by 1775
Abstract
Super-hydrophilic and oleophobic functional materials can prevent pollution or adsorption by repelling oil, and have good circulation. However, traditional strategies for preparing these functional materials either use expensive fabrication machines or contain possibly toxic organic polymers, which may prohibit the practical application. The [...] Read more.
Super-hydrophilic and oleophobic functional materials can prevent pollution or adsorption by repelling oil, and have good circulation. However, traditional strategies for preparing these functional materials either use expensive fabrication machines or contain possibly toxic organic polymers, which may prohibit the practical application. The research of multifunctional ZnO microstructures or nanoarrays thin films with super-hydrophilic, antifouling, and antibacterial properties has not been reported yet. Moreover, the exploration of underwater oleophobic and self-cleaning antifouling properties in ZnO micro/nanostructures is still in its infancy. Here, we prepared ZnO microstructured films on fluorine-doped tin oxide substrates (F-ZMF) for the development of advanced self-cleaning type super-hydrophilic and oleophobic materials. With the increase of the accelerators, the average size of the F-ZMF microstructures decreased. The F-ZMF shows excellent self-cleaning performance and hydrophilic (water contact angle ≤ 10°) and oleophobic characteristics in the underwater antifouling experiment. Under a dark condition, F-ZMF-4 showed good antibacterial effects against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with inhibition rates of 99.1% and 99.9%, respectively. This study broadens the application scope of ZnO-based material and provides a novel prospect for the development of self-cleaning super-hydrophilic and oleophobic materials. Full article
(This article belongs to the Special Issue From Biomass to Nanomaterials)
Show Figures

Figure 1

16 pages, 10973 KiB  
Article
Preparation of Nanostructured Sn/Ti Oxide Hybrid Films with Terpineol/PEG-Based Nanofluids: Perovskite Solar Cell Applications
by Saeid Vafaei, Vamsi Krishna Boddu, Stephen Jala, Pavan Kumar Bezawada, Nagisa Hattori, Seiho Higashi, Takashi Sugiura and Kazuhiro Manseki
Materials 2023, 16(8), 3136; https://doi.org/10.3390/ma16083136 - 16 Apr 2023
Cited by 5 | Viewed by 2066
Abstract
Tin oxide (SnO2) and titanium dioxide (TiO2) are recognized as attractive energy materials applicable for lead halide perovskite solar cells (PSCs). Sintering is one of the effective strategies for improving the carrier transport of semiconductor nanomaterials. Using the alternative [...] Read more.
Tin oxide (SnO2) and titanium dioxide (TiO2) are recognized as attractive energy materials applicable for lead halide perovskite solar cells (PSCs). Sintering is one of the effective strategies for improving the carrier transport of semiconductor nanomaterials. Using the alternative metal-oxide-based ETL, nanoparticles are often used in a way that they are dispersed in a precursor liquid prior to their thin-film deposition. Currently, the creation of PSCs using nanostructured Sn/Ti oxide thin-film ETL is one of the topical issues for the development of high-efficiency PSCs. Here, we demonstrate the preparation of terpineol/PEG-based fluid containing both tin and titanium compounds that can be utilized for the formation of a hybrid Sn/Ti oxide ETL on a conductive substrate (F-doped SnO2 glass substrate: FTO). We also pay attention to the structural analysis of the Sn/Ti metal oxide formation at the nanoscale using a high-resolution transmission electron microscope (HR-TEM). The variation of the nanofluid composition, i.e., the concentration of tin and titanium sources, was examined to obtain a uniform transparent thin film by spin-coating and sintering processes. The maximum power conversion efficiency was obtained for the concentration condition of [SnCl2·2H2O]/[titanium tetraisopropoxide (TTIP)] = 25:75 in the terpineol/PEG-based precursor solution. Our method for preparing the ETL nanomaterials provides useful guidance for the creation of high-performance PSCs using the sintering method. Full article
Show Figures

Figure 1

16 pages, 5099 KiB  
Article
Symmetric and Asymmetric Supercapacitors of ITO Glass and Film Electrodes Consisting of Carbon Dot and Magnetite
by Misganu Chewaka Fite, Po-Jen Wang and Toyoko Imae
Batteries 2023, 9(3), 162; https://doi.org/10.3390/batteries9030162 - 8 Mar 2023
Cited by 6 | Viewed by 2735
Abstract
To enhance the energy density, hybrid supercapacitors were fabricated, and their electrochemical features were investigated using a two-electrode configuration. By assembling nitrogen-doped graphene/magnetite (NG/Fe3O4) on indium tin oxide-coated (ITO) glass as a cathode and NG/carbon dots(Cdots)/Fe3O4 [...] Read more.
To enhance the energy density, hybrid supercapacitors were fabricated, and their electrochemical features were investigated using a two-electrode configuration. By assembling nitrogen-doped graphene/magnetite (NG/Fe3O4) on indium tin oxide-coated (ITO) glass as a cathode and NG/carbon dots(Cdots)/Fe3O4 on ITO glass as an anode, a much higher gravimetric specific capacitance of 252.2 F/g, at a current density of 0.5 A/g, was obtained from this asymmetric supercapacitor compared with that (212.0 F/g) of a symmetric supercapacitor (NG/Cdots/Fe3O4)//(NG/Cdots/Fe3O4). A gravimetric energy density of 90.1 Wh/kg was obtained for an asymmetric ITO glass device at a specific power density of 400.0 W/kg. On the other hand, when an asymmetric two-electrode cell was fabricated with a Cdots/polypyrrole (PPy)/Fe3O4/TEMPO-oxidized cellulose nanofiber (TOCNF)-film electrode and a Cdots/PPy/TOCNF-film electrode, the specific capacitance (107.1 F/g) at a current density of 0.8 A/g was lower than that (456.4 F/g) of a symmetric (Cdots/PPy/Fe3O4/TOCNF)//(Cdots/PPy/Fe3O4/TOCNF)-film cell. Subsequently, a gravimetric energy density of 40.6 Wh/kg was achieved for a symmetric-film device at a specific power density of 320 W/kg. These results suggest that our method offers an efficient approach to developing symmetric and asymmetric devices consisting of hybrid materials for meeting the ever-increasing demands on energy-storage devices. Full article
Show Figures

Figure 1

15 pages, 6805 KiB  
Article
Surface Morphology of Textured Transparent Conductive Oxide Thin Film Seen by Various Probes: Visible Light, X-rays, Electron Scattering and Contact Probe
by Krunoslav Juraić, Pavo Dubček, Mario Bohač, Andreja Gajović, Sigrid Bernstorff, Miran Čeh, Aden Hodzic and Davor Gracin
Materials 2022, 15(14), 4814; https://doi.org/10.3390/ma15144814 - 10 Jul 2022
Cited by 9 | Viewed by 2590
Abstract
Fluorine-doped tin oxide thin films (SnO2:F) are widely used as transparent conductive oxide electrodes in thin-film solar cells because of their appropriate electrical and optical properties. The surface morphology of these films influences their optical properties and therefore plays an important [...] Read more.
Fluorine-doped tin oxide thin films (SnO2:F) are widely used as transparent conductive oxide electrodes in thin-film solar cells because of their appropriate electrical and optical properties. The surface morphology of these films influences their optical properties and therefore plays an important role in the overall efficiencies of the solar cells in which they are implemented. At rough surfaces light is diffusely scattered, extending the optical path of light inside the active layer of the solar cell, which in term improves light absorption and solar cell conversion efficiency. In this work, we investigated the surface morphology of undoped and doped SnO2 thin films and their influence on the optical properties of the films. We have compared and analysed the results obtained by several complementary methods for thin-film surface morphology investigation: atomic force microscopy (AFM), transmission electron microscopy (TEM), and grazing-incidence small-angle X-ray scattering (GISAXS). Based on the AFM and TEM results we propose a theoretical model that reproduces well the GISAXS scattering patterns. Full article
Show Figures

Figure 1

10 pages, 16552 KiB  
Article
Electrodeposition of Lithium-Based Upconversion Nanoparticle Thin Films for Efficient Perovskite Solar Cells
by Masfer Alkahtani, Hussam Qasem, Sultan M. Alenzi, Najla Alsofyani, Anfal Alfahd, Abdulaziz Aljuwayr and Philip R. Hemmer
Nanomaterials 2022, 12(12), 2115; https://doi.org/10.3390/nano12122115 - 20 Jun 2022
Cited by 12 | Viewed by 3086
Abstract
In this work, high-quality lithium-based, LiYF4=Yb3+,Er3+ upconversion (UC) thin film was electrodeposited on fluorene-doped tin oxide (FTO) glass for solar cell applications. A complete perovskite solar cell (PSC) was [...] Read more.
In this work, high-quality lithium-based, LiYF4=Yb3+,Er3+ upconversion (UC) thin film was electrodeposited on fluorene-doped tin oxide (FTO) glass for solar cell applications. A complete perovskite solar cell (PSC) was fabricated on top of the FTO glass coated with UC thin film and named (UC-PSC device). The fabricated UC-PSC device demonstrated a higher power conversion efficiency (PCE) of 19.1%, an additional photocurrent, and a better fill factor (FF) of 76% in comparison to the pristine PSC device (PCE = ~16.57%; FF = 71%). Furthermore, the photovoltaic performance of the UC-PSC device was then tested under concentrated sunlight with a power conversion efficiency (PCE) of 24% without cooling system complexity. The reported results open the door toward efficient PSCs for renewable and green energy applications. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Perovskite Solar Cells)
Show Figures

Figure 1

16 pages, 19263 KiB  
Article
An Aqueous Exfoliation of WO3 as a Route for Counterions Fabrication—Improved Photocatalytic and Capacitive Properties of Polyaniline/WO3Composite
by Mariusz Szkoda, Zuzanna Zarach, Konrad Trzciński and Andrzej P. Nowak
Materials 2020, 13(24), 5781; https://doi.org/10.3390/ma13245781 - 17 Dec 2020
Cited by 18 | Viewed by 3267
Abstract
In this paper, we demonstrate a novel, electrochemical route of polyaniline/tungsten oxide (PANI)/WO3) film preparation. Polyaniline composite film was electrodeposited on the FTO (fluorine-doped tin oxide) substrate from the aqueous electrolyte that contained aniline (monomer) and exfoliated WO3 as a [...] Read more.
In this paper, we demonstrate a novel, electrochemical route of polyaniline/tungsten oxide (PANI)/WO3) film preparation. Polyaniline composite film was electrodeposited on the FTO (fluorine-doped tin oxide) substrate from the aqueous electrolyte that contained aniline (monomer) and exfoliated WO3 as a source of counter ions. The chemical nature of WO3 incorporated in the polyaniline matrix was investigated using X-ray photoelectron spectroscopy. SEM (scanning electron microscopy) showed the impact of WO3 presence on the morphology of polyaniline film. PANI/WO3 film was tested as an electrode material in an acidic electrolyte. Performed measurements showed the electroactivity of both components and enhanced electrochemical stability of PANI/WO3 in comparison with PANI/Cl. Thus, PANI/WO3 electrodes were utilized to construct the symmetric supercapacitors. The impact of capacitive and diffusion-controlled processes on the mechanism of electrical energy storage was quantitatively determined. Devices exhibited high electrochemical capacity of 135 mF cm−2 (180 F g−1) and satisfactory retention rate of 70% after 10,000 cycles. The electrochemical energy storage device exhibited 1075.6 W kg−1 of power density and 12.25 Wh kg−1 of energy density. We also investigated the photocatalytic performance of the deposited film. Photodegradation efficiencies of methylene blue and methyl orange using PANI/WO3 and PANI/Cl were compared. The mechanism of dye degradation using WO3-containing films was investigated in the presence of scavengers. Significantly higher efficiency of photodecomposition of dyes was achieved for composite films (84% and 86%) in comparison with PANI/Cl (32% and 39%) for methylene blue and methyl orange, respectively. Full article
(This article belongs to the Special Issue Electrode Materials for Energy Storage Applications)
Show Figures

Figure 1

12 pages, 2933 KiB  
Article
Nanomechanical and Material Properties of Fluorine-Doped Tin Oxide Thin Films Prepared by Ultrasonic Spray Pyrolysis: Effects of F-Doping
by Le Thi Cam Tuyen, Sheng-Rui Jian, Nguyen Thanh Tien and Phuoc Huu Le
Materials 2019, 12(10), 1665; https://doi.org/10.3390/ma12101665 - 22 May 2019
Cited by 48 | Viewed by 5941
Abstract
Fluorine-doped tin oxide (FTO) thin films were deposited on glass substrates using ultrasonic spray pyrolysis (USP) at a fixed substrate temperature of 400 °C and various Fluorine/Tin (F/Sn) atomic ratios of 0, 0.1, 0.5, and 1.0. Effects of F/Sn atomic ratios on structural-morphological, [...] Read more.
Fluorine-doped tin oxide (FTO) thin films were deposited on glass substrates using ultrasonic spray pyrolysis (USP) at a fixed substrate temperature of 400 °C and various Fluorine/Tin (F/Sn) atomic ratios of 0, 0.1, 0.5, and 1.0. Effects of F/Sn atomic ratios on structural-morphological, compositional, electrical, optical, and nanomechanical properties of the FTO thin films were systematically studied. The FTO films exhibited a tetragonal structure with preferred orientations of (110), (200), and (211), and polycrystalline morphology with spear-like or coconut shell-like particles on the surfaces. The presence of F-doping was confirmed by XPS results with clear F1s peaks, and F-concentration was determined to be 0.7% for F/Sn = 0.1 and 5.1% for F/Sn = 0.5. Moreover, the resistivity of FTO films reduced remarkably from 4.1 mΩcm at F/Sn = 0 to 0.7 mΩcm at F/Sn = 1, primarily due to the corresponding increase of carrier concentration from 2 × 1020 cm−3 to 1.2 × 1021 cm−3. The average optical transmittance of the films prepared at F/Sn of 0–0.5 was over 90%, and it decreased to 84.4% for the film prepared at F/Sn = 1. The hardness (H) and Young’s modulus (E) of the FTO films increased when the F/Sn ratios increased from 0 to 0.5, reaching maximum values of H = 12.3 ± 0.4 GPa, E = 131.7 ± 8.0 GPa at F/Sn = 0.5. Meanwhile, the H and E reduced considerably when the F/Sn ratio further increased to 1.0, following the inverse Hall-Petch effect approximately, suggesting that the grain boundary effect played a primary role in manipulating the nanomechanical properties of the FTO films. Furthermore, favorable mechanical properties with large H/Ef and H 3 / E f 2 ratios were found for the FTO film prepared at F/Sn = 0.5, which possessed high crystallinity, large grain size, and compact morphology. Full article
(This article belongs to the Special Issue Deformation and Fracture of Thin Films and Nanostructured Materials)
Show Figures

Figure 1

14 pages, 5211 KiB  
Article
Hazy Al2O3-FTO Nanocomposites: A Comparative Study with FTO-Based Nanocomposites Integrating ZnO and S:TiO2 Nanostructures
by Shan-Ting Zhang, Guy Vitrant, Etienne Pernot, Carmen Jiménez, David Muñoz-Rojas and Daniel Bellet
Nanomaterials 2018, 8(6), 440; https://doi.org/10.3390/nano8060440 - 16 Jun 2018
Cited by 3 | Viewed by 5423
Abstract
In this study, we report the use of Al2O3 nanoparticles in combination with fluorine doped tin oxide (F:SnO2, aka FTO) thin films to form hazy Al2O3-FTO nanocomposites. In comparison to previously reported FTO-based nanocomposites [...] Read more.
In this study, we report the use of Al2O3 nanoparticles in combination with fluorine doped tin oxide (F:SnO2, aka FTO) thin films to form hazy Al2O3-FTO nanocomposites. In comparison to previously reported FTO-based nanocomposites integrating ZnO and sulfur doped TiO2 (S:TiO2) nanoparticles (i.e., ZnO-FTO and S:TiO2-FTO nanocomposites), the newly developed Al2O3-FTO nanocomposites show medium haze factor HT of about 30%, while they exhibit the least loss in total transmittance Ttot. In addition, Al2O3-FTO nanocomposites present a low fraction of large-sized nanoparticle agglomerates with equivalent radius req > 1 μm; effectively 90% of the nanoparticle agglomerates show req < 750 nm. The smaller feature size in Al2O3-FTO nanocomposites, as compared to ZnO-FTO and S:TiO2-FTO nanocomposites, makes them more suitable for applications that are sensitive to roughness and large-sized features. With the help of a simple optical model developed in this work, we have simulated the optical scattering by a single nanoparticle agglomerate characterized by bottom radius r0, top radius r1, and height h. It is found that r0 is the main factor affecting the HT(λ), which indicates that the haze factor of Al2O3-FTO and related FTO nanocomposites is mainly determined by the total surface coverage of all the nanoparticle agglomerates present. Full article
Show Figures

Figure 1

9 pages, 3327 KiB  
Article
Poly(3,3-dibenzyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine)/Platinum Composite Films as Potential Counter Electrodes for Dye-Sensitized Solar Cells
by Jung-Chuan Chou, Yu-Chi Huang, Tzi-Yi Wu, Yi-Hung Liao, Chih-Hsien Lai, Chia-Ming Chu and Yu-Jen Lin
Polymers 2017, 9(7), 271; https://doi.org/10.3390/polym9070271 - 7 Jul 2017
Cited by 10 | Viewed by 4973
Abstract
In this study, poly(3,3-dibenzyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine)/platinum composite films (PProDOT-Bz2/Pt) were used as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). The composite films were prepared on fluorine-doped tin oxide (FTO) glass by radio frequency (RF) sputtering to deposit platinum [...] Read more.
In this study, poly(3,3-dibenzyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine)/platinum composite films (PProDOT-Bz2/Pt) were used as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). The composite films were prepared on fluorine-doped tin oxide (FTO) glass by radio frequency (RF) sputtering to deposit platinum (Pt) for 30 s. Afterwards, PProDOT-Bz2 was deposited on the Pt–FTO glass via electrochemical polymerization. The electron transfer process of DSSCs was investigated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The DSSCs with 0.05 C/cm2 PProDOT-Bz2-Pt composite films showed an open circuit voltage (Voc) of 0.70 V, a short-circuit current density (Jsc) of 7.27 mA/cm2, and a fill factor (F.F.) of 68.74%. This corresponded to a photovoltaic conversion efficiency (η) of 3.50% under a light intensity of 100 mW/cm2. Full article
(This article belongs to the Special Issue Functionally Responsive Polymeric Materials)
Show Figures

Graphical abstract

11 pages, 2104 KiB  
Article
Transparent Nanotubular TiO2 Photoanodes Grown Directly on FTO Substrates
by Šárka Paušová, Štěpán Kment, Martin Zlámal, Michal Baudys, Zdeněk Hubička and Josef Krýsa
Molecules 2017, 22(5), 775; https://doi.org/10.3390/molecules22050775 - 10 May 2017
Cited by 9 | Viewed by 5462
Abstract
This work describes the preparation of transparent TiO2 nanotube (TNT) arrays on fluorine-doped tin oxide (FTO) substrates. An optimized electrolyte composition (0.2 mol dm−3 NH4F and 4 mol dm−3 H2O in ethylene glycol) was used for [...] Read more.
This work describes the preparation of transparent TiO2 nanotube (TNT) arrays on fluorine-doped tin oxide (FTO) substrates. An optimized electrolyte composition (0.2 mol dm−3 NH4F and 4 mol dm−3 H2O in ethylene glycol) was used for the anodization of Ti films with different thicknesses (from 100 to 1300 nm) sputtered on the FTO glass substrates. For Ti thicknesses 600 nm and higher, anodization resulted in the formation of TNT arrays with an outer nanotube diameter around 180 nm and a wall thickness around 45 nm, while for anodized Ti thicknesses of 100 nm, the produced nanotubes were not well defined. The transmittance in the visible region (λ = 500 nm) varied from 90% for the thinnest TNT array to 65% for the thickest TNT array. For the fabrication of transparent TNT arrays by anodization, the optimal Ti thickness on FTO was around 1000 nm. Such fabricated TNT arrays with a length of 2500 nm exhibit stable photocurrent densities in aqueous electrolytes (~300 µA cm−2 at potential 0.5 V vs. Ag/AgCl). The stability of the photocurrent response and a sufficient transparency (≥65%) enables the use of transparent TNT arrays in photoelectrochemical applications when the illumination from the support/semiconductor interface is a necessary condition and the transmitted light can be used for another purpose (photocathode or photochemical reaction in the electrolyte). Full article
(This article belongs to the Special Issue Photon-involving Purification of Water and Air)
Show Figures

Figure 1

9 pages, 1811 KiB  
Article
A Surface Photovoltage Study of Surface Defects on Co-Doped TiO2 Thin Films Deposited by Spray Pyrolysis
by Henry Wafula, Albert Juma, Thomas Sakwa, Robinson Musembi and Justus Simiyu
Coatings 2016, 6(3), 30; https://doi.org/10.3390/coatings6030030 - 22 Jul 2016
Cited by 6 | Viewed by 5882
Abstract
Surface photovoltage (SPV) spectroscopy is a powerful tool for studying electronic defects on semiconductor surfaces, at interfaces, and in bulk for a wide range of materials. Undoped and Cobalt-doped TiO2 (CTO) thin films were deposited on Crystalline Silicon (c-Si) and Flourine doped [...] Read more.
Surface photovoltage (SPV) spectroscopy is a powerful tool for studying electronic defects on semiconductor surfaces, at interfaces, and in bulk for a wide range of materials. Undoped and Cobalt-doped TiO2 (CTO) thin films were deposited on Crystalline Silicon (c-Si) and Flourine doped Tin oxide (SnO2:F) substrates by chemical spray pyrolysis at a substrate temperature of 400 °C. The concentration of the Co dopant in the films was determined by Rutherford backscattering spectrometry and ranged between 0 and 4.51 at %. The amplitude of the SPV signals increased proportionately with the amount of Co in the films, which was a result of the enhancement of the slow processes of charge separation and recombination. Photogenerated holes were trapped at the surface, slowing down the time response and relaxation of the samples. The surface states were effectively passivated by a thin In2S3 over-layer sprayed on top of the TiO2 and CTO films. Full article
Show Figures

Figure 1

15 pages, 990 KiB  
Article
Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering
by Ziad Y. Banyamin, Peter J. Kelly, Glen West and Jeffery Boardman
Coatings 2014, 4(4), 732-746; https://doi.org/10.3390/coatings4040732 - 30 Oct 2014
Cited by 236 | Viewed by 20527
Abstract
Fluorine doped tin oxide (FTO) coatings have been prepared using the mid-frequency pulsed DC closed field unbalanced magnetron sputtering technique in an Ar/O2 atmosphere using blends of tin oxide and tin fluoride powder formed into targets. FTO coatings were deposited with a [...] Read more.
Fluorine doped tin oxide (FTO) coatings have been prepared using the mid-frequency pulsed DC closed field unbalanced magnetron sputtering technique in an Ar/O2 atmosphere using blends of tin oxide and tin fluoride powder formed into targets. FTO coatings were deposited with a thickness of 400 nm on glass substrates. No post-deposition annealing treatments were carried out. The effects of the chemical composition on the structural (phase, grain size), optical (transmission, optical band-gap) and electrical (resistivity, charge carrier, mobility) properties of the thin films were investigated. Depositing FTO by magnetron sputtering is an environmentally friendly technique and the use of loosely packed blended powder targets gives an efficient means of screening candidate compositions, which also provides a low cost operation. The best film characteristics were achieved using a mass ratio of 12% SnF2 to 88% SnO2 in the target. The thin film produced was polycrystalline with a tetragonal crystal structure. The optimized conditions resulted in a thin film with average visible transmittance of 83% and optical band-gap of 3.80 eV, resistivity of 6.71 × 10−3 Ω·cm, a carrier concentration (Nd) of 1.46 × 1020 cm−3 and a mobility of 15 cm2/Vs. Full article
(This article belongs to the Special Issue Novel Thin Film Materials for Photovoltaic Applications)
Show Figures

Figure 1

14 pages, 826 KiB  
Article
Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors
by Sutichai Chaisitsak
Sensors 2011, 11(7), 7127-7140; https://doi.org/10.3390/s110707127 - 11 Jul 2011
Cited by 90 | Viewed by 11357
Abstract
This paper reports the improvement in the sensing performance of nanocrystalline SnO2-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition [...] Read more.
This paper reports the improvement in the sensing performance of nanocrystalline SnO2-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer). The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO2 films was investigated. Atomic Force Microscopy (AFM) and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO2 with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time) of the SnO2:F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO2 was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C) with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO2:F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

Back to TopTop