Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Eidolon helvum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 9232 KiB  
Article
A Novel Nobecovirus in an Epomophorus wahlbergi Bat from Nairobi, Kenya
by Meredith C. VanAcker, Koray Ergunay, Paul W. Webala, Maureen Kamau, Janerose Mutura, Rashid Lebunge, Griphin Ochieng Ochola, Brian P. Bourke, Emily G. McDermott, Nicole L. Achee, Le Jiang, John P. Grieco, Erick Keter, Audrey Musanga, Suzan Murray, Jared A. Stabach, Meggan E. Craft, Eric M. Fèvre, Yvonne-Marie Linton and James Hassell
Viruses 2025, 17(4), 557; https://doi.org/10.3390/v17040557 - 12 Apr 2025
Cited by 1 | Viewed by 926
Abstract
Most human emerging infectious diseases are zoonotic, originating in animal hosts prior to spillover to humans. Prioritizing the surveillance of wildlife that overlaps with humans and human activities can increase the likelihood of detecting viruses with a high potential for human infection. Here, [...] Read more.
Most human emerging infectious diseases are zoonotic, originating in animal hosts prior to spillover to humans. Prioritizing the surveillance of wildlife that overlaps with humans and human activities can increase the likelihood of detecting viruses with a high potential for human infection. Here, we obtained fecal swabs from two fruit bat species—Eidolon helvum (n = 6) and Epomophorus wahlbergi (n = 43) (family Pteropodidae)—in peridomestic habitats in Nairobi, Kenya, and used metagenome sequencing to detect microorganisms. A near-complete genome of a novel virus assigned taxonomically to the Coronaviridae family Betacoronavirus genus and Nobecovirus subclade was characterized from E. wahlbergi. Phylogenetic analysis indicates this unique Nobecovirus clade shares a common ancestor with Eidolon/Rousettus Nobecovirus subclades isolated from Madagascar, Kenya, and Cameroon. Recombination was detected across open reading frames, except the spike protein, in all BOOTSCAN analyses, indicating intra-host coinfection and genetic exchange between genome regions. Although Nobecoviruses are currently bat-specific and are not known to be zoonotic, the propensity of coronaviruses to undergo frequent recombination events and the location of the virus alongside high human and livestock densities in one of East Africa’s most rapidly developing cities justifies continued surveillance of animal viruses in high-risk urban landscapes. Full article
(This article belongs to the Special Issue Bat- and Rodent-Borne Zoonotic Viruses)
Show Figures

Figure 1

19 pages, 4916 KiB  
Article
Coronaviruses Are Abundant and Genetically Diverse in West and Central African Bats, including Viruses Closely Related to Human Coronaviruses
by Dowbiss Meta Djomsi, Audrey Lacroix, Abdoul Karim Soumah, Eddy Kinganda Lusamaki, Asma Mesdour, Raisa Raulino, Amandine Esteban, Innocent Ndong Bass, Flaubert Auguste Mba Djonzo, Souana Goumou, Simon Pierre Ndimbo-Kimugu, Guy Lempu, Placide Mbala Kingebeni, Daniel Mukadi Bamuleka, Jacques Likofata, Jean-Jacques Muyembe Tamfum, Abdoulaye Toure, Eitel Mpoudi Ngole, Charles Kouanfack, Eric Delaporte, Alpha Kabinet Keita, Steve Ahuka-Mundeke, Ahidjo Ayouba and Martine Peetersadd Show full author list remove Hide full author list
Viruses 2023, 15(2), 337; https://doi.org/10.3390/v15020337 - 25 Jan 2023
Cited by 8 | Viewed by 3429
Abstract
Bats are at the origin of human coronaviruses, either directly or via an intermediate host. We tested swabs from 4597 bats (897 from the Democratic Republic of Congo (DRC), 2191 from Cameroon and 1509 from Guinea) with a broadly reactive PCR in the [...] Read more.
Bats are at the origin of human coronaviruses, either directly or via an intermediate host. We tested swabs from 4597 bats (897 from the Democratic Republic of Congo (DRC), 2191 from Cameroon and 1509 from Guinea) with a broadly reactive PCR in the RdRp region. Coronaviruses were detected in 903 (19.6%) bats and in all species, with more than 25 individuals tested. The highest prevalence was observed in Eidolon helvum (239/733; 39.9%) and Rhinolophus sp. (306/899; 34.1%), followed by Hipposideros sp. (61/291; 20.9%). Frugivorous bats were predominantly infected with beta coronaviruses from the Nobecovirus subgenus (93.8%), in which at least 6 species/genus-specific subclades were observed. In contrast, insectivorous bats were infected with beta-coronaviruses from different subgenera (Nobecovirus (8.5%), Hibecovirus (32.8%), Merbecovirus (0.5%) and Sarbecovirus (57.6%)) and with a high diversity of alpha-coronaviruses. Overall, our study shows a high prevalence and genetic diversity of coronaviruses in bats and illustrates that Rhinolophus bats in Africa are infected at high levels with the Sarbecovirus subgenus, to which SARS-CoV-2 belongs. It is important to characterize in more detail the different coronavirus lineages from bats for their potential to infect human cells, their evolution and to study frequency and modes of contact between humans and bats in Africa. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

13 pages, 11287 KiB  
Article
Dynamics of Antibodies to Ebolaviruses in an Eidolon helvum Bat Colony in Cameroon
by Dowbiss Meta Djomsi, Flaubert Auguste Mba Djonzo, Innocent Ndong Bass, Maëliss Champagne, Audrey Lacroix, Guillaume Thaurignac, Amandine Esteban, Helene De Nys, Mathieu Bourgarel, Jane-Francis Akoachere, Eric Delaporte, Ahidjo Ayouba, Julien Cappelle, Eitel Mpoudi Ngole and Martine Peeters
Viruses 2022, 14(3), 560; https://doi.org/10.3390/v14030560 - 9 Mar 2022
Cited by 7 | Viewed by 3329
Abstract
The ecology of ebolaviruses is still poorly understood and the role of bats in outbreaks needs to be further clarified. Straw-colored fruit bats (Eidolon helvum) are the most common fruit bats in Africa and antibodies to ebolaviruses have been documented in [...] Read more.
The ecology of ebolaviruses is still poorly understood and the role of bats in outbreaks needs to be further clarified. Straw-colored fruit bats (Eidolon helvum) are the most common fruit bats in Africa and antibodies to ebolaviruses have been documented in this species. Between December 2018 and November 2019, samples were collected at approximately monthly intervals in roosting and feeding sites from 820 bats from an Eidolon helvum colony. Dried blood spots (DBS) were tested for antibodies to Zaire, Sudan, and Bundibugyo ebolaviruses. The proportion of samples reactive with GP antigens increased significantly with age from 0–9/220 (0–4.1%) in juveniles to 26–158/225 (11.6–70.2%) in immature adults and 10–225/372 (2.7–60.5%) in adult bats. Antibody responses were lower in lactating females. Viral RNA was not detected in 456 swab samples collected from 152 juvenile and 214 immature adult bats. Overall, our study shows that antibody levels increase in young bats suggesting that seroconversion to Ebola or related viruses occurs in older juvenile and immature adult bats. Multiple year monitoring would be needed to confirm this trend. Knowledge of the periods of the year with the highest risk of Ebolavirus circulation can guide the implementation of strategies to mitigate spill-over events. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

12 pages, 1193 KiB  
Article
Serum Neutralization Profiles of Straw-Colored Fruit Bats (Eidolon helvum) in Makurdi (Nigeria), against Four Lineages of Lagos Bat Lyssavirus
by Veronica Odinya Ameh, Guanghui Wu, Hooman Goharriz, Rebecca Shipley, Anthony R. Fooks, Claude T. Sabeta and Lorraine M. McElhinney
Viruses 2021, 13(12), 2378; https://doi.org/10.3390/v13122378 - 27 Nov 2021
Cited by 3 | Viewed by 2611
Abstract
Lagos bat lyssavirus (LBV) comprising four lineages (A, B, C and D) can potentially cause the fatal disease rabies. Although LBV-B was initially isolated in Nigeria in 1956, there is no information on LBV lineages circulating in Nigeria. This study was undertaken for [...] Read more.
Lagos bat lyssavirus (LBV) comprising four lineages (A, B, C and D) can potentially cause the fatal disease rabies. Although LBV-B was initially isolated in Nigeria in 1956, there is no information on LBV lineages circulating in Nigeria. This study was undertaken for the first time to measure the neutralizing antibodies against four lineages of LBVs in straw-colored fruit bats (Eidolon helvum) in Makurdi, Nigeria. Serum samples (n = 180) collected during two periods (November 2017–March 2018 and November 2018–March 2019) from terminally bled bats captured for human consumption were tested using a modified fluorescent antibody virus neutralization (mFAVN) assay. A high proportion of bat sera (74%) neutralized at least one lineage of LBV (with reciprocal titers from 9 to >420.89) and most of them neutralized LBV-A (63%), followed by LBV-D (49%), LBV-C (45%) and LBV-B (24%). The majority of positive sera (75%, n = 100) neutralized multiple LBV lineages while the remaining 25% (n = 33) neutralized only a single lineage, i.e., LBV-A (n = 23), LBV-D (n = 8) and LBV-C (n = 2). None exclusively neutralized LBV-B. The results suggest that exposure to LBV is common in E. helvum and that LBV-A (but not LBV-B) is likely to be circulating in this region of Nigeria. Full article
Show Figures

Figure 1

12 pages, 2278 KiB  
Article
Persistence of Multiple Paramyxoviruses in a Closed Captive Colony of Fruit Bats (Eidolon helvum)
by Louise Gibson, Maria Puig Ribas, James Kemp, Olivier Restif, Richard D. Suu-Ire, James L. N. Wood and Andrew A. Cunningham
Viruses 2021, 13(8), 1659; https://doi.org/10.3390/v13081659 - 20 Aug 2021
Cited by 13 | Viewed by 4715
Abstract
Bats have been identified as the natural hosts of several emerging zoonotic viruses, including paramyxoviruses, such as Hendra and Nipah viruses, that can cause fatal disease in humans. Recently, African fruit bats with populations that roost in or near urban areas have been [...] Read more.
Bats have been identified as the natural hosts of several emerging zoonotic viruses, including paramyxoviruses, such as Hendra and Nipah viruses, that can cause fatal disease in humans. Recently, African fruit bats with populations that roost in or near urban areas have been shown to harbour a great diversity of paramyxoviruses, posing potential spillover risks to public health. Understanding the circulation of these viruses in their reservoir populations is essential to predict and prevent future emerging diseases. Here, we identify a high incidence of multiple paramyxoviruses in urine samples collected from a closed captive colony of circa 115 straw-coloured fruit bats (Eidolon helvum). The sequences detected have high nucleotide identities with those derived from free ranging African fruit bats and form phylogenetic clusters with the Henipavirus genus, Pararubulavirus genus and other unclassified paramyxoviruses. As this colony had been closed for 5 years prior to this study, these results indicate that within-host paramyxoviral persistence underlies the role of bats as reservoirs of these viruses. Full article
(This article belongs to the Special Issue Ecology of Virus Emergence from Wildlife)
Show Figures

Figure 1

13 pages, 1584 KiB  
Article
Longitudinal Secretion of Paramyxovirus RNA in the Urine of Straw-Coloured Fruit Bats (Eidolon helvum)
by Elli Rosa Jolma, Louise Gibson, Richard D. Suu-Ire, Grace Fleischer, Samuel Asumah, Sylvester Languon, Olivier Restif, James L. N. Wood and Andrew A. Cunningham
Viruses 2021, 13(8), 1654; https://doi.org/10.3390/v13081654 - 20 Aug 2021
Cited by 4 | Viewed by 4137
Abstract
The straw-coloured fruit bat (Eidolon helvum) is widespread in sub-Saharan Africa and is widely hunted for bushmeat. It is known to harbour a range of paramyxoviruses, including rubuloviruses and henipaviruses, but the zoonotic potential of these is unknown. We previously found [...] Read more.
The straw-coloured fruit bat (Eidolon helvum) is widespread in sub-Saharan Africa and is widely hunted for bushmeat. It is known to harbour a range of paramyxoviruses, including rubuloviruses and henipaviruses, but the zoonotic potential of these is unknown. We previously found a diversity of paramyxoviruses within a small, captive colony of E. helvum after it had been closed to contact with other bats for 5 years. In this study, we used under-roost urine collection to further investigate the paramyxovirus diversity and ecology in this colony, which had been closed to the outside for 10 years at the time of sampling. By sampling urine weekly throughout an entire year, we investigated possible seasonal patterns of shedding of virus or viral RNA. Using a generic paramyxovirus L-gene PCR, we detected eight distinct paramyxovirus RNA sequences. Six distinct sequences were detected using a Henipavirus-specific PCR that targeted a different region of the L-gene. Sequence detection had a bi-annual pattern, with the greatest peak in July, although different RNA sequences appeared to have different shedding patterns. No significant associations were detected between sequence detection and birthing season, environmental temperature or humidity, and no signs of illness were detected in any of the bats in the colony during the period of sample collection. Full article
(This article belongs to the Special Issue Ecology of Virus Emergence from Wildlife)
Show Figures

Figure 1

16 pages, 2612 KiB  
Article
Characterization of a Novel Bat Adenovirus Isolated from Straw-Colored Fruit Bat (Eidolon helvum)
by Hirohito Ogawa, Masahiro Kajihara, Naganori Nao, Asako Shigeno, Daisuke Fujikura, Bernard M. Hang’ombe, Aaron S. Mweene, Alisheke Mutemwa, David Squarre, Masao Yamada, Hideaki Higashi, Hirofumi Sawa and Ayato Takada
Viruses 2017, 9(12), 371; https://doi.org/10.3390/v9120371 - 4 Dec 2017
Cited by 24 | Viewed by 6578
Abstract
Bats are important reservoirs for emerging zoonotic viruses. For extensive surveys of potential pathogens in straw-colored fruit bats (Eidolon helvum) in Zambia, a total of 107 spleen samples of E. helvum in 2006 were inoculated onto Vero E6 cells. The cell [...] Read more.
Bats are important reservoirs for emerging zoonotic viruses. For extensive surveys of potential pathogens in straw-colored fruit bats (Eidolon helvum) in Zambia, a total of 107 spleen samples of E. helvum in 2006 were inoculated onto Vero E6 cells. The cell culture inoculated with one of the samples (ZFB06-106) exhibited remarkable cytopathic changes. Based on the ultrastructural property in negative staining and cross-reactivity in immunofluorescence assays, the virus was suspected to be an adenovirus, and tentatively named E. helvum adenovirus 06-106 (EhAdV 06-106). Analysis of the full-length genome of 30,134 bp, determined by next-generation sequencing, showed the presence of 28 open reading frames. Phylogenetic analyses confirmed that EhAdV 06-106 represented a novel bat adenovirus species in the genus Mastadenovirus. The virus shared similar characteristics of low G + C contents with recently isolated members of species Bat mastadenoviruses E, F and G, from which EhAdV 06-106 diverged by more than 15% based on the distance matrix analysis of DNA polymerase amino acid sequences. According to the taxonomic criteria, we propose the tentative new species name “Bat mastadenovirus H”. Because EhAdV 06-106 exhibited a wide in vitro cell tropism, the virus might have a potential risk as an emerging virus through cross-species transmission. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

4 pages, 687 KiB  
Article
Sero-Surveillance of Lyssavirus Specific Antibodies in Nigerian Fruit Bats (Eidolon helvum)
by Dinchi A. Tyem, Banenat B. Dogonyaro, Timothy A. Woma, Ernest Chuene Ngoepe and Claude Taurai Sabeta
Trop. Med. Infect. Dis. 2017, 2(3), 26; https://doi.org/10.3390/tropicalmed2030026 - 9 Jul 2017
Cited by 8 | Viewed by 3933
Abstract
The aetiological agent of rabies is a member of the Lyssavirus genus (Rhabdoviridae family, order Mononegavirales). The disease (rabies) is endemic in many parts of Asia and Africa and still remains an important public and veterinary health threat. In Nigeria, there [...] Read more.
The aetiological agent of rabies is a member of the Lyssavirus genus (Rhabdoviridae family, order Mononegavirales). The disease (rabies) is endemic in many parts of Asia and Africa and still remains an important public and veterinary health threat. In Nigeria, there is a dearth of information on the natural infection and/or exposure of bat species to lyssaviruses. Therefore, this study was undertaken to assess the prevalence of rabies virus (RABV) neutralizing antibodies in sera obtained from bats from the central Plateau and North-East Bauchi States in Nigeria. Two hundred serum samples were collected from Nigerian fruit bats from six different locations and tested for anti-RABV antibodies using a commercial blocking ELISA. Of the 200 bat serum samples collected, one batch consisting of 111 samples did not meet the validation criteria and hence was not included in the final analysis. Of the remaining 89, only three (3.4%) contained anti-lyssavirus antibodies, demonstrating a low prevalence of lyssavirus antibodies in the study population. In order to further understand the exposure of bat species to phylogroup II lyssaviruses (Lagos bat virus and Mokola virus), the same panel of samples will be tested for neutralizing antibodies to phylogroup II members, viruses that do not cross-neutralize with members of phylogroup I. Full article
(This article belongs to the Special Issue Rabies Symptoms, Diagnosis, Prophylaxis and Treatment)
Show Figures

Figure 1

11 pages, 726 KiB  
Article
Lagos Bat Virus Infection Dynamics in Free-Ranging Straw-Colored Fruit Bats (Eidolon helvum)
by Richard D. Suu-Ire, Anthony R. Fooks, Ashley C. Banyard, David Selden, Kofi Amponsah-Mensah, Silke Riesle, Meyir Y. Ziekah, Yaa Ntiamoa-Baidu, James L. N. Wood and Andrew A. Cunningham
Trop. Med. Infect. Dis. 2017, 2(3), 25; https://doi.org/10.3390/tropicalmed2030025 - 8 Jul 2017
Cited by 15 | Viewed by 6093
Abstract
Bats are key species for ecological function, but they are also reservoirs of zoonotic agents, such as lyssaviruses that cause rabies. Little is known about the maintenance and transmission of lyssaviruses in bats, although the observation of clinically sick bats, both in experimental [...] Read more.
Bats are key species for ecological function, but they are also reservoirs of zoonotic agents, such as lyssaviruses that cause rabies. Little is known about the maintenance and transmission of lyssaviruses in bats, although the observation of clinically sick bats, both in experimental studies and wild bats, has at least demonstrated that lyssaviruses are capable of causing clinical disease in bat species. Despite this, extensive surveillance for diseased bats has not yielded lyssaviruses, whilst serological surveys demonstrate that bats must be exposed to lyssavirus without developing clinical disease. We hypothesize that there is endemic circulation of Lagos bat virus (LBV) in the straw-coloured fruit bat (Eidolon helvum) in Ghana, West Africa. To investigate this further, longitudinal blood sampling was undertaken quarterly between 2012 and 2014 on wild E. helvum at two sites in Ghana. Serum samples were collected and tested for LBV-neutralizing antibodies using a modified flourescent antibody virus neutralisation (FAVN) assay (n = 294) and brains from moribund or dead bats were tested for antigen and viral RNA (n = 55). Overall, 44.7% of the 304 bats sampled had LBV-neutralising antibodies. None of the brain samples from bats contained lyssavirus antigen or RNA. Together with the results of an earlier serological study, our findings demonstrate that LBV is endemic and circulates within E. helvum in Ghana even though the detection of viral infection in dead bats was unsuccessful. Confirmation that LBV infection is endemic in E. helvum in Ghana is an important finding and indicates that the potential public health threats from LBV warrant further investigation. Full article
(This article belongs to the Special Issue Rabies Symptoms, Diagnosis, Prophylaxis and Treatment)
Show Figures

Figure 1

Back to TopTop