Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = Ebola sGP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 19931 KiB  
Article
Structurally Different Yet Functionally Similar: Aptamers Specific for the Ebola Virus Soluble Glycoprotein and GP1,2 and Their Application in Electrochemical Sensing
by Soma Banerjee, Mahsa Askary Hemmat, Shambhavi Shubham, Agnivo Gosai, Sivaranjani Devarakonda, Nianyu Jiang, Charith Geekiyanage, Jacob A. Dillard, Wendy Maury, Pranav Shrotriya, Monica H. Lamm and Marit Nilsen-Hamilton
Int. J. Mol. Sci. 2023, 24(5), 4627; https://doi.org/10.3390/ijms24054627 - 27 Feb 2023
Cited by 4 | Viewed by 3857
Abstract
The Ebola virus glycoprotein (GP) gene templates several mRNAs that produce either the virion-associated transmembrane protein or one of two secreted glycoproteins. Soluble glycoprotein (sGP) is the predominant product. GP1 and sGP share an amino terminal sequence of 295 amino acids but differ [...] Read more.
The Ebola virus glycoprotein (GP) gene templates several mRNAs that produce either the virion-associated transmembrane protein or one of two secreted glycoproteins. Soluble glycoprotein (sGP) is the predominant product. GP1 and sGP share an amino terminal sequence of 295 amino acids but differ in quaternary structure, with GP1 being a heterohexamer with GP2 and sGP a homodimer. Two structurally different DNA aptamers were selected against sGP that also bound GP1,2. These DNA aptamers were compared with a 2′FY-RNA aptamer for their interactions with the Ebola GP gene products. The three aptamers have almost identical binding isotherms for sGP and GP1,2 in solution and on the virion. They demonstrated high affinity and selectivity for sGP and GP1,2. Furthermore, one aptamer, used as a sensing element in an electrochemical format, detected GP1,2 on pseudotyped virions and sGP with high sensitivity in the presence of serum, including from an Ebola-virus-infected monkey. Our results suggest that the aptamers interact with sGP across the interface between the monomers, which is different from the sites on the protein bound by most antibodies. The remarkable similarity in functional features of three structurally distinct aptamers suggests that aptamers, like antibodies, have preferred binding sites on proteins. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

17 pages, 3034 KiB  
Article
Ebola Virus Activates IRE1α-Dependent XBP1u Splicing
by Cornelius Rohde, Sebastian Pfeiffer, Sara Baumgart, Stephan Becker and Verena Krähling
Viruses 2023, 15(1), 122; https://doi.org/10.3390/v15010122 - 30 Dec 2022
Cited by 3 | Viewed by 3084
Abstract
Ebola (EBOV) and Marburg virus (MARV) are highly pathogenic filoviruses that influence cellular signaling according to their own needs. MARV has been shown to regulate the IRE1α-dependent unfolded protein response (UPR) to ensure optimal virus replication. It was not known whether EBOV affects [...] Read more.
Ebola (EBOV) and Marburg virus (MARV) are highly pathogenic filoviruses that influence cellular signaling according to their own needs. MARV has been shown to regulate the IRE1α-dependent unfolded protein response (UPR) to ensure optimal virus replication. It was not known whether EBOV affects this signaling cascade, which can be beneficial or detrimental for viruses. Activation of IRE1α leads to the expression of the transcription factor XBP1s, which binds to cis-acting UPR elements (UPRE), resulting in the expression of genes aimed at restoring homeostasis in the endoplasmic reticulum. We observed that EBOV infection, in contrast to MARV infection, led to UPR activation by IRE1α-dependent but not ATF6-dependent signaling. We showed an activation of IRE1α, XBP1s and UPRE target genes upon EBOV infection. ATF6, another UPRE transcription factor, was not activated. UPRE activation was mainly attributed to the EBOV nucleoprotein NP and the soluble glycoprotein sGP. Finally, activation of UPR by thapsigargin, a potent ER-stress inducer, in parallel to infection as well as knock-out of XBP1 had no effect on EBOV growth, while MARV proliferation was affected by thapsigargin-dependent UPR activation. Taken together EBOV and MARV differ in their strategy of balancing IRE1α-dependent signaling for their own needs. Full article
(This article belongs to the Collection Advances in Ebolavirus, Marburgvirus, and Cuevavirus Research)
Show Figures

Figure 1

10 pages, 854 KiB  
Article
Immune Correlates of Protection from Filovirus Efficacy Studies in Non-Human Primates
by Cheryl A. Triplett, Nancy A. Niemuth, Christopher Cirimotich, Gabriel Meister, Mimi Guebre-Xabier, Nita Patel, Mike Massare, Greg Glenn, Gale Smith, Kendra J. Alfson, Yenny Goez-Gazi and Ricardo Carrion
Vaccines 2022, 10(8), 1338; https://doi.org/10.3390/vaccines10081338 - 18 Aug 2022
Cited by 6 | Viewed by 2342
Abstract
Non-human primate (NHP) efficacy data for several Ebola virus (EBOV) vaccine candidates exist, but definitive correlates of protection (CoP) have not been demonstrated, although antibodies to the filovirus glycoprotein (GP) antigen and other immunological endpoints have been proposed as potential CoPs. Accordingly, studies [...] Read more.
Non-human primate (NHP) efficacy data for several Ebola virus (EBOV) vaccine candidates exist, but definitive correlates of protection (CoP) have not been demonstrated, although antibodies to the filovirus glycoprotein (GP) antigen and other immunological endpoints have been proposed as potential CoPs. Accordingly, studies that could elucidate biomarker(s) that statistically correlate, whether mechanistically or not, with protection are warranted. The primary objective of this study was to evaluate potential CoP for Novavax EBOV GP vaccine candidate administered at different doses to cynomolgus macaques using the combined data from two separate, related studies containing a total of 44 cynomolgus macaques. Neutralizing antibodies measured by pseudovirion neutralization assay (PsVNA) and anti-GP IgG binding antibodies were evaluated as potential CoP using logistic regression models. The predictive ability of these models was assessed using the area under the receiver operating characteristic (ROC) curve (AUC). Fitted models indicated a statistically significant relationship between survival and log base 10 (log10) transformed anti-GP IgG antibodies, with good predictive ability of the model. Neither (log10 transformed) PsVNT50 nor PsVNT80 titers were statistically significant predictors of survival, though predictive ability of both models was good. Predictive ability was not statistically different between any pair of models. Models that included immunization dose in addition to anti-GP IgG antibodies failed to detect statistically significant effects of immunization dose. These results support anti-GP IgG antibodies as a correlate of protection. Total assay variabilities and geometric coefficients of variation (GCVs) based on the study data appeared to be greater for both PsVNA readouts, suggesting the increased assay variability may account for non-significant model results for PsVNA despite the good predictive ability of the models. The statistical approach to evaluating CoP for this EBOV vaccine may prove useful for advancing research for Sudan virus (SUDV) and Marburg virus (MARV) candidate vaccines. Full article
Show Figures

Figure 1

27 pages, 5568 KiB  
Article
Assays for the Evaluation of the Immune Response to Marburg and Ebola Sudan Vaccination—Filovirus Animal Nonclinical Group Anti-Marburg Virus Glycoprotein Immunoglobulin G Enzyme-Linked Immunosorbent Assay and a Pseudovirion Neutralization Assay
by Thomas L. Rudge, Nicholas J. Machesky, Karen A. Sankovich, Erin E. Lemmon, Christopher S. Badorrek, Rachel Overman, Nancy A. Niemuth and Michael S. Anderson
Vaccines 2022, 10(8), 1211; https://doi.org/10.3390/vaccines10081211 - 29 Jul 2022
Cited by 7 | Viewed by 3275
Abstract
Since the discovery of the Marburg virus (MARV) in 1967 and Ebola virus (EBOV) in 1976, there have been over 40 reported outbreaks of filovirus disease with case fatality rates greater than 50%. This underscores the need for efficacious vaccines against these highly [...] Read more.
Since the discovery of the Marburg virus (MARV) in 1967 and Ebola virus (EBOV) in 1976, there have been over 40 reported outbreaks of filovirus disease with case fatality rates greater than 50%. This underscores the need for efficacious vaccines against these highly pathogenic filoviruses. Due to the sporadic and unpredictable nature of filovirus outbreaks, such a vaccine would likely need to be vetted through the U.S. Food and Drug Administration (FDA), following the Animal Rule or similar European Medicines Agency (EMA) regulatory pathway. Under the FDA Animal Rule, vaccine-induced immune responses correlating with survival of non-human primates (NHPs), or another well-characterized animal model, following lethal challenge, will need to be bridged for human immune response distributions in clinical trials. A correlate of protection has not yet been identified for the filovirus disease, but antibodies, specifically anti-glycoprotein (GP) antibodies, are believed to be critical in providing protection against the filovirus disease following vaccination and are thus a strong candidate for a correlate of protection. Thus, species-neutral methods capable of the detection and bridging of these antibody immune responses, such as methods to quantify anti-GP immunoglobulin G (IgG)-binding antibodies and neutralizing antibodies, are needed. Reported here is the development and qualification of two Filovirus Animal Nonclinical Group (FANG) anti-GP IgG Enzyme-Linked Immunosorbent Assays (ELISAs) to quantify anti-MARV and anti-Sudan virus (SUDV) IgG antibodies in human and NHP serum samples, as well as the development of pseudovirion neutralization assays (PsVNAs) to quantify MARV- and SUDV-neutralizing antibodies in human and NHP serum samples. Full article
Show Figures

Figure 1

13 pages, 2466 KiB  
Article
Topological and Multivalent Effects in Glycofullerene Oligomers as EBOLA Virus Inhibitors
by Javier Ramos-Soriano, Beatriz M. Illescas, Alfonso Pérez-Sánchez, Raquel Sánchez-Bento, Fátima Lasala, Javier Rojo, Rafael Delgado and Nazario Martín
Int. J. Mol. Sci. 2022, 23(9), 5083; https://doi.org/10.3390/ijms23095083 - 3 May 2022
Cited by 11 | Viewed by 2484
Abstract
The synthesis of new biocompatible antiviral materials to fight against the development of multidrug resistance is being widely explored. Due to their unique globular structure and excellent properties, [60]fullerene-based antivirals are very promising bioconjugates. In this work, fullerene derivatives with different topologies and [...] Read more.
The synthesis of new biocompatible antiviral materials to fight against the development of multidrug resistance is being widely explored. Due to their unique globular structure and excellent properties, [60]fullerene-based antivirals are very promising bioconjugates. In this work, fullerene derivatives with different topologies and number of glycofullerene units were synthesized by using a SPAAC copper free strategy. This procedure allowed the synthesis of compounds 13, containing from 20 to 40 mannose units, in a very efficient manner and in short reaction times under MW irradiation. The glycoderivatives were studied in an infection assay by a pseudotyped viral particle with Ebola virus GP1. The results obtained show that these glycofullerene oligomers are efficient inhibitors of EBOV infection with IC50s in the nanomolar range. In particular, compound 3, with four glycofullerene moieties, presents an outstanding relative inhibitory potency (RIP). We propose that this high RIP value stems from the appropriate topological features that efficiently interact with DC-SIGN. Full article
(This article belongs to the Special Issue Biomedical Applications of Carbon Nanostructures)
Show Figures

Figure 1

29 pages, 3972 KiB  
Review
Structural and Functional Aspects of Ebola Virus Proteins
by Sahil Jain, Ekaterina Martynova, Albert Rizvanov, Svetlana Khaiboullina and Manoj Baranwal
Pathogens 2021, 10(10), 1330; https://doi.org/10.3390/pathogens10101330 - 15 Oct 2021
Cited by 47 | Viewed by 17783
Abstract
Ebola virus (EBOV), member of genus Ebolavirus, family Filoviridae, have a non-segmented, single-stranded RNA that contains seven genes: (a) nucleoprotein (NP), (b) viral protein 35 (VP35), (c) VP40, (d) glycoprotein (GP), (e) VP30, (f) VP24, and (g) RNA polymerase (L). All [...] Read more.
Ebola virus (EBOV), member of genus Ebolavirus, family Filoviridae, have a non-segmented, single-stranded RNA that contains seven genes: (a) nucleoprotein (NP), (b) viral protein 35 (VP35), (c) VP40, (d) glycoprotein (GP), (e) VP30, (f) VP24, and (g) RNA polymerase (L). All genes encode for one protein each except GP, producing three pre-proteins due to the transcriptional editing. These pre-proteins are translated into four products, namely: (a) soluble secreted glycoprotein (sGP), (b) Δ-peptide, (c) full-length transmembrane spike glycoprotein (GP), and (d) soluble small secreted glycoprotein (ssGP). Further, shed GP is released from infected cells due to cleavage of GP by tumor necrosis factor α-converting enzyme (TACE). This review presents a detailed discussion on various functional aspects of all EBOV proteins and their residues. An introduction to ebolaviruses and their life cycle is also provided for clarity of the available analysis. We believe that this review will help understand the roles played by different EBOV proteins in the pathogenesis of the disease. It will help in targeting significant protein residues for therapeutic and multi-protein/peptide vaccine development. Full article
(This article belongs to the Special Issue Pathogenesis of Emerging Zoonotic Viral Infections)
Show Figures

Figure 1

18 pages, 4673 KiB  
Article
Monitoring Viral Entry in Real-Time Using a Luciferase Recombinant Vesicular Stomatitis Virus Producing SARS-CoV-2, EBOV, LASV, CHIKV, and VSV Glycoproteins
by Maria Fernanda Lay Mendoza, Marissa Danielle Acciani, Courtney Nina Levit, Christopher Santa Maria and Melinda Ann Brindley
Viruses 2020, 12(12), 1457; https://doi.org/10.3390/v12121457 - 17 Dec 2020
Cited by 17 | Viewed by 6640
Abstract
Viral entry is the first stage in the virus replication cycle and, for enveloped viruses, is mediated by virally encoded glycoproteins. Viral glycoproteins have different receptor affinities and triggering mechanisms. We employed vesicular stomatitis virus (VSV), a BSL-2 enveloped virus that can incorporate [...] Read more.
Viral entry is the first stage in the virus replication cycle and, for enveloped viruses, is mediated by virally encoded glycoproteins. Viral glycoproteins have different receptor affinities and triggering mechanisms. We employed vesicular stomatitis virus (VSV), a BSL-2 enveloped virus that can incorporate non-native glycoproteins, to examine the entry efficiencies of diverse viral glycoproteins. To compare the glycoprotein-mediated entry efficiencies of VSV glycoprotein (G), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S), Ebola (EBOV) glycoprotein (GP), Lassa (LASV) GP, and Chikungunya (CHIKV) envelope (E) protein, we produced recombinant VSV (rVSV) viruses that produce the five glycoproteins. The rVSV virions encoded a nano luciferase (NLucP) reporter gene fused to a destabilization domain (PEST), which we used in combination with the live-cell substrate EndurazineTM to monitor viral entry kinetics in real time. Our data indicate that rVSV particles with glycoproteins that require more post-internalization priming typically demonstrate delayed entry in comparison to VSV G. In addition to determining the time required for each virus to complete entry, we also used our system to evaluate viral cell surface receptor preferences, monitor fusion, and elucidate endocytosis mechanisms. This system can be rapidly employed to examine diverse viral glycoproteins and their entry requirements. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

10 pages, 3325 KiB  
Article
Development of an Enzyme-Linked Immunosorbent Assay to Determine the Expression Dynamics of Ebola Virus Soluble Glycoprotein during Infection
by Wakako Furuyama and Andrea Marzi
Microorganisms 2020, 8(10), 1535; https://doi.org/10.3390/microorganisms8101535 - 6 Oct 2020
Cited by 12 | Viewed by 3461
Abstract
Ebola virus (EBOV) is a highly pathogenic virus with human case fatality rates of up to 90%. EBOV uses transcriptional editing to express three different glycoproteins (GPs) from its GP gene: soluble GP (sGP), GP, and small sGP (ssGP). The molecular ratio of [...] Read more.
Ebola virus (EBOV) is a highly pathogenic virus with human case fatality rates of up to 90%. EBOV uses transcriptional editing to express three different glycoproteins (GPs) from its GP gene: soluble GP (sGP), GP, and small sGP (ssGP). The molecular ratio of unedited to edited mRNA is about 70% (sGP): 25% (GP): 5% (ssGP), indicating that sGP is produced more abundantly than GP. While the presence of sGP has been confirmed in the blood during human EBOV infection, there is no report about its expression dynamics. In this study, we developed an EBOV-sGP-specific sandwich enzyme-linked immunosorbent assay (ELISA) using two different available antibodies and tested several animal serum samples to determine the concentration of sGP. EBOV-sGP was detected in nonhuman primate serum samples as early as 4 days after EBOV infection, correlating with RT-qPCR positivity. This ELISA might be further developed into a diagnostic tool for detection of EBOV in patients. Furthermore, this study provides insights into the expression dynamics of sGP during infection, which are important to decipher the function that sGP plays during infection. Full article
(This article belongs to the Special Issue Hemorrhagic Fever Viruses: Pathogenesis and Countermeasures)
Show Figures

Figure 1

2 pages, 167 KiB  
Abstract
MARCH8 Restricts Ebola Virus Replication by Blocking the Viral Glycoprotein Processing and Glycosylation
by Changqing Yu, Sunan Li, Omid Madadgar, Iqbal Ahmad, Xianfeng Zhang, Jing Shi, Yu Wang, Yulong Zhou and Yong-Hui Zheng
Proceedings 2020, 50(1), 123; https://doi.org/10.3390/proceedings2020050123 - 7 Jul 2020
Viewed by 2048
Abstract
Ebola virus (EBOV) glycoprotein (GP) is a class I fusion protein whose maturation is dependent on furin-mediated processing. EBOV-GP is heavily glycosylated, with glycans constituting ~50% of its molecular mass. Compared with 15 N-linked glycosylation sites, EBOV-GP1 has ~80 potential O [...] Read more.
Ebola virus (EBOV) glycoprotein (GP) is a class I fusion protein whose maturation is dependent on furin-mediated processing. EBOV-GP is heavily glycosylated, with glycans constituting ~50% of its molecular mass. Compared with 15 N-linked glycosylation sites, EBOV-GP1 has ~80 potential O-linked glycosylation sites in the mucin-like domain (MLD), suggesting that O-linked glycans are dominated. The membrane-associated RING-CH (MARCH) family consists of 11 members that are RING-finger ubiquitin E3 ligases. Recently, human MARCH1, MARCH2, and MARCH8 were reported to inhibit HIV-1 replication by targeting its Env. Here, we show that human MARCH8 also inhibits EBOV replication by blocking GP incorporation into virions via downregulating its cell surface expression. To understand how the downregulation occurs, we investigated EBOV-GP subcellular localization, processing, glycosylation, and intracellular trafficking in the presence of human MARCH8. We find that MARCH8 interacts with GP and retains GP in the Golgi. MARCH8 also interacts with the homoB domain of furin that blocks its convertase activity. In consequence, MARCH8 blocks GP processing in an MLD-independent manner. Consistently, MARCH8 also blocks the O-linked, but not the N-linked glycosylation of GP. Importantly, in the presence of MARCH8, the shedding of GP1 but not the secreted GP (sGP) is blocked, suggesting that MARCH8 targets the GP1 C-terminal region. The MARCH8 activity is extended to its orthologs from Bos taurus and mice, and its paralogs MARCH1 and MARCH2. In addition, MARCH8 inhibits the processing of two other class I fusion proteins, including HIV-1 Env and IAV HA, and it triggers the degradation of the class III fusion protein VSV-G. We conclude that MARCH8 exerts a very broad and conserved antiviral activity by inhibiting the maturation of class I fusion proteins, which blocks their secretion to the cell surface and incorporation into virions. It should also target class III fusion proteins by triggering their degradation. Full article
(This article belongs to the Proceedings of Viruses 2020—Novel Concepts in Virology)
15 pages, 2189 KiB  
Article
A Chimeric Sudan Virus-Like Particle Vaccine Candidate Produced by a Recombinant Baculovirus System Induces Specific Immune Responses in Mice and Horses
by Fangfang Wu, Shengnan Zhang, Ying Zhang, Ruo Mo, Feihu Yan, Hualei Wang, Gary Wong, Hang Chi, Tiecheng Wang, Na Feng, Yuwei Gao, Xianzhu Xia, Yongkun Zhao and Songtao Yang
Viruses 2020, 12(1), 64; https://doi.org/10.3390/v12010064 - 3 Jan 2020
Cited by 9 | Viewed by 4198
Abstract
Ebola virus infections lead to severe hemorrhagic fevers in humans and nonhuman primates; and human fatality rates are as high as 67%–90%. Since the Ebola virus was discovered in 1976, the only available treatments have been medical support or the emergency administration of [...] Read more.
Ebola virus infections lead to severe hemorrhagic fevers in humans and nonhuman primates; and human fatality rates are as high as 67%–90%. Since the Ebola virus was discovered in 1976, the only available treatments have been medical support or the emergency administration of experimental drugs. The absence of licensed vaccines and drugs against the Ebola virus impedes the prevention of viral infection. In this study, we generated recombinant baculoviruses (rBV) expressing the Sudan virus (SUDV) matrix structural protein (VP40) (rBV-VP40-VP40) or the SUDV glycoprotein (GP) (rBV-GP-GP), and SUDV virus-like particles (VLPs) were produced by co-infection of Sf9 cells with rBV-SUDV-VP40 and rBV-SUDV-GP. The expression of SUDV VP40 and GP in SUDV VLPs was demonstrated by IFA and Western blot analysis. Electron microscopy results demonstrated that SUDV VLPs had a filamentous morphology. The immunogenicity of SUDV VLPs produced in insect cells was evaluated by the immunization of mice. The analysis of antibody responses showed that mice vaccinated with SUDV VLPs and the adjuvant Montanide ISA 201 produced SUDV GP-specific IgG antibodies. Sera from SUDV VLP-immunized mice were able to block infection by SUDV GP pseudotyped HIV, indicating that a neutralizing antibody against the SUDV GP protein was produced. Furthermore, the activation of B cells in the group immunized with VLPs mixed with Montanide ISA 201 was significant one week after the primary immunization. Vaccination with the SUDV VLPs markedly increased the frequency of antigen-specific cells secreting type 1 and type 2 cytokines. To study the therapeutic effects of SUDV antibodies, horses were immunized with SUDV VLPs emulsified in Freund’s complete adjuvant or Freund’s incomplete adjuvant. The results showed that horses could produce SUDV GP-specific antibodies and neutralizing antibodies. These results showed that SUDV VLPs demonstrate excellent immunogenicity and represent a promising approach for vaccine development against SUDV infection. Further, these horse anti-SUDV purified immunoglobulins lay a foundation for SUDV therapeutic drug research. Full article
(This article belongs to the Special Issue Virus-Like Particle Vaccines)
Show Figures

Figure 1

11 pages, 1584 KiB  
Review
The Roles of Ebola Virus Soluble Glycoprotein in Replication, Pathogenesis, and Countermeasure Development
by Wenjun Zhu, Logan Banadyga, Karla Emeterio, Gary Wong and Xiangguo Qiu
Viruses 2019, 11(11), 999; https://doi.org/10.3390/v11110999 - 31 Oct 2019
Cited by 36 | Viewed by 8340
Abstract
Ebola virus (EBOV) is a highly lethal pathogen that has caused several outbreaks of severe hemorrhagic fever in humans since its emergence in 1976. The EBOV glycoprotein (GP1,2) is the sole viral envelope protein and a major component of immunogenicity; it [...] Read more.
Ebola virus (EBOV) is a highly lethal pathogen that has caused several outbreaks of severe hemorrhagic fever in humans since its emergence in 1976. The EBOV glycoprotein (GP1,2) is the sole viral envelope protein and a major component of immunogenicity; it is encoded by the GP gene along with two truncated versions: soluble GP (sGP) and small soluble GP (ssGP). sGP is, in fact, the primary product of the GP gene, and it is secreted in abundance during EBOV infection. Since sGP shares large portions of its sequence with GP1,2, it has been hypothesized that sGP may subvert the host immune response by inducing antibodies against sGP rather than GP1,2. Several reports have shown that sGP plays multiple roles that contribute to the complex pathogenesis of EBOV. In this review, we focus on sGP and discuss its possible roles with regards to the pathogenesis of EBOV and the development of specific antiviral drugs. Full article
(This article belongs to the Special Issue Pathogenesis of Emerging Viral Infections)
Show Figures

Figure 1

13 pages, 2346 KiB  
Article
Analysis of Resistance of Ebola Virus Glycoprotein-Driven Entry Against MDL28170, An Inhibitor of Cysteine Cathepsins
by Markus Hoffmann, Svenja Victoria Kaufmann, Carina Fischer, Wiebke Maurer, Anna-Sophie Moldenhauer and Stefan Pöhlmann
Pathogens 2019, 8(4), 192; https://doi.org/10.3390/pathogens8040192 - 15 Oct 2019
Cited by 3 | Viewed by 4362
Abstract
Ebola virus (EBOV) infection can cause severe and frequently fatal disease in human patients. The EBOV glycoprotein (GP) mediates viral entry into host cells. For this, GP depends on priming by the pH-dependent endolysosomal cysteine proteases cathepsin B (CatB) and, to a lesser [...] Read more.
Ebola virus (EBOV) infection can cause severe and frequently fatal disease in human patients. The EBOV glycoprotein (GP) mediates viral entry into host cells. For this, GP depends on priming by the pH-dependent endolysosomal cysteine proteases cathepsin B (CatB) and, to a lesser degree, cathepsin L (CatL), at least in most cell culture systems. However, there is limited information on whether and how EBOV-GP can acquire resistance to CatB/L inhibitors. Here, we addressed this question using replication-competent vesicular stomatitis virus bearing EBOV-GP. Five passages of this virus in the presence of the CatB/CatL inhibitor MDL28170 were sufficient to select resistant viral variants and sequencing revealed that all GP sequences contained a V37A mutation, which, in the context of native GP, is located in the base of the GP surface unit. In addition, some GP sequences harbored mutation S195R in the receptor-binding domain. Finally, mutational analysis demonstrated that V37A but not S195R conferred resistance against MDL28170 and other CatB/CatL inhibitors. Collectively, a single amino acid substitution in GP is sufficient to confer resistance against CatB/CatL inhibitors, suggesting that usage of CatB/CatL inhibitors for antiviral therapy may rapidly select for resistant viral variants. Full article
Show Figures

Figure 1

16 pages, 5537 KiB  
Article
Requirements within the Ebola Viral Glycoprotein for Tetherin Antagonism
by Nathan H. Vande Burgt, Rachel L. Kaletsky and Paul Bates
Viruses 2015, 7(10), 5587-5602; https://doi.org/10.3390/v7102888 - 26 Oct 2015
Cited by 18 | Viewed by 7428
Abstract
Tetherin is an interferon-induced, intrinsic cellular response factor that blocks release of numerous viruses, including Ebola virus, from infected cells. As with many viruses targeted by host factors, Ebola virus employs a tetherin antagonist, the viral glycoprotein (EboGP), to counteract restriction and promote [...] Read more.
Tetherin is an interferon-induced, intrinsic cellular response factor that blocks release of numerous viruses, including Ebola virus, from infected cells. As with many viruses targeted by host factors, Ebola virus employs a tetherin antagonist, the viral glycoprotein (EboGP), to counteract restriction and promote virus release. Unlike other tetherin antagonists such as HIV-1 Vpu or KSHV K5, the features within EboGP needed to overcome tetherin are not well characterized. Here, we describe sequences within the EboGP ectodomain and membrane spanning domain (msd) as necessary to relieve tetherin restriction of viral particle budding. Fusing the EboGP msd to a normally secreted form of the glycoprotein effectively promotes Ebola virus particle release. Cellular protein or lipid anchors could not substitute for the EboGP msd. The requirement for the EboGP msd was not specific for filovirus budding, as similar results were seen with HIV particles. Furthermore trafficking of chimeric proteins to budding sites did not correlate with an ability to counter tetherin. Additionally, we find that a glycoprotein construct, which mimics the cathepsin-activated species by proteolytic removal of the EboGP glycan cap and mucin domains, is unable to counteract tetherin. Combining these results suggests an important role for the EboGP glycan cap and msd in tetherin antagonism. Full article
(This article belongs to the Collection Advances in Ebolavirus, Marburgvirus, and Cuevavirus Research)
Show Figures

Figure 1

21 pages, 1198 KiB  
Article
Modeling of the Ebola Virus Delta Peptide Reveals a Potential Lytic Sequence Motif
by William R. Gallaher and Robert F. Garry
Viruses 2015, 7(1), 285-305; https://doi.org/10.3390/v7010285 - 20 Jan 2015
Cited by 22 | Viewed by 13586
Abstract
Filoviruses, such as Ebola and Marburg viruses, cause severe outbreaks of human infection, including the extensive epidemic of Ebola virus disease (EVD) in West Africa in 2014. In the course of examining mutations in the glycoprotein gene associated with 2014 Ebola virus (EBOV) [...] Read more.
Filoviruses, such as Ebola and Marburg viruses, cause severe outbreaks of human infection, including the extensive epidemic of Ebola virus disease (EVD) in West Africa in 2014. In the course of examining mutations in the glycoprotein gene associated with 2014 Ebola virus (EBOV) sequences, a differential level of conservation was noted between the soluble form of glycoprotein (sGP) and the full length glycoprotein (GP), which are both encoded by the GP gene via RNA editing. In the region of the proteins encoded after the RNA editing site sGP was more conserved than the overlapping region of GP when compared to a distant outlier species, Tai Forest ebolavirus. Half of the amino acids comprising the “delta peptide”, a 40 amino acid carboxy-terminal fragment of sGP, were identical between otherwise widely divergent species. A lysine-rich amphipathic peptide motif was noted at the carboxyl terminus of delta peptide with high structural relatedness to the cytolytic peptide of the non-structural protein 4 (NSP4) of rotavirus. EBOV delta peptide is a candidate viroporin, a cationic pore-forming peptide, and may contribute to EBOV pathogenesis. Full article
(This article belongs to the Collection Advances in Ebolavirus, Marburgvirus, and Cuevavirus Research)
Show Figures

Graphical abstract

Back to TopTop