Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = EPICS North Africa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
70 pages, 53631 KiB  
Article
Absolute Vicarious Calibration, Extended PICS (EPICS) Based De-Trending and Validation of Hyperspectral Hyperion, DESIS, and EMIT
by Harshitha Monali Adrija, Larry Leigh, Morakot Kaewmanee, Dinithi Siriwardana Pathiranage, Juliana Fajardo Rueda, David Aaron and Cibele Teixeira Pinto
Remote Sens. 2025, 17(7), 1301; https://doi.org/10.3390/rs17071301 - 5 Apr 2025
Cited by 1 | Viewed by 661
Abstract
This study addresses the critical need for radiometrically accurate and consistent hyperspectral data as the remote sensing community moves towards a hyperspectral world. Previous calibration efforts on Hyperion, the first on-orbit hyperspectral sensors, have exhibited temporal stability and absolute accuracy limitations. This work [...] Read more.
This study addresses the critical need for radiometrically accurate and consistent hyperspectral data as the remote sensing community moves towards a hyperspectral world. Previous calibration efforts on Hyperion, the first on-orbit hyperspectral sensors, have exhibited temporal stability and absolute accuracy limitations. This work has developed and validated a novel cross-calibration methodology to address these challenges. Also, this work adds two other hyperspectral sensors, DLR Earth Sensing Imaging Spectrometer (DESIS) and Earth Surface mineral Dust Source Investigation instrument (EMIT), to maintain temporal continuity and enhance spatial coverage along with spectral resolution. The study established a robust approach for calibrating Hyperion using DESIS and EMIT. The methodology involves several key processes. First is a temporal stability assessment on Extended Pseudo Invariant Calibration Sites (EPICS) Cluster13–Global Temporal Stable (GTS) over North Africa (Cluster13–GTS) using Landsat Sensors Landsat 7 (ETM+), Landsat 8 (OLI). Second, a temporal trend correction model was developed for DESIS and Hyperion using statistically selected models. Third, absolute calibration was developed for DESIS and EMIT using multiple vicarious calibration sites, resulting in an overall absolute calibration uncertainty of 2.7–5.4% across the DESIS spectrum and 3.1–6% on non-absorption bands for EMIT. Finally, Hyperion was cross-calibrated using calibrated DESIS and EMIT as reference (with traceability to ground reference) with a calibration uncertainty within the range of 7.9–12.9% across non-absorption bands. The study also validates these calibration coefficients using OLI over Cluster13–GTS. The validation provided results suggesting a statistical similarity between the absolute calibrated hyperspectral sensors mean TOA (top-of-atmosphere) reflectance with that of OLI. This study offers a valuable contribution to the community by fulfilling the above-mentioned needs, enabling more reliable intercomparison, and combining multiple hyperspectral datasets for various applications. Full article
Show Figures

Figure 1

31 pages, 14011 KiB  
Article
Validation of Expanded Trend-to-Trend Cross-Calibration Technique and Its Application to Global Scale
by Ramita Shah, Larry Leigh, Morakot Kaewmanee and Cibele Teixeira Pinto
Remote Sens. 2022, 14(24), 6216; https://doi.org/10.3390/rs14246216 - 8 Dec 2022
Cited by 6 | Viewed by 3037
Abstract
The expanded Trend-to-Trend (T2T) cross-calibration technique has the potential to calibrate two sensors in much less time and provides trends on a daily assessment basis. The trend obtained from the expanded technique aids in evaluating the differences between satellite sensors. Therefore, this technique [...] Read more.
The expanded Trend-to-Trend (T2T) cross-calibration technique has the potential to calibrate two sensors in much less time and provides trends on a daily assessment basis. The trend obtained from the expanded technique aids in evaluating the differences between satellite sensors. Therefore, this technique was validated with several trusted cross-calibration techniques to evaluate its accuracy. Initially, the expanded T2T technique was validated with three independent RadCaTS RRV, DIMITRI-PICS, and APICS models, and results show a 1% average difference with other models over all bands. Further, this technique was validated with other SDSU techniques to calibrate the newly launched satellite Landsat 9 with 8, demonstrating good agreement in all bands within 0.5%. This technique was also validated for Terra MODIS and ETM+, showing consistency within 1% for all bands compared to four PICS sites. Additionally, the T2T technique was applied to a global scale using EPICS Global sites. The expanded T2T cross-calibration gain result obtained for Landsat 8 versus Landsat 7/8, Sentinel 2A/2B, and Terra/Aqua MODIS presented that the difference between these pairs was within 0.5–1% for most of the spectral bands. Total uncertainty obtained for these pairs of sensors using Monte Carlo Simulation varies from 2.5–4% for all bands except for SWIR2 bands, which vary up to 5%. The difference between EPICS Global and EPICS North Africa was calculated using the ratio of trend gain; the difference among them was within 0.5–1% difference on average for all the sensors and bands within a 0.5% uncertainty level difference. Full article
Show Figures

Figure 1

27 pages, 14212 KiB  
Article
Classification and Evaluation of Extended PICS (EPICS) on a Global Scale for Calibration and Stability Monitoring of Optical Satellite Sensors
by Juliana Fajardo Rueda, Larry Leigh, Cibele Teixeira Pinto, Morakot Kaewmanee and Dennis Helder
Remote Sens. 2021, 13(17), 3350; https://doi.org/10.3390/rs13173350 - 24 Aug 2021
Cited by 10 | Viewed by 2060
Abstract
Historically stable areas across North Africa, known as pseudo invariant calibration sites (PICS), have been used as targets for the calibration and monitoring of optical satellite sensors. However, two major drawbacks exist for these sites: first is the dependency on a single location [...] Read more.
Historically stable areas across North Africa, known as pseudo invariant calibration sites (PICS), have been used as targets for the calibration and monitoring of optical satellite sensors. However, two major drawbacks exist for these sites: first is the dependency on a single location to be always invariant, and second is the limited amount of observation achieved using these sites. As a result, longer time periods are necessary to construct a dense dataset to assess the radiometric performance of on-orbit optical sensors and confirm that the change detected is sensor-specific rather than site-specific. This work presents a global land cover classification to obtain an extended pseudo invariant calibration site (EPICS) on a global scale using Landsat-8 Operational Land Imager (OLI) data. This technique provides multiple calibration sites across the globe, allowing for the building of richer datasets in a shorter time frame compared to the traditional approach (PICS), with the advantage of assessing the calibration and stability of the sensors faster, detecting possible changes sooner and correcting them accordingly. This work identified 23 World Reference System two (WRS-2) path/row locations around the globe as part of the global EPICS. These EPICS have the advantage of achieving multiple observations per day, with similar spectral characteristics compared to traditional PICS, while still producing a temporal coefficient of variation (ratio of temporal standard deviation and temporal mean) less than 4% for all bands, with some as low as 2.7%. Full article
Show Figures

Figure 1

25 pages, 10379 KiB  
Article
Extended Pseudo Invariant Calibration Site-Based Trend-to-Trend Cross-Calibration of Optical Satellite Sensors
by Prathana Khakurel, Larry Leigh, Morakot Kaewmanee and Cibele Teixeira Pinto
Remote Sens. 2021, 13(8), 1545; https://doi.org/10.3390/rs13081545 - 16 Apr 2021
Cited by 12 | Viewed by 3405
Abstract
Satellite sensors have been extremely useful and are in massive demand in the understanding of the Earth’s surface and monitoring of changes. For quantitative analysis and acquiring consistent measurements, absolute radiometric calibration is necessary. The most common vicarious approach of radiometric calibration is [...] Read more.
Satellite sensors have been extremely useful and are in massive demand in the understanding of the Earth’s surface and monitoring of changes. For quantitative analysis and acquiring consistent measurements, absolute radiometric calibration is necessary. The most common vicarious approach of radiometric calibration is cross-calibration, which helps to tie all the sensors to a common radiometric scale for consistent measurement. One of the traditional methods of cross-calibration is performed using temporally and spectrally stable pseudo-invariant calibration sites (PICS). This technique is limited by adequate cloud-free acquisitions for cross-calibration which would require a longer time to study the differences in sensor measurements. To address the limitation of traditional PICS-based approaches and to increase the cross-calibration opportunity for quickly achieving high-quality results, the approach presented here is based on using extended pseudo invariant calibration sites (EPICS) over North Africa. With the EPICS-based approach, the area of extent of the cross-calibration site covers a large portion of the North African continent. With targets this large, many sensors should image some portion of EPICS nearlydaily, allowing for evaluation of performance with much greater frequency. By using these near-daily measurements, trends of the sensor’s performance are then used to evaluate sensor-to-sensor daily cross-calibration. With the use of the proposed methodology, the dataset for cross-calibration is increased by an order of magnitude compared to traditional approaches, resulting in the differences between any two sensors being detected within a much shorter time. Using this new trend in trend cross-calibration approaches, gains were evaluated for Landsat 7/8 and Sentinel 2A/B, with the results showing that the sensors are calibrated within 2.5% (within less than 8% uncertainty) or better for all sensor pairs, which is consistent with what the traditional PICS-based approach detects. The proposed cross-calibration technique is useful to cross-calibrate any two sensors without the requirement of any coincident or near-coincident scene pairs, while still achieving results similar to traditional approaches in a short time. Full article
Show Figures

Graphical abstract

7 pages, 183 KiB  
Editorial
“It’s All about Working with the Story!”: On Movement Direction in Musicals. An Interview with Lucy Hind
by George Rodosthenous
Arts 2020, 9(2), 56; https://doi.org/10.3390/arts9020056 - 30 Apr 2020
Viewed by 2717
Abstract
Lucy Hind is a South African choreographer and movement director who lives in the UK. Her training was in choreography, mime and physical theatre at Rhodes University, South Africa. After her studies, Hind performed with the celebrated First Physical Theatre Company. In the [...] Read more.
Lucy Hind is a South African choreographer and movement director who lives in the UK. Her training was in choreography, mime and physical theatre at Rhodes University, South Africa. After her studies, Hind performed with the celebrated First Physical Theatre Company. In the UK, she has worked as movement director and performer in theatres including the Almeida, Barbican, Bath Theatre Royal, Leeds Playhouse Lowry, Sheffield Crucible, The Old Vic and The Royal Exchange. Lucy is also an associate artist of the award-winning Slung Low theatre company, which specializes in making epic theatre in non-theatre spaces. Here, Lucy talks to George Rodosthenous about her movement direction on the award-winning musical Girl from the North Country (The Old Vic/West End/Toronto and recently seen on Broadway), which was described by New York Times critic Ben Brantley as “superb”. The conversation delves into Lucy’s working methods: the ways she works with actors, the importance of collaborative work and her approach to characterization. Hind believes that her work affects the overall “tone, the atmosphere and the shape of the show”. Full article
(This article belongs to the Special Issue Broadway Then and Now: Musicals in the 21st Century)
33 pages, 67626 KiB  
Article
Derivation of Hyperspectral Profile of Extended Pseudo Invariant Calibration Sites (EPICS) for Use in Sensor Calibration
by Mahesh Shrestha, Nahid Hasan, Larry Leigh and Dennis Helder
Remote Sens. 2019, 11(19), 2279; https://doi.org/10.3390/rs11192279 - 29 Sep 2019
Cited by 9 | Viewed by 3419
Abstract
Reference of Earth-observing satellite sensor data to a common, consistent radiometric scale is an increasingly critical issue as more of these sensors are launched; such consistency can be achieved through radiometric cross-calibration of the sensors. A common cross-calibration approach uses a small set [...] Read more.
Reference of Earth-observing satellite sensor data to a common, consistent radiometric scale is an increasingly critical issue as more of these sensors are launched; such consistency can be achieved through radiometric cross-calibration of the sensors. A common cross-calibration approach uses a small set of regions of interest (ROIs) in established Pseudo-Invariant Calibration Sites (PICS) mainly located throughout North Africa. The number of available cloud-free coincident scene pairs available for these regions limits the usefulness of this approach; furthermore, the temporal stability of most regions throughout North Africa is not known, and limited hyperspectral information exists for these regions. As a result, it takes more time to construct an appropriate cross-calibration dataset. In a previous work, Shrestha et al. presented an analysis identifying 19 distinct “clusters” of spectrally similar surface cover that are widely distributed across North Africa, with the potential to provide near-daily cloud-free imaging for most sensors. This paper proposes a technique to generate a representative hyperspectral profile for these clusters. The technique was used to generate the profile for the cluster containing the largest number of aggregated pixels. The resulting profile was found to have temporal uncertainties within 5% across all the spectral regions. Overall, this technique shows great potential for generation of representative hyperspectral profiles for any North African cluster, which could allow the use of the entire North Africa Saharan region as an extended PICS (EPICS) dataset for sensor cross-calibration. This should result in the increased temporal resolution of cross-calibration datasets and should help to achieve a cross-calibration quality similar to that of individual PICS in a significantly shorter time interval. It also facilitates the development of an EPICS based absolute calibration model, which can improve the accuracy and consistency in simulating any sensor’s top of atmosphere (TOA) reflectance. Full article
(This article belongs to the Special Issue Cross-Calibration and Interoperability of Remote Sensing Instruments)
Show Figures

Graphical abstract

24 pages, 6067 KiB  
Article
Evaluation of an Extended PICS (EPICS) for Calibration and Stability Monitoring of Optical Satellite Sensors
by Md Nahid Hasan, Mahesh Shrestha, Larry Leigh and Dennis Helder
Remote Sens. 2019, 11(15), 1755; https://doi.org/10.3390/rs11151755 - 25 Jul 2019
Cited by 12 | Viewed by 3658
Abstract
Pseudo Invariant Calibration Sites (PICS) have been increasingly used as an independent data source for on-orbit radiometric calibration and stability monitoring of optical satellite sensors. Generally, this would be a small region of land that is extremely stable in time and space, predominantly [...] Read more.
Pseudo Invariant Calibration Sites (PICS) have been increasingly used as an independent data source for on-orbit radiometric calibration and stability monitoring of optical satellite sensors. Generally, this would be a small region of land that is extremely stable in time and space, predominantly found in North Africa. Use of these small regions, referred to as traditional PICS, can be limited by: (i) the spatial extent of an individual Region of Interest (ROI) and/or site; (ii) and the frequency of how often the site can be acquired, based on orbital patterns and cloud cover at the site, both impacting the time required to construct a richly populated temporal dataset. This paper uses a new class of continental scaled PICS clusters (also known as Extended PICS or EPICS), to demonstrate their capability in increasing temporal frequency of the calibration time series which ultimately allows calibration and stability assessment at a much finer scale compared to the traditional PICS-based method while also reducing any single location’s potential impact to the overall assessment. The use of EPICS as a calibration site was evaluated using data from Landsat-8 Operational Land Imager (OLI), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Sentinel-2A&B Multispectral Instrument (MSI) images at their full spatial resolutions. Initial analysis suggests that EPICS, at its full potential and with nominal cloud consideration, can significantly decrease the temporal revisit interval of moderate resolution sensors to as much as of 0.33 day (3 collects/day). A traditional PICS is expected to have a temporal uncertainty (defined as the ratio of temporal standard deviation and temporal mean) of 2–5% for TOA reflectance. Over the same time period EPICS produced a temporal uncertainty of 3%. But the advantage to be leveraged is the ability to detect sensor change quicker due to the denser dataset and reduce the impact of any potential ‘local’ changes. Moreover, this approach can be extended to any on-orbit sensor. An initial attempt to quantify the minimum detectable change (a threshold slope value which must be exceeded by the reflectance trend to be considered statistically significant) suggests that the use of EPICS can decrease the time period up to approximately half of that found using traditional PICS-based approach. Full article
(This article belongs to the Special Issue Cross-Calibration and Interoperability of Remote Sensing Instruments)
Show Figures

Graphical abstract

22 pages, 22058 KiB  
Article
Extended Pseudo Invariant Calibration Sites (EPICS) for the Cross-Calibration of Optical Satellite Sensors
by Mahesh Shrestha, Md. Nahid Hasan, Larry Leigh and Dennis Helder
Remote Sens. 2019, 11(14), 1676; https://doi.org/10.3390/rs11141676 - 14 Jul 2019
Cited by 15 | Viewed by 3944
Abstract
An increasing number of Earth-observing satellite sensors are being launched to meet the insatiable demand for timely and accurate data to aid the understanding of the Earth’s complex systems and to monitor significant changes to them. To make full use of the data [...] Read more.
An increasing number of Earth-observing satellite sensors are being launched to meet the insatiable demand for timely and accurate data to aid the understanding of the Earth’s complex systems and to monitor significant changes to them. To make full use of the data from these sensors, it is mandatory to bring them to a common radiometric scale through a cross-calibration approach. Commonly, cross-calibration data were acquired from selected pseudo-invariant calibration sites (PICS), located primarily throughout the Saharan desert in North Africa, determined to be temporally, spatially, and spectrally stable. The major limitation to this approach is that long periods of time are required to assemble sufficiently sampled cloud-free cross-calibration datasets. Recently, Shrestha et al. identified extended, cluster-based sites potentially suitable for PICS-based cross-calibration and estimated representative hyperspectral profiles for them. This work investigates the performance of extended pseudo-invariant calibration sites (EPICS) in cross-calibration for one of Shrestha’s clusters, Cluster 13, by comparing its results to those obtained from a traditional PICS-based cross-calibration. The use of EPICS clusters can significantly increase the number of cross-calibration opportunities within a much shorter time period. The cross-calibration gain ratio estimated using a cluster-based approach had a similar accuracy to the cross-calibration gain derived from region of interest (ROI)-based approaches. The cluster-based cross-calibration gain ratio is consistent within approximately 2% of the ROI-based cross-calibration gain ratio for all bands except for the coastal and shortwave-infrared (SWIR) 2 bands. These results show that image data from any region within Cluster 13 can be used for sensor cross-calibration. Full article
(This article belongs to the Special Issue Cross-Calibration and Interoperability of Remote Sensing Instruments)
Show Figures

Graphical abstract

18 pages, 17139 KiB  
Article
Classification of North Africa for Use as an Extended Pseudo Invariant Calibration Sites (EPICS) for Radiometric Calibration and Stability Monitoring of Optical Satellite Sensors
by Mahesh Shrestha, Larry Leigh and Dennis Helder
Remote Sens. 2019, 11(7), 875; https://doi.org/10.3390/rs11070875 - 11 Apr 2019
Cited by 29 | Viewed by 5997
Abstract
Pseudo invariant calibration sites (PICS) have been extensively used for the radiometric calibration and temporal stability monitoring of optical satellite sensors. Due to limited knowledge about the radiometric stability of North Africa, only a limited number of sites in the region are used [...] Read more.
Pseudo invariant calibration sites (PICS) have been extensively used for the radiometric calibration and temporal stability monitoring of optical satellite sensors. Due to limited knowledge about the radiometric stability of North Africa, only a limited number of sites in the region are used for this purpose. This work presents an automated approach to classify North Africa for its potential use as an extended PICS (EPICS) covering vast portions of the continent. An unsupervised classification algorithm identified 19 “clusters” representing distinct land surface types was used; three clusters were identified with spatial uncertainties within approximately 5% in the shorter wavelength bands and 3% in the longer wavelength bands. A key advantage of the cluster approach is that large numbers of pixels are aggregated into contiguous homogeneous regions sufficiently distributed across the continent to allow multiple imaging opportunities per day, as opposed to imaging a typical PICS once during the sensor’s revisit period. This potential increase in temporal resolution could result in increased sensitivity for the quicker identification of changes in sensor response. Full article
(This article belongs to the Special Issue Remote Sensing: 10th Anniversary)
Show Figures

Graphical abstract

24 pages, 3531 KiB  
Article
Adaptation to New Climate by an Old Strategy? Modeling Sedentary and Mobile Pastoralism in Semi-Arid Morocco
by Korbinian P. Freier, Manfred Finckh and Uwe A. Schneider
Land 2014, 3(3), 917-940; https://doi.org/10.3390/land3030917 - 31 Jul 2014
Cited by 16 | Viewed by 7220
Abstract
In a modeling study we examine vulnerability of income from mobile (transhumant) pastoralism and sedentary pastoralism to reduced mean annual precipitation (MAP) and droughts. The study is based on empirical data of a 3410 km2 research region in southern, semi-arid Morocco. The [...] Read more.
In a modeling study we examine vulnerability of income from mobile (transhumant) pastoralism and sedentary pastoralism to reduced mean annual precipitation (MAP) and droughts. The study is based on empirical data of a 3410 km2 research region in southern, semi-arid Morocco. The land use decision model integrates a meta-model of the Environmental Policy Integrated Climate (EPIC) simulator to depict perennial and annual forage plant development. It also includes livestock dynamics and forward-looking decision making under uncertain weather. Mobile livestock in the model moves seasonally, sedentary livestock is restricted to pastures around settlements. For a reduction of MAP by 20%, our model shows for different experimental frequencies of droughts a significant decrease of total income from pastoralism by 8%–19% (p < 0.05). Looking separately at the two modes of pastoralism, pronounced income losses of 18%–44% (p < 0.05) show that sedentary pastoralism is much more vulnerable to dryer climate than mobile pastoralism, which is merely affected. Dedicating more pasture area and high quality fodder to mobile pastoralism significantly abates impacts from reduced MAP and droughts on total income by 11% (p < 0.05). Our results indicate that promotion of mobile pastoralism in semi-arid areas is a valuable option to increase resilience against climate change. Full article
(This article belongs to the Special Issue Land Change Modeling: Connecting to the Bigger Picture)
Show Figures

Figure 1

Back to TopTop