Classification and Evaluation of Extended PICS (EPICS) on a Global Scale for Calibration and Stability Monitoring of Optical Satellite Sensors
Abstract
:1. Introduction
2. Methodology
2.1. Classification and Evaluation of North Africa as an EPICS
2.2. Expansion of Cluster 13 to a Global Scale
2.3. Selection of Locations of GC13 Based on Pixel Count
2.4. Creation of the GC13 Zonal Masks
2.5. Application of the GC13 Zonal Masks
2.6. Filtering Process Using the Quality Assessment Band (BQA) Data
2.7. Conversion of DN Values to TOA Reflectance
2.8. Cluster BRDF Model
2.9. Selection of GC13-O Locations
2.10. Uncertainty Estimation
3. Results and Discussion
3.1. Optimal Global Cluster GC13-O
3.2. Optimal Global Cluster Spectral Similarities
4. Validation
4.1. Traditional PICS vs. GC13-O
4.2. Comparison between C13 and GC13-O
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shrestha, M.; Leigh, L.; Helder, D. Classification of North Africa for Use as an Extended Pseudo Invariant Calibration Sites (EPICS) for Radiometric Calibration and Stability Monitoring of Optical Satellite Sensors. Remote. Sens. 2019, 11, 875. [Google Scholar] [CrossRef] [Green Version]
- Thorne, K.; Markharn, B.; Barker, P.S.; Biggar, S. Radiometric calibration of Landsat. Photogramm. Eng. Remote. Sens. 1997, 63, 853–858. [Google Scholar]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 operational land imager radiometric calibration and stability. Remote. Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, M.; Hasan, N.; Leigh, L.; Helder, D. Derivation of Hyperspectral Profile of Extended Pseudo Invariant Calibration Sites (EPICS) for Use in Sensor Calibration. Remote. Sens. 2019, 11, 2279. [Google Scholar] [CrossRef] [Green Version]
- Helder, D.L.; Basnet, B.; Morstad, D.L. Optimized identification of worldwide radiometric pseudo-invariant calibration sites. Can. J. Remote. Sens. 2010, 36, 527–539. [Google Scholar] [CrossRef]
- Bouvet, M. Radiometric comparison of multispectral imagers over a pseudo-invariant calibration site using a reference radiometric model. Remote. Sens. Environ. 2014, 140, 141–154. [Google Scholar] [CrossRef]
- Teillet, P.; Chander, G. Terrestrial reference standard sites for postlaunch sensor calibration. Can. J. Remote. Sens. 2010, 36, 437–450. [Google Scholar] [CrossRef]
- Vuppula, H. Normalization of Pseudo-Invariant Calibration Sites for Increasing the Temporal Resolution and Long-Term Trending; South Dakota State University: Brookings, SD, USA, 2017. [Google Scholar]
- Cosnefroy, H.; Leroy, M.; Briottet, X. Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors. Remote. Sens. Environ. 1996, 58, 101–114. [Google Scholar] [CrossRef]
- Hasan, M.N.; Shrestha, M.; Leigh, L.; Helder, D. Evaluation of an Extended PICS (EPICS) for Calibration and Stability Monitoring of Optical Satellite Sensors. Remote. Sens. 2019, 11, 1755. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote. Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Mishra, N.; Haque, M.O.; Leigh, L.; Aaron, D.; Helder, D.; Markham, B. Radiometric cross calibration of Landsat 8 operational land imager (OLI) and Landsat 7 enhanced thematic mapper plus (ETM+). Remote. Sens. 2014, 6, 12619–12638. [Google Scholar] [CrossRef] [Green Version]
- Warmerdam, F. GDAL/OGR API Documentation. 2005–2008. GDAL/OGR Website. Available online: http://www.gdal.org/ (accessed on 24 March 2020).
- Survey, U.S.G. Landsat Missions. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/using-usgs-landsat-level-1-data-product (accessed on 10 January 2020).
- Shrestha, M. Bidirectional Distribution Reflection Function of Algodones Dunes; South Dakota State University: Brookings, SD, USA, 2016. [Google Scholar]
- Kaewmanee, M. Pseudo Invariant Calibration Sites: PICS Evolution; South Dakota State University: Brookings, SD, USA, 2018. [Google Scholar]
- United States Geological Survey. Landsat Acquisition Tool. Available online: https://landsat.usgs.gov/landsat_acq (accessed on 2 February 2020).
- South Dakota State University; Nasa Goddard Space Flight Center; USGS EROS; University of Arizona. In Proceedings of the Landsat 8 OLI On Orbit Spatial Uniformity, Absolute Calibration and Stability, Conference on Characterization and Radiometric Calibration for Remote Sensing, 19 – 22 August 2013; Utah State University: Logan, UT, USA, 2013.
- Landsat 8 Satellite Safty. Available online: https://satellitesafety.gsfc.nasa.gov/landsat8.html (accessed on 25 February 2020).
Day of Landsat Cycle | Site Assigned Number | WRS-2 path/row | Pixel Count (in Millions) | Area (km2) |
---|---|---|---|---|
1 | 10 | 190/43 | 1.4 | 1260 |
2 | 4 | 181/40 | 38 | 34,200 |
3 | 8 | 188/47 | 27 | 24,300 |
21 | 172/39 | 0.15 | 135 | |
4 | 2 | 179/41 | 20.5 | 18,450 |
19 | 163/45 | 3.59 | 3231 | |
5 | 6 | 186/47 | 42.58 | 38,322 |
6 | 13 | 193/37 | 18.26 | 16,434 |
7 | 16 | 200/47 | 19.79 | 17,811 |
22 | 184/50 | 0.07 | 63 | |
8 | 11 | 191/37 | 0.49 | 441 |
18 | 159/46 | 3.67 | 3303 | |
9 | 14 | 198/47 | 54.52 | 49,068 |
10 | 9 | 189/46 | 10.78 | 9702 |
11 | 3 | 180/40 | 28.23 | 25,407 |
12 | 7 | 187/47 | 37.55 | 33,795 |
20 | 171/41 | 3.9 | 3510 | |
13 | 1 | 178/41 | 7.57 | 6813 |
14 | 5 | 185/47 | 30.16 | 27,144 |
23 | 185/50 | 0.36 | 324 | |
15 | 12 | 192/37 | 18.19 | 16,371 |
16 | 15 | 199/46 | 18.92 | 17,028 |
17 | 30/38 | 0.01 | 9 |
Day of Landsat Cycle | GC13 WRS-2 path/row Rejected from the GC13-O |
---|---|
1 | not found |
2 | 181/41,181/42,181/43,181/48,165/41,165/42 |
3 | 188/46,188/48,220/62 |
4 | 179/40,179/42,179/44,179/47,179/48,179/72,99/79,163/43,163/44 |
5 | 186/42,186/47,186/48,186/49,186/50,170/83,170/39,202/46 |
6 | 177/40, 177/41,177/42,177,44,177/45, 177/46,193/42/161/48 |
7 | 184/40, 184/41,184/42,184/46,184/47,184/49,200/48,232/78 |
8 | 175/50,38/37 |
9 | 182/40, 182/42,182/43,182/49,198/46,198/48, 29/42,166/41,201/47 |
10 | 189/44,189/45,173/36 |
11 | 180/41,180/42,180/44,180/47,100/81,164/42,164/43,164,44,164/45 |
12 | 187/42,187/43,187/44,187/46,187/48,187/49,187/50,203/45,203/46 203/47 |
13 | 178/41,162/48 |
14 | 185/40,185/42,185/44,185/45,185/47,185/48,185/49,201/46,201/47 |
15 | 176/41,176/42,176/43,176/44,192/37,160/47 |
16 | 183/40,183/41,183/42,183/43,183/49,199/47,199/48,183/50,103/82,30/38, 167/40 |
Landsat-8 OLI Spectral Bands | |||||||
---|---|---|---|---|---|---|---|
Coastal | Blue | Green | Red | NIR | SWIR1 | SWIR2 | |
Mean TOA reflectance | 0.239 | 0.256 | 0.342 | 0.463 | 0.583 | 0.669 | 0.571 |
Temporal CV (%) | 3.297 | 3.269 | 2.858 | 3.829 | 2.781 | 3.015 | 4.621 |
Average path/row spatial variability for GC13-O (%) | 6.474 | 7.01 | 5.996 | 5.472 | 5.168 | 4.842 | 5.676 |
Landsat-7 ETM + Spectral Bands | ||||||
---|---|---|---|---|---|---|
Blue | Green | Red | NIR | SWIR1 | SWIR2 | |
Mean TOA reflectance | 0.249 | 0.341 | 0.470 | 0.535 | 0.658 | 0.536 |
Temporal CV (%) | 3.511 | 3.101 | 4.190 | 3.797 | 3.623 | 5.525 |
Average path/row spatial variability for GC13-O (%) | 6.949 | 5.937 | 5.431 | 5.257 | 5.116 | 6.341 |
Uncertainty of GC13-O (%) | |||||||
---|---|---|---|---|---|---|---|
Bands | CA | Blue | Green | Red | NIR | SWIR 1 | SWIR 2 |
Temporal | 2.1401 | 2.1102 | 1.9974 | 2.1125 | 1.6482 | 1.6514 | 3.2566 |
Spatial | 2.5092 | 2.4977 | 2.0444 | 3.1939 | 2.2409 | 2.5234 | 3.2788 |
BRDF | 3.2283 | 3.2296 | 2.8685 | 3.834 | 2.7974 | 3.2274 | 4.9047 |
Total | 4.6149 | 4.5958 | 4.0494 | 5.4188 | 3.9451 | 4.4171 | 6.7388 |
Uncertainty of GC13-O (%) | ||||||
---|---|---|---|---|---|---|
Bands | Blue | Green | Red | NIR | SWIR 1 | SWIR 2 |
Temporal | 2.5318 | 2.3051 | 2.622 | 2.7769 | 2.691 | 3.9347 |
Spatial | 2.4333 | 2.0746 | 3.269 | 2.5904 | 2.4271 | 3.4757 |
BRDF | 2.8563 | 2.6527 | 3.9081 | 3.2301 | 3.4789 | 5.0821 |
Total | 4.9398 | 4.4237 | 6.1158 | 5.4142 | 5.354 | 7.7376 |
Bands | CA | Blue | Green | Red | NIR | SWIR 1 | SWIR 2 | |
---|---|---|---|---|---|---|---|---|
Optimal Global Cluster 13 (BRDF normalized) | Mean TOA reflectance | 0.239 | 0.256 | 0.342 | 0.463 | 0.583 | 0.669 | 0.571 |
Temporal CV (%) | 3.297 | 3.269 | 2.858 | 3.829 | 2.781 | 3.015 | 4.621 | |
Average spatial variability (%) | 6.474 | 7.01 | 5.996 | 5.472 | 5.168 | 4.842 | 5.676 | |
Libya 4 CNES ROI statistics (BRDF normalized) | Mean TOA reflectance | 0.229 | 0.247 | 0.335 | 0.456 | 0.578 | 0.668 | 0.583 |
Temporal CV (%) | 0.930 | 0.957 | 0.886 | 0.834 | 0.696 | 0.645 | 1.787 | |
Average spatial variability (%) | 3.054 | 4.059 | 4.652 | 4.762 | 4.923 | 4.631 | 4.679 |
Bands | CA | Blue | Green | Red | NIR | SWIR 1 | SWIR 2 | |
---|---|---|---|---|---|---|---|---|
Optimal Global Custer 13 (BRDF normalized) | Mean TOA reflectance | 0.239 | 0.256 | 0.342 | 0.463 | 0.583 | 0.668 | 0.571 |
Temporal CV (%) | 3.297 | 3.269 | 2.858 | 3.829 | 2.781 | 3.015 | 4.621 | |
Average spatial variability (%) | 6.474 | 7.01 | 5.996 | 5.472 | 5.168 | 4.842 | 5.676 | |
C13 (BRDF normalized) | Mean TOA reflectance | 0.229 | 0.245 | 0.343 | 0.480 | 0.597 | 0.697 | 0.603 |
Temporal CV (%) | 3.366 | 3.329 | 1.851 | 2.252 | 1.303 | 2.187 | 3.04 | |
Average spatial variability (%) | 4.572 | 5.058 | 4.329 | 3.914 | 3.919 | 3.668 | 3.921 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fajardo Rueda, J.; Leigh, L.; Teixeira Pinto, C.; Kaewmanee, M.; Helder, D. Classification and Evaluation of Extended PICS (EPICS) on a Global Scale for Calibration and Stability Monitoring of Optical Satellite Sensors. Remote Sens. 2021, 13, 3350. https://doi.org/10.3390/rs13173350
Fajardo Rueda J, Leigh L, Teixeira Pinto C, Kaewmanee M, Helder D. Classification and Evaluation of Extended PICS (EPICS) on a Global Scale for Calibration and Stability Monitoring of Optical Satellite Sensors. Remote Sensing. 2021; 13(17):3350. https://doi.org/10.3390/rs13173350
Chicago/Turabian StyleFajardo Rueda, Juliana, Larry Leigh, Cibele Teixeira Pinto, Morakot Kaewmanee, and Dennis Helder. 2021. "Classification and Evaluation of Extended PICS (EPICS) on a Global Scale for Calibration and Stability Monitoring of Optical Satellite Sensors" Remote Sensing 13, no. 17: 3350. https://doi.org/10.3390/rs13173350
APA StyleFajardo Rueda, J., Leigh, L., Teixeira Pinto, C., Kaewmanee, M., & Helder, D. (2021). Classification and Evaluation of Extended PICS (EPICS) on a Global Scale for Calibration and Stability Monitoring of Optical Satellite Sensors. Remote Sensing, 13(17), 3350. https://doi.org/10.3390/rs13173350