Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (169)

Search Parameters:
Keywords = EEG/EMG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2489 KB  
Article
Sentence-Level Silent Speech Recognition Using a Wearable EMG/EEG Sensor System with AI-Driven Sensor Fusion and Language Model
by Nicholas Satterlee, Xiaowei Zuo, Kee Moon, Sung Q. Lee, Matthew Peterson and John S. Kang
Sensors 2025, 25(19), 6168; https://doi.org/10.3390/s25196168 - 5 Oct 2025
Viewed by 548
Abstract
Silent speech recognition (SSR) enables communication without vocalization by interpreting biosignals such as electromyography (EMG) and electroencephalography (EEG). Most existing SSR systems rely on high-density, non-wearable sensors and focus primarily on isolated word recognition, limiting their practical usability. This study presents a wearable [...] Read more.
Silent speech recognition (SSR) enables communication without vocalization by interpreting biosignals such as electromyography (EMG) and electroencephalography (EEG). Most existing SSR systems rely on high-density, non-wearable sensors and focus primarily on isolated word recognition, limiting their practical usability. This study presents a wearable SSR system capable of accurate sentence-level recognition using single-channel EMG and EEG sensors with real-time wireless transmission. A moving window-based few-shot learning model, implemented with a Siamese neural network, segments and classifies words from continuous biosignals without requiring pauses or manual segmentation between word signals. A novel sensor fusion model integrates both EMG and EEG modalities, enhancing classification accuracy. To further improve sentence-level recognition, a statistical language model (LM) is applied as post-processing to correct syntactic and lexical errors. The system was evaluated on a dataset of four military command sentences containing ten unique words, achieving 95.25% sentence-level recognition accuracy. These results demonstrate the feasibility of sentence-level SSR using wearable sensors through a window-based few-shot learning model, sensor fusion, and ML applied to limited simultaneous EMG and EEG signals. Full article
(This article belongs to the Special Issue Advanced Sensing Techniques in Biomedical Signal Processing)
Show Figures

Figure 1

14 pages, 3201 KB  
Article
Corticomuscular Coupling Analysis in Archery Based on Transfer Entropy
by Yunrui Zhang, Yue Leng, Xiaozhi Li, Wenjing Zhang and Hairong Yu
Entropy 2025, 27(10), 1024; https://doi.org/10.3390/e27101024 - 28 Sep 2025
Viewed by 295
Abstract
Studying the information transfer between the brain and muscles during archery can help us to understand the underlying mechanisms of corticomuscular coupling during motor learning. In this study, we recruited 26 novice archers as participants and calculated the transfer entropy (TE) between their [...] Read more.
Studying the information transfer between the brain and muscles during archery can help us to understand the underlying mechanisms of corticomuscular coupling during motor learning. In this study, we recruited 26 novice archers as participants and calculated the transfer entropy (TE) between their EEG and EMG signals during the archery process. This was performed to assess the characteristics of corticomuscular coupling during archery and the impact of a period of archery training on this coupling. The results indicate that information transfer from EEG to EMG in the α and β frequency bands predominates during archery, which may be related to the roles of α and β frequency bands in inhibitory control and the sustained contraction of muscle stability. Additionally, the optimization of brain resource allocation resulting from a period of archery training is primarily reflected in the prefrontal cortex and motor cortex, where the information transfer from EEG to EMG decreases while activation related to inhibitory control increases. The intensity of corticomuscular coupling weakens with an increase in the number of arrows shot, but archery training reduces the impact of fatigue-induced changes on corticomuscular coupling. Full article
(This article belongs to the Section Entropy and Biology)
Show Figures

Figure 1

16 pages, 1473 KB  
Article
MASleepNet: A Sleep Staging Model Integrating Multi-Scale Convolution and Attention Mechanisms
by Zhiyuan Wang, Zian Gong, Tengjie Wang, Qi Dong, Zhentao Huang, Shanwen Zhang and Yahong Ma
Biomimetics 2025, 10(10), 642; https://doi.org/10.3390/biomimetics10100642 - 23 Sep 2025
Viewed by 438
Abstract
With the rapid development of modern industry, people’s living pressures are gradually increasing, and an increasing number of individuals are affected by sleep disorders such as insomnia, hypersomnia, and sleep apnea syndrome. Many cardiovascular and psychiatric diseases are also closely related to sleep. [...] Read more.
With the rapid development of modern industry, people’s living pressures are gradually increasing, and an increasing number of individuals are affected by sleep disorders such as insomnia, hypersomnia, and sleep apnea syndrome. Many cardiovascular and psychiatric diseases are also closely related to sleep. Therefore, the early detection, accurate diagnosis, and treatment of sleep disorders an urgent research priority. Traditional manual sleep staging methods have many problems, such as being time-consuming and cumbersome, relying on expert experience, or being subjective. To address these issues, researchers have proposed multiple algorithmic strategies for sleep staging automation based on deep learning in recent years. This paper studies MASleepNet, a sleep staging neural network model that integrates multimodal deep features. This model takes multi-channel Polysomnography (PSG) signals (including EEG (Fpz-Cz, Pz-Oz), EOG, and EMG) as input and employs a multi-scale convolutional module to extract features at different time scales in parallel. It then adaptively weights and fuses the features from each modality using a channel-wise attention mechanism. The integrated temporal features are integrated into a Bidirectional Long Short-Term Memory (BiLSTM) sequence encoder, where an attention mechanism is introduced to identify key temporal segments. The final classification result is produced by the fully connected layer. The proposed model was experimentally evaluated on the Sleep-EDF dataset (consisting of two subsets, Sleep-EDF-78 and Sleep-EDF-20), achieving classification accuracies of 82.56% and 84.53% on the two subsets, respectively. These results demonstrate that deep models that integrate multimodal signals and an attention mechanism offer the possibility to enhance the efficiency of automatic sleep staging compared to cutting-edge methods. Full article
Show Figures

Graphical abstract

34 pages, 3067 KB  
Article
NRGAMTE: Neurophysiological Residual Gated Attention Multimodal Transformer Encoder for Sleep Disorder Detection
by Jayapoorani Subramaniam, Aruna Mogarala Guruvaya, Anupama Vijaykumar and Puttamadappa Chaluve Gowda
Brain Sci. 2025, 15(9), 985; https://doi.org/10.3390/brainsci15090985 - 13 Sep 2025
Viewed by 538
Abstract
Background/Objective: Sleep is significant for human mental and physical health. Sleep disorders represent a crucial risk to human health, and a large portion of the world population suffers from them. The efficient identification of sleep disorders is significant for effective treatment. However, the [...] Read more.
Background/Objective: Sleep is significant for human mental and physical health. Sleep disorders represent a crucial risk to human health, and a large portion of the world population suffers from them. The efficient identification of sleep disorders is significant for effective treatment. However, the precise and automatic detection of sleep disorders remains challenging due to the inter-subject variability, overlapping symptoms, and reliance on single-modality physiological signals. Methods: To address these challenges, a Neurophysiological Residual Gated Attention Multimodal Transformer Encoder (NRGAMTE) model was developed for robust sleep disorder detection using multimodal physiological signals, including Electroencephalogram (EEG), Electromyogram (EMG), and Electrooculogram (EOG). Initially, raw signals are segmented into 30-s windows and processed to capture the significant time- and frequency-domain features. Every modality is independently embedded by a One-Dimensional Convolutional Neural Network (1D-CNN), which preserves signal-specific characteristics. A Modality-wise Residual Gated Cross-Attention Fusion (MRGCAF) mechanism is introduced to select significant cross-modal interactions, while the learnable residual path ensures that the most relevant features are retained during the gating process. Results: The developed NRGAMTE model achieved an accuracy of 94.51% on the Sleep-EDF expanded dataset and 99.64% on the Cyclic Alternating Pattern (CAP Sleep database), significantly outperforming the existing single- and multimodal algorithms in terms of robustness and computational efficiency. Conclusions: The results shows that NRGAMTE obtains high performance across multiple datasets, significantly improving detection accuracy. This demonstrated their potential as a reliable tool for clinical sleep disorder detection. Full article
(This article belongs to the Section Sleep and Circadian Neuroscience)
Show Figures

Figure 1

14 pages, 1405 KB  
Article
Hybrid EEG-EMG Control Scheme for Multiple Degrees of Freedom Upper-Limb Prostheses
by Sorelis Isabel Bandes Rodriguez and Yasuharu Koike
Actuators 2025, 14(8), 397; https://doi.org/10.3390/act14080397 - 11 Aug 2025
Viewed by 823
Abstract
Upper-limb motor disabilities and amputation pose a significant burden on individuals, hindering their ability to perform daily activities independently. While various research studies aim to enhance the performance of current upper-limb prosthetic devices, electrically activated prostheses still face challenges in achieving optimal functionality. [...] Read more.
Upper-limb motor disabilities and amputation pose a significant burden on individuals, hindering their ability to perform daily activities independently. While various research studies aim to enhance the performance of current upper-limb prosthetic devices, electrically activated prostheses still face challenges in achieving optimal functionality. This paper explores the potential of utilizing electromyogram (EMG) and electroencephalogram (EEG) signals to not only decipher movement across multiple degrees of freedom (DOFs) but also offer a more intuitive means of control. In this study, six distinct control schemes for upper-limb prosthetic devices are proposed, each with different combinations of EEG and EMG signals. These schemes were designed to control multiple degrees-of-freedom movements, encompassing five different hand and forearm actions (hand-open, hand-close, wrist pronation, wrist supination, and rest-state). Using Linear Discriminant Analysis as a model results in classification accuracies of over 85% for combined EEG-EMG control schemes. The results suggest promising advancements in the field and show the potential for a more effective and user-friendly control interface for upper-limb prosthetic devices. Full article
Show Figures

Figure 1

19 pages, 487 KB  
Review
Smart Clothing and Medical Imaging Innovations for Real-Time Monitoring and Early Detection of Stroke: Bridging Technology and Patient Care
by David Sipos, Kata Vészi, Bence Bogár, Dániel Pető, Gábor Füredi, József Betlehem and Attila András Pandur
Diagnostics 2025, 15(15), 1970; https://doi.org/10.3390/diagnostics15151970 - 6 Aug 2025
Viewed by 948
Abstract
Stroke is a significant global health concern characterized by the abrupt disruption of cerebral blood flow, leading to neurological impairment. Accurate and timely diagnosis—enabled by imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI)—is essential for differentiating stroke types and [...] Read more.
Stroke is a significant global health concern characterized by the abrupt disruption of cerebral blood flow, leading to neurological impairment. Accurate and timely diagnosis—enabled by imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI)—is essential for differentiating stroke types and initiating interventions like thrombolysis, thrombectomy, or surgical management. In parallel, recent advancements in wearable technology, particularly smart clothing, offer new opportunities for stroke prevention, real-time monitoring, and rehabilitation. These garments integrate various sensors, including electrocardiogram (ECG) electrodes, electroencephalography (EEG) caps, electromyography (EMG) sensors, and motion or pressure sensors, to continuously track physiological and functional parameters. For example, ECG shirts monitor cardiac rhythm to detect atrial fibrillation, smart socks assess gait asymmetry for early mobility decline, and EEG caps provide data on neurocognitive recovery during rehabilitation. These technologies support personalized care across the stroke continuum, from early risk detection and acute event monitoring to long-term recovery. Integration with AI-driven analytics further enhances diagnostic accuracy and therapy optimization. This narrative review explores the application of smart clothing in conjunction with traditional imaging to improve stroke management and patient outcomes through a more proactive, connected, and patient-centered approach. Full article
Show Figures

Figure 1

35 pages, 6415 KB  
Review
Recent Advances in Conductive Hydrogels for Electronic Skin and Healthcare Monitoring
by Yan Zhu, Baojin Chen, Yiming Liu, Tiantian Tan, Bowen Gao, Lijun Lu, Pengcheng Zhu and Yanchao Mao
Biosensors 2025, 15(7), 463; https://doi.org/10.3390/bios15070463 - 18 Jul 2025
Cited by 1 | Viewed by 1571
Abstract
In recent decades, flexible electronics have witnessed remarkable advancements in multiple fields, encompassing wearable electronics, human–machine interfaces (HMI), clinical diagnosis, and treatment, etc. Nevertheless, conventional rigid electronic devices are fundamentally constrained by their inherent non-stretchability and poor conformability, limitations that substantially impede their [...] Read more.
In recent decades, flexible electronics have witnessed remarkable advancements in multiple fields, encompassing wearable electronics, human–machine interfaces (HMI), clinical diagnosis, and treatment, etc. Nevertheless, conventional rigid electronic devices are fundamentally constrained by their inherent non-stretchability and poor conformability, limitations that substantially impede their practical applications. In contrast, conductive hydrogels (CHs) for electronic skin (E-skin) and healthcare monitoring have attracted substantial interest owing to outstanding features, including adjustable mechanical properties, intrinsic flexibility, stretchability, transparency, and diverse functional and structural designs. Considerable efforts focus on developing CHs incorporating various conductive materials to enable multifunctional wearable sensors and flexible electrodes, such as metals, carbon, ionic liquids (ILs), MXene, etc. This review presents a comprehensive summary of the recent advancements in CHs, focusing on their classifications and practical applications. Firstly, CHs are categorized into five groups based on the nature of the conductive materials employed. These categories include polymer-based, carbon-based, metal-based, MXene-based, and ionic CHs. Secondly, the promising applications of CHs for electrophysiological signals and healthcare monitoring are discussed in detail, including electroencephalogram (EEG), electrocardiogram (ECG), electromyogram (EMG), respiratory monitoring, and motion monitoring. Finally, this review concludes with a comprehensive summary of current research progress and prospects regarding CHs in the fields of electronic skin and health monitoring applications. Full article
Show Figures

Figure 1

37 pages, 1823 KB  
Review
Mind, Machine, and Meaning: Cognitive Ergonomics and Adaptive Interfaces in the Age of Industry 5.0
by Andreea-Ruxandra Ioniță, Daniel-Constantin Anghel and Toufik Boudouh
Appl. Sci. 2025, 15(14), 7703; https://doi.org/10.3390/app15147703 - 9 Jul 2025
Viewed by 2089
Abstract
In the context of rapidly evolving industrial ecosystems, the human–machine interaction (HMI) has shifted from basic interface control toward complex, adaptive, and human-centered systems. This review explores the multidisciplinary foundations and technological advancements driving this transformation within Industry 4.0 and the emerging paradigm [...] Read more.
In the context of rapidly evolving industrial ecosystems, the human–machine interaction (HMI) has shifted from basic interface control toward complex, adaptive, and human-centered systems. This review explores the multidisciplinary foundations and technological advancements driving this transformation within Industry 4.0 and the emerging paradigm of Industry 5.0. Through a comprehensive synthesis of the recent literature, we examine the cognitive, physiological, psychological, and organizational factors that shape operator performance, safety, and satisfaction. A particular emphasis is placed on ergonomic interface design, real-time physiological sensing (e.g., EEG, EMG, and eye-tracking), and the integration of collaborative robots, exoskeletons, and extended reality (XR) systems. We further analyze methodological frameworks such as RULA, OWAS, and Human Reliability Analysis (HRA), highlighting their digital extensions and applicability in industrial contexts. This review also discusses challenges related to cognitive overload, trust in automation, and the ethical implications of adaptive systems. Our findings suggest that an effective HMI must go beyond usability and embrace a human-centric philosophy that aligns technological innovation with sustainability, personalization, and resilience. This study provides a roadmap for researchers, designers, and practitioners seeking to enhance interaction quality in smart manufacturing through cognitive ergonomics and intelligent system integration. Full article
Show Figures

Figure 1

40 pages, 2250 KB  
Review
Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application
by Sk Hasan and Nafizul Alam
Actuators 2025, 14(7), 342; https://doi.org/10.3390/act14070342 - 9 Jul 2025
Viewed by 3064
Abstract
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric [...] Read more.
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use, and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to balance support and real-world navigation. Control approaches vary from traditional impedance and fuzzy logic models to advanced data-driven frameworks, including reinforcement learning, recurrent neural networks, and digital twin-based optimization. These controllers support personalized and adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase synchronization across different users and tasks. Hardware platforms include powered multi-degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-specific configurations. Innovations in actuator design, modular architecture, and lightweight materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG, IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain classification, and user monitoring. Human–robot interaction strategies emphasize safe, intuitive, and cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and human–subject trials across clinical and real-world environments, with performance measured through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse populations. Following a detailed review of current developments, strategic recommendations are made to enhance and evolve existing exoskeleton technologies. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

22 pages, 4142 KB  
Study Protocol
A Framework for Corticomuscle Control Studies Using a Serious Gaming Approach
by Pedro Correia, Carla Quintão, Cláudia Quaresma and Ricardo Vigário
Methods Protoc. 2025, 8(4), 74; https://doi.org/10.3390/mps8040074 - 7 Jul 2025
Viewed by 770
Abstract
Sophisticated voluntary movements are essential for everyday functioning, making the study of how the brain controls muscle activity a central challenge in neuroscience. Investigating corticomuscular control through non-invasive electrophysiological recordings is particularly complex due to the intricate nature of neuronal signals. To address [...] Read more.
Sophisticated voluntary movements are essential for everyday functioning, making the study of how the brain controls muscle activity a central challenge in neuroscience. Investigating corticomuscular control through non-invasive electrophysiological recordings is particularly complex due to the intricate nature of neuronal signals. To address this challenge, we present a novel experimental methodology designed to study corticomuscular control using electroencephalography (EEG) and electromyography (EMG). Our approach integrates a serious gaming biofeedback system with a specialized experimental protocol for simultaneous EEG-EMG data acquisition, optimized for corticomuscular studies. This work introduces, for the first time, a method for assessing brain–muscle functional connectivity during the execution of a demanding motor task. By identifying neuronal sources linked to muscular activity, this methodology has the potential to advance our understanding of motor control mechanisms. These insights could contribute to improving clinical practices and fostering the development of novel brain–computer interface technologies. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Figure 1

13 pages, 814 KB  
Review
Biofeedback for Motor and Cognitive Rehabilitation in Parkinson’s Disease: A Comprehensive Review of Non-Invasive Interventions
by Pierluigi Diotaiuti, Giulio Marotta, Salvatore Vitiello, Francesco Di Siena, Marco Palombo, Elisa Langiano, Maria Ferrara and Stefania Mancone
Brain Sci. 2025, 15(7), 720; https://doi.org/10.3390/brainsci15070720 - 4 Jul 2025
Viewed by 1845
Abstract
(1) Background: Biofeedback and neurofeedback are gaining attention as non-invasive rehabilitation strategies in Parkinson’s disease (PD) treatment, aiming to modulate motor and non-motor symptoms through the self-regulation of physiological signals. (2) Objective: This review explores the application of biofeedback techniques, electromyographic (EMG) biofeedback, [...] Read more.
(1) Background: Biofeedback and neurofeedback are gaining attention as non-invasive rehabilitation strategies in Parkinson’s disease (PD) treatment, aiming to modulate motor and non-motor symptoms through the self-regulation of physiological signals. (2) Objective: This review explores the application of biofeedback techniques, electromyographic (EMG) biofeedback, heart rate variability (HRV) biofeedback, and electroencephalographic (EEG) neurofeedback in PD rehabilitation, analyzing their impacts on motor control, autonomic function, and cognitive performance. (3) Methods: This review critically examined 15 studies investigating the efficacy of electromyographic (EMG), heart rate variability (HRV), and electroencephalographic (EEG) feedback interventions in PD. Studies were selected through a systematic search of peer-reviewed literature and analyzed in terms of design, sample characteristics, feedback modality, outcomes, and clinical feasibility. (4) Results: EMG biofeedback demonstrated improvements in muscle activation, gait, postural stability, and dysphagia management. HRV biofeedback showed positive effects on autonomic regulation, emotional control, and cardiovascular stability. EEG neurofeedback targeted abnormal cortical oscillations, such as beta-band overactivity and reduced frontal theta, and was associated with improvements in motor initiation, executive functioning, and cognitive flexibility. However, the reviewed studies were heterogeneous in design and outcome measures, limiting generalizability. Subgroup trends suggested modality-specific benefits across motor, autonomic, and cognitive domains. (5) Conclusions: While EMG and HRV systems are more accessible for clinical or home-based use, EEG neurofeedback remains technically demanding. Standardization of protocols and further randomized controlled trials are needed. Future directions include AI-driven personalization, wearable technologies, and multimodal integration to enhance accessibility and long-term adherence. Biofeedback presents a promising adjunct to conventional PD therapies, supporting personalized, patient-centered rehabilitation models. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

20 pages, 2409 KB  
Article
Spatio-Temporal Deep Learning with Adaptive Attention for EEG and sEMG Decoding in Human–Machine Interaction
by Tianhao Fu, Zhiyong Zhou and Wenyu Yuan
Electronics 2025, 14(13), 2670; https://doi.org/10.3390/electronics14132670 - 1 Jul 2025
Viewed by 895
Abstract
Electroencephalography (EEG) and surface electromyography (sEMG) signals are widely used in human–machine interaction (HMI) systems due to their non-invasive acquisition and real-time responsiveness, particularly in neurorehabilitation and prosthetic control. However, existing deep learning approaches often struggle to capture both fine-grained local patterns and [...] Read more.
Electroencephalography (EEG) and surface electromyography (sEMG) signals are widely used in human–machine interaction (HMI) systems due to their non-invasive acquisition and real-time responsiveness, particularly in neurorehabilitation and prosthetic control. However, existing deep learning approaches often struggle to capture both fine-grained local patterns and long-range spatio-temporal dependencies within these signals, which limits classification performance. To address these challenges, we propose a lightweight deep learning framework that integrates adaptive spatial attention with multi-scale temporal feature extraction for end-to-end EEG and sEMG signal decoding. The architecture includes two core components: (1) an adaptive attention mechanism that dynamically reweights multi-channel time-series features based on spatial relevance, and (2) a multi-scale convolutional module that captures diverse temporal patterns through parallel convolutional filters. The proposed method achieves classification accuracies of 79.47% on the BCI-IV 2a EEG dataset (9 subjects, 22 channels) for motor intent decoding and 85.87% on the NinaPro DB2 sEMG dataset (40 subjects, 12 channels) for gesture recognition. Ablation studies confirm the effectiveness of each module, while comparative evaluations demonstrate that the proposed framework outperforms existing state-of-the-art methods across all tested scenarios. Together, these results demonstrate that our model not only achieves strong performance but also maintains a lightweight and resource-efficient design for EEG and sEMG decoding. Full article
Show Figures

Figure 1

27 pages, 6579 KB  
Review
Bionic Sensors for Biometric Acquisition and Monitoring: Challenges and Opportunities
by Haoran Yu, Mingqi Ma, Baishun Zhang, Anxin Wang, Gaowei Zhong, Ziyuan Zhou, Chengxin Liu, Chunqing Li, Jingjing Fang, Yanbo He, Donghai Ren, Feifei Deng, Qi Hong, Yunong Zhao and Xiaohui Guo
Sensors 2025, 25(13), 3981; https://doi.org/10.3390/s25133981 - 26 Jun 2025
Cited by 1 | Viewed by 1198
Abstract
The development of materials science, artificial intelligence and wearable technology has created both opportunities and challenges for the next generation of bionic sensor technology. Bionic sensors are extensively utilized in the collection and monitoring of human biological signals. Human biological signals refer to [...] Read more.
The development of materials science, artificial intelligence and wearable technology has created both opportunities and challenges for the next generation of bionic sensor technology. Bionic sensors are extensively utilized in the collection and monitoring of human biological signals. Human biological signals refer to the parameters generated inside or outside the human body to transmit information. In a broad sense, they include bioelectrical signals, biomechanical information, biomolecules, and chemical molecules. This paper systematically reviews recent advances in bionic sensors in the field of biometric acquisition and monitoring, focusing on four major technical directions: bioelectric signal sensors (electrocardiograph (ECG), electroencephalograph (EEG), electromyography (EMG)), biomarker sensors (small molecules, large molecules, and complex-state biomarkers), biomechanical sensors, and multimodal integrated sensors. These breakthroughs have driven innovations in medical diagnosis, human–computer interaction, wearable devices, and other fields. This article provides an overview of the above biomimetic sensors and outlines the future development trends in this field. Full article
(This article belongs to the Special Issue Nature Inspired Engineering: Biomimetic Sensors)
Show Figures

Figure 1

32 pages, 2830 KB  
Article
Hybrid Deep Learning Approach for Automated Sleep Cycle Analysis
by Sebastián Urbina Fredes, Ali Dehghan Firoozabadi, Pablo Adasme, David Zabala-Blanco, Pablo Palacios Játiva and Cesar A. Azurdia-Meza
Appl. Sci. 2025, 15(12), 6844; https://doi.org/10.3390/app15126844 - 18 Jun 2025
Viewed by 868
Abstract
Health and well-being, both mental and physical, depend largely on adequate sleep. Many conditions arise from a disrupted sleep cycle, significantly deteriorating the quality of life of those affected. The analysis of the sleep cycle provide valuable information about sleep stages, which are [...] Read more.
Health and well-being, both mental and physical, depend largely on adequate sleep. Many conditions arise from a disrupted sleep cycle, significantly deteriorating the quality of life of those affected. The analysis of the sleep cycle provide valuable information about sleep stages, which are employed in sleep medicine for the diagnosis of numerous diseases. The clinical standard for sleep data recording is polysomnography (PSG), which records electroencephalogram (EEG), electrooculogram (EOG), electromyogram (EMG), and other signals during sleep activity. Recently, machine learning approaches have exhibited high accuracy in applications such as the classification and prediction of biomedical signals. This study presents a hybrid neural network architecture composed of convolutional neural network (CNN) layers, bidirectional long short-term memory (BiLSTM) layers, and attention mechanism layers in order to process large volumes of EEG data in PSG files. The objective is to design a framework for automated feature extraction. To address class imbalance, an epoch-level random undersampling (E-LRUS) method is proposed, discarding full epochs from majority classes while preserving the temporal structure, unlike traditional methods that remove individual samples. This method has been tested on EEG recordings acquired from the public Sleep EDF Expanded database, achieving an overall accuracy rate of 78.67% along with an F1-score of 72.10%. The findings show that this method proves to be effective for sleep stage classification in patients. Full article
Show Figures

Figure 1

19 pages, 7365 KB  
Article
Lemon Verbena Extract Enhances Sleep Quality and Duration via Modulation of Adenosine A1 and GABAA Receptors in Pentobarbital-Induced and Polysomnography-Based Sleep Models
by Mijoo Choi, Yean Kyoung Koo, Nayoung Kim, Yunjung Lee, Dong Joon Yim, SukJin Kim, Eunju Park and Soo-Jeung Park
Int. J. Mol. Sci. 2025, 26(12), 5723; https://doi.org/10.3390/ijms26125723 - 14 Jun 2025
Cited by 2 | Viewed by 1540
Abstract
This study investigated the effects of lemon verbena extract (LVE) on sleep regulation using both a pentobarbital-induced sleep model and an EEG-based sleep assessment model in mice. To elucidate its potential mechanisms, mice were randomly assigned to five groups: control, positive control (diazepam, [...] Read more.
This study investigated the effects of lemon verbena extract (LVE) on sleep regulation using both a pentobarbital-induced sleep model and an EEG-based sleep assessment model in mice. To elucidate its potential mechanisms, mice were randomly assigned to five groups: control, positive control (diazepam, 2 mg/kg b.w.), and three LVE-treated groups receiving 40, 80, or 160 mg/kg b.w. via oral administration. In the pentobarbital-induced sleep model, mice underwent a two-week oral administration of LVE, followed by intraperitoneal pentobarbital injections. The results demonstrated that LVE significantly shortened sleep latency and prolonged sleep duration compared to the control group. Notably, adenosine A1 receptor expression, both at the mRNA and protein levels, was markedly upregulated in the brains of LVE-treated mice. Furthermore, LVE’s administration led to a significant increase in the mRNA expression of gamma-aminobutyric acid type A (GABAA) receptor subunits (α2 and β2) in brain tissue. In the electroencephalography (EEG)/electromyogram (EMG)-based sleep model, mice underwent surgical implantation of EEG and EMG electrodes, followed by one week of LVE administration. Quantitative EEG analysis revealed that LVE treatment reduced wakefulness while significantly enhancing REM and NREM sleep’s duration, indicating its potential sleep-promoting effects. These findings suggest that LVE may serve as a promising natural sleep aid, improving both the quality and duration of sleep through the modulation of adenosine and GABAergic signaling pathways. Full article
(This article belongs to the Special Issue Natural Medicines and Functional Foods for Human Health)
Show Figures

Figure 1

Back to TopTop