MASleepNet: A Sleep Staging Model Integrating Multi-Scale Convolution and Attention Mechanisms
Abstract
1. Introduction
2. Methods
2.1. Overall Model Architecture
2.2. Multimodal Multiscale Feature Extraction Module (MFEM)
- (1)
- Short-time-scale convolution branch (local feature branch): This path uses a smaller convolution kernel (kernel size = 50) to accurately capture short-time local information in the signal, such as the wake phase (W) and high-frequency components like spindles;
- (2)
- Long-time convolution branch (global feature branch): This path uses a larger convolution kernel (kernel size = 400) and the receptive field covers a signal length of about 4 s to fully extract the slower trend features in the signal, such as the slow wave features in the N3 stage.
2.3. BiLSTM-Attention Context Module (ACM)
2.4. Classifier and Loss Function
3. Experiments and Results
3.1. Dataset and Preprocessing
3.2. Experimental Plan
3.3. Performance Evaluation Index
3.4. Classification Performance of the MASleepNet Model
3.5. Baseline Networks and Comparison
4. Ablation Experiment
- (1)
- No-MSConv (no multi-scale convolution structure): This variant removes the large kernel convolution branch in the multi-scale feature extraction module and only retains the small kernel (local) convolution path in the original network to evaluate the impact of different receptive field combinations on feature extraction capabilities.
- (2)
- EEG-Only: This variant starts from the input layer and only retains EEG as input, completely removing the EOG and EMG signal paths, and correspondingly deleting the feature extraction and attention fusion modules of these two modalities. It is used to evaluate the gain effect of multimodal signal fusion on classification performance.
- (3)
- No-SE (remove squeeze-and-excitation module): This variant removes the SE channel attention module in each branch, such that feature maps are directly propagated without channel-wise recalibration. This design evaluates the effect of adaptive channel weighting on performance.
- (4)
- No-LSTM (remove BiLSTM): This variant removes the BiLSTM temporal modeling module and instead directly applies attention-based global pooling over the extracted features. It is used to evaluate the contribution of recurrent temporal modeling to sequence classification.
- (5)
- No-Attn (remove attention mechanism): This variant retains the BiLSTM module for time series modeling, but removes the attention mechanism; the classifier only receives the last time step in the LSTM output sequence as the global representation vector for classification, which is used to compare the attention context modeling ability.
5. Conclusions
6. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weber, F.; Dan, Y. Circuit-based interrogation of sleep control. Nature 2016, 538, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Li, H.; Chen, C.; Xu, N.; Chen, Q.; Ma, J. Sleep effects on memory consolidation in adolescent English vocabulary memorization: Investigating links between sleep quality, memory, and mood disturbance. Curr. Psychol. 2024, 43, 28429–28437. [Google Scholar] [CrossRef]
- He, Y.; Yang, T.; Guo, Q.; Wu, S.; Liu, W.; Xu, T. Innovative Analysis of the Interconnected Network Structure Between Anxiety and Sleep Quality Among College Students. Psychol. Res. Behav. Manag. 2025, 18, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, P.; Mukhopadhyay, S. Automated sleep stage scoring using time-frequency spectra convolution neural network. IEEE Trans. Instrum. Meas. 2022, 71, 2510309. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Xia, Y.; Chen, P.; Wang, B. A general and scalable vision framework for functional near-infrared spectroscopy classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1982–1991. [Google Scholar] [CrossRef]
- Choi, M.; Lee, S.-J. Oscillometry-based blood pressure estimation using convolutional neural networks. IEEE Access 2022, 10, 56813–56822. [Google Scholar] [CrossRef]
- Iber, C.; Ancoli-Israel, S.; Chesson, A.; Quan, S. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; American Academy of Sleep Medicine: Westchester, IL, USA, 2007. [Google Scholar]
- Özşen, S. Classification of sleep stages using class-dependent sequential feature selection and artificial neural network. Neural Comput. Appl. 2013, 23, 1239–1250. [Google Scholar] [CrossRef]
- Eldele, E.; Ragab, M.; Chen, Z.; Wu, M.; Kwoh, C.K.; Li, X. Selfsupervised learning for label-efficient sleep stage classification: A comprehensive evaluation. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1333–1342. [Google Scholar] [CrossRef]
- Malhotra, A.; Younes, M.; Kuna, S.T.; Benca, R.; Kushida, C.A.; Walsh, J.; Hanlon, A.; Staley, B.; Pack, A.I.; Pien, G.W. Performance of an automated polysomnography scoring system versus computer-assisted manual scoring. Sleep 2013, 36, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Anandakumar, M.; Pradeepkumar, J.; Kappel, S.L.; Edussooriya, C.U.; de Silva, A.C. A knowledge distillation framework for enhancing Ear-EEG based sleep staging with scalp-EEG data. In Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Honolulu, HI, USA, 1–4 October 2023; pp. 514–519. [Google Scholar]
- Fiorillo, L.; Favaro, P.; Faraci, F.D. DeepSleepNet-Lite: A simplified automatic sleep stage scoring model with uncertainty estimates. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 2076–2085. [Google Scholar] [CrossRef]
- Casal, R.; Di Persia, L.E.; Schlotthauer, G. Classifying sleep–wake stages through recurrent neural networks using pulse oximetry signals. Biomed. Signal Process. Control 2021, 63, 102195. [Google Scholar] [CrossRef]
- Phan, H.; Chén, O.Y.; Tran, M.C.; Koch, P.; Mertins, A.; De Vos, M. XSleepNet: Multi-view sequential model for automatic sleep staging. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 5903–5915. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.; Andreotti, F.; Cooray, N.; Chen, O.Y.; De Vos, M. SeqSleepNet: End-to-end hierarchical recurrent neural network for sequence-to sequence automatic sleep staging. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 400–410. [Google Scholar] [CrossRef]
- Chambon, S.; Galtier, M.N.; Arnal, P.J.; Wainrib, G.; Gramfort, A. A deep learning architecture for temporal sleep stage classification us-ing multivariate and multimodal time series. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Supratak, A.; Pan, W.; Wu, C.; Matthews, P.M.; Guo, Y. Mixed neural network approach for temporal sleep stage classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 324–333. [Google Scholar] [CrossRef]
- Lee, C.-H.; Kim, H.; Han, H.-J.; Jung, M.-K.; Yoon, B.C.; Kim, D.-J. NeuroNet: A novel hybrid self-supervised learning framework for sleep stage classification using single-channel EEG. arXiv 2024, arXiv:2404.17585. [Google Scholar]
- Siddiqa, H.A.; Tang, Z.; Xu, Y.; Wang, L.; Irfan, M.; Abbasi, S.F.; Nawaz, A.; Chen, C.; Chen, W. Single-Channel EEG data analysis using a multi-branch CNN for neonatal sleep staging. IEEE Access 2024, 12, 29910–29925. [Google Scholar] [CrossRef]
- Ronzhina, M.; Janoušek, O.; Kolářová, J.; Nováková, M.; Honzík, P.; Provazník, I. Sleep scoring usingartificial neural networks. Sleep Med. Rev. 2012, 16, 251–263. [Google Scholar] [CrossRef]
- Chriskos, P.; Frantzidis, C.A.; Nday, C.M.; Gkivogkli, P.T.; Bamidis, P.D.; Kourtidou-Papadeli, C.P.; Chriskos, C.A.; Frantzidis, C.M. A review on currenttrends in automatic sleep staging through bio-signal recordings and future challenges. Sleep Med. Rev. 2021, 55, 101377. [Google Scholar] [CrossRef]
- Phan, H.; Mikkelsen, K. Automatic sleep staging of EEG signals: Recent development, challenges, and future directions. Physiol Meas 2022, 43, 04TR01. [Google Scholar] [CrossRef]
- Supratak, A.; Dong, H.; Wu, C.; Guo, Y. DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1998–2008. [Google Scholar] [CrossRef]
- Eldele, E.; Chen, Z.; Liu, C.; Wu, M.; Kwoh, C.-K.; Li, X.; Guan, C. An Attention-Based Deep Learning Approach for Sleep Stage Classification With Single-Channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 809–818. [Google Scholar] [CrossRef]
- Li, W.; Gao, J. Automatic sleep staging by a hybrid model based on deep 1D-ResNet-SE and LSTM with single-channel raw EEG signals. PeerJ Comput. Sci. 2023, 9, e1561. [Google Scholar] [CrossRef]
- Jia, Z.; Cai, X.; Zheng, G.; Wang, J.; Lin, Y. SleepPrintNet: A Multivariate Multimodal Neural Network Based on Physiological Time-Series for Automatic Sleep Staging. IEEE Trans. Artif. Intell. 2020, 1, 248–257. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, Y.; Wang, J.; Wang, X.; Xie, P.; Zhang, Y. SalientSleepNet: Multimodal salient wave detection network for sleep stagingCCC. In Proceedings of the IJCAI 2021 (30th Int Joint Conf on Artificial Intelligence), Virtual, 19–26 August 2021; pp. 3617–3623. [Google Scholar]
- Fraiwan, L.; Lweesy, K.; Khasawneh, N.; Wenz, H.; Dickhaus, H. Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifer. Comput. Methods Programs Biomed. 2012, 108, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Aboalayon, K.A.I.; Faezipour, M.; Almuhammadi, W.S.; Moslehpour, S. Sleep stage classifcation using EEG signal analysis: A comprehensive survey and new investigation. Entropy 2016, 18, 272. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, W.; Chen, Y. Multi-scale convolutional neuralnetworks for time series classification. arXiv 2016, arXiv:1603.06995. [Google Scholar]
- Phan, H.; Andreotti, F.; Cooray, N.; Chén, O.Y.; De Vos, M. Jointclassification and prediction CNN framework for automatic sleep stageclassifcation. IEEE Trans. Biomed. Eng. 2019, 66, 1285–1296. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Kemp, B.; Zwinderman, A.; Tuk, B.; Kamphuisen, H.; Oberye, J. Analysis of a sleep-dependent neuronal feedback loop: The slow-wave microcontinuity of the EEG. IEEE Trans. Biomed. Eng. 2000, 47, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologicsignals. Cirulation 2000, 101, e215–e220. [Google Scholar] [CrossRef]
- Wolpert, E.A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Arch. Gen. Psychiatry 1969, 20, 246–247. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, B.; Jin, J.; Wang, X. Deep convolutional network method for automatic sleep stage classification based on neurophysiological signals. In Proceedings of the 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Beijing, China, 13–15 October 2018; pp. 1–5. [Google Scholar]
- Supratak, A.; Guo, Y. TinySleepNet: An efficient deep learning model for sleep stage scoring based on raw single-channel EEG. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, EMBC, Montréal, QC, Canada, 20–24 July 2020; IEEE: New York, NY, USA, 2020; pp. 641–644. [Google Scholar]
Dataset | W | N1 | N2 | N3 | REM | TOTAL |
---|---|---|---|---|---|---|
Sleep-EDF-20 | 8285 | 2804 | 17,799 | 5703 | 7717 | 42,308 |
19.6% | 6.6% | 42.1% | 13.5% | 18.2% | ||
Sleep-EDF-78 | 65,951 | 21,522 | 69,132 | 13,039 | 25,835 | 195,479 |
14.3% | 3.2% | 43.7% | 18.5% | 20.3% |
Model | Overall Results (%) | ||||||
---|---|---|---|---|---|---|---|
ACC | F1Macro | Kappa | Sen | Spe | Pre | ||
DeepSleepNet [23] | 80.66 | 76.60 | 74.14 | 80.07 | 95.21 | 75.75 | |
ResNetLSTM [36] | 74.58 | 69.97 | 65.96 | 71.97 | 93.54 | 71.14 | |
AttnSleep [24] | 81.39 | 77.07 | 74.98 | 79.71 | 95.32 | 77.02 | |
TinySleepNet [37] | 80.50 | 71.40 | 73.16 | 72.09 | 94.81 | 72.62 | |
SeqSleepNet [15] | 75.08 | 61.68 | 65.00 | 63.00 | 93.03 | 63.10 | |
MASleepNet | 84.53 | 78.88 | 78.53 | 78.43 | 95.69 | 80.21 | |
Model | Pre-Class Precisions (%) | ||||||
Pre (N1) | Pre (N2) | Pre (N3) | Pre (REM) | Pre (Wake) | |||
DeepSleepNet [23] | 36.85 | 91.64 | 79.08 | 80.12 | 89.58 | ||
ResNetLSTM [36] | 28.29 | 85.91 | 78.53 | 74.83 | 82.38 | ||
AttnSleep [24] | 37.78 | 90.51 | 82.04 | 83.84 | 88.45 | ||
TinySleepNet [37] | 36.45 | 87.69 | 83.12 | 70.67 | 82.05 | ||
SeqSleepNet [15] | 24.09 | 81.02 | 82.56 | 59.32 | 78.66 | ||
MASleepNet | 53.55 | 86.30 | 88.04 | 84.06 | 87.29 |
Model | Results (%) | ||||||
---|---|---|---|---|---|---|---|
ACC | F1Macro | Kappa | Sen | Spe | Pre | ||
DeepSleepNet [23] | 76.87 | 72.25 | 69.06 | 76.64 | 94.36 | 70.86 | |
ResNetLSTM [36] | 76.77 | 72.89 | 68.90 | 76.43 | 94.31 | 71.75 | |
AttnSleep [24] | 75.70 | 71.72 | 67.54 | 75.31 | 94.07 | 70.70 | |
TinySleepNet [37] | 78.06 | 69.39 | 69.29 | 69.31 | 94.07 | 71.01 | |
SeqSleepNet [15] | 73.84 | 62.02 | 63.27 | 63.52 | 92.92 | 64.75 | |
MASleepNet | 82.56 | 76.12 | 74.95 | 75.85 | 95.16 | 76.94 | |
Model | Pre-Class Precisions (%) | ||||||
Pre (N1) | Pre (N2) | Pre (N3) | Pre (REM) | Pre (Wake) | |||
DeepSleepNet [23] | 39.48 | 85.27 | 57.82 | 75.05 | 96.27 | ||
ResNetLSTM [36] | 37.63 | 86.11 | 65.57 | 74.29 | 94.65 | ||
AttnSleep [24] | 35.79 | 85.08 | 64.03 | 71.04 | 96.48 | ||
TinySleepNet [37] | 40.16 | 78.96 | 80.21 | 65.33 | 89.06 | ||
SeqSleepNet [15] | 32.44 | 79.88 | 70.50 | 55.47 | 80.66 | ||
MASleepNet | 47.64 | 81.23 | 77.96 | 79.97 | 92.78 |
Model | Results (%) | |||||
---|---|---|---|---|---|---|
ACC | F1Macro | Kappa | Sen | Spe | Pre | |
No-MSConv | 82.07 | 75.66 | 75.23 | 75.57 | 95.09 | 76.71 |
EEG-Only | 82.73 | 74.90 | 76.17 | 75.01 | 95.32 | 77.31 |
No-SE | 84.22 | 78.33 | 78.34 | 78.14 | 95.62 | 79.06 |
No-LSTM | 84.18 | 78.34 | 78.12 | 78.18 | 95.65 | 79.56 |
No-Attn | 84.13 | 78.22 | 78.06 | 78.08 | 95.63 | 78.95 |
MASleepNet | 84.53 | 78.88 | 78.53 | 78.43 | 95.69 | 80.21 |
Dataset | Results (%) | |||||
---|---|---|---|---|---|---|
ACC | F1Macro | Kappa | Sen | Spe | Pre | |
No-MSConv | 79.77 | 72.69 | 71.76 | 72.86 | 94.49 | 73.80 |
EEG-Only | 79.94 | 72.52 | 72.07 | 72.41 | 94.65 | 73.57 |
No-SE | 82.05 | 75.95 | 74.61 | 75.36 | 95.08 | 76.62 |
No-LSTM | 81.52 | 73.56 | 74.29 | 72.34 | 94.90 | 76.51 |
No-Attn | 81.85 | 75.88 | 74.78 | 75.68 | 95.14 | 76.48 |
MASleepNet | 82.56 | 76.12 | 74.95 | 75.85 | 95.16 | 76.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Gong, Z.; Wang, T.; Dong, Q.; Huang, Z.; Zhang, S.; Ma, Y. MASleepNet: A Sleep Staging Model Integrating Multi-Scale Convolution and Attention Mechanisms. Biomimetics 2025, 10, 642. https://doi.org/10.3390/biomimetics10100642
Wang Z, Gong Z, Wang T, Dong Q, Huang Z, Zhang S, Ma Y. MASleepNet: A Sleep Staging Model Integrating Multi-Scale Convolution and Attention Mechanisms. Biomimetics. 2025; 10(10):642. https://doi.org/10.3390/biomimetics10100642
Chicago/Turabian StyleWang, Zhiyuan, Zian Gong, Tengjie Wang, Qi Dong, Zhentao Huang, Shanwen Zhang, and Yahong Ma. 2025. "MASleepNet: A Sleep Staging Model Integrating Multi-Scale Convolution and Attention Mechanisms" Biomimetics 10, no. 10: 642. https://doi.org/10.3390/biomimetics10100642
APA StyleWang, Z., Gong, Z., Wang, T., Dong, Q., Huang, Z., Zhang, S., & Ma, Y. (2025). MASleepNet: A Sleep Staging Model Integrating Multi-Scale Convolution and Attention Mechanisms. Biomimetics, 10(10), 642. https://doi.org/10.3390/biomimetics10100642