Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = DpRVI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5702 KiB  
Article
Monitoring Tropical Forest Disturbance and Recovery: A Multi-Temporal L-Band SAR Methodology from Annual to Decadal Scales
by Derek S. Tesser, Kyle C. McDonald, Erika Podest, Brian T. Lamb, Nico Blüthgen, Constance J. Tremlett, Felicity L. Newell, Edith Villa-Galaviz, H. Martin Schaefer and Raul Nieto
Remote Sens. 2025, 17(13), 2188; https://doi.org/10.3390/rs17132188 - 25 Jun 2025
Viewed by 448
Abstract
Tropical forests harbor a significant portion of global biodiversity but are increasingly degraded by human activity. Assessing restoration efforts requires the systematic monitoring of tropical ecosystem status and recovery. Satellite-borne synthetic aperture radar (SAR) supports monitoring changes in vegetation structure and is of [...] Read more.
Tropical forests harbor a significant portion of global biodiversity but are increasingly degraded by human activity. Assessing restoration efforts requires the systematic monitoring of tropical ecosystem status and recovery. Satellite-borne synthetic aperture radar (SAR) supports monitoring changes in vegetation structure and is of particular utility in tropical regions where clouds obscure optical satellite observations. To characterize tropical forest recovery in the Lowland Chocó Biodiversity Hotspot of Ecuador, we apply over a decade of dual-polarized (HH + HV) L-band SAR datasets from the Japanese Space Agency’s (JAXA) PALSAR and PALSAR-2 sensors. We assess the complementarity of the dual-polarized imagery with less frequently available fully-polarimetric imagery, particularly in the context of their respective temporal and informational trade-offs. We examine the radar image texture associated with the dual-pol radar vegetation index (DpRVI) to assess the associated determination of forest and nonforest areas in a topographically complex region, and we examine the equivalent performance of texture measures derived from the Freeman–Durden polarimetric radar decomposition classification scheme applied to the fully polarimetric data. The results demonstrate that employing a dual-polarimetric decomposition classification scheme and subsequently deriving the associated gray-level co-occurrence matrix mean from the DpRVI substantially improved the classification accuracy (from 88.2% to 97.2%). Through this workflow, we develop a new metric, the Radar Forest Regeneration Index (RFRI), and apply it to describe a chronosequence of a tropical forest recovering from naturally regenerating pasture and cacao plots. Our findings from the Lowland Chocó region are particularly relevant to the upcoming NASA-ISRO NISAR mission, which will enable the comprehensive characterization of vegetation structural parameters and significantly enhance the monitoring of biodiversity conservation efforts in tropical forest ecosystems. Full article
(This article belongs to the Special Issue NISAR Global Observations for Ecosystem Science and Applications)
Show Figures

Figure 1

32 pages, 15160 KiB  
Article
Analyzing Temporal Characteristics of Winter Catch Crops Using Sentinel-1 Time Series
by Shanmugapriya Selvaraj, Damian Bargiel, Abdelaziz Htitiou and Heike Gerighausen
Remote Sens. 2024, 16(19), 3737; https://doi.org/10.3390/rs16193737 - 8 Oct 2024
Cited by 1 | Viewed by 1603
Abstract
Catch crops are intermediate crops sown between two main crop cycles. Their adoption into the cropping system has increased considerably in the last years due to its numerous benefits, in particular its potential in carbon fixation and preventing nitrogen leaching during winter. The [...] Read more.
Catch crops are intermediate crops sown between two main crop cycles. Their adoption into the cropping system has increased considerably in the last years due to its numerous benefits, in particular its potential in carbon fixation and preventing nitrogen leaching during winter. The growth period of catch crops in Germany is often marked by dense cloud cover, which limits land surface monitoring through optical remote sensing. In such conditions, synthetic aperture radar (SAR) emerges as a viable option. Despite the known advantages of SAR, the understanding of temporal behavior of radar parameters in relation to catch crops remains largely unexplored. Hence, in this study, we exploited the dense time series of Sentinel-1 data within the Copernicus Space Component to study the temporal characteristics of catch crops over a test site in the center of Germany. Radar parameters such as VV, VH, VH/VV backscatter, dpRVI (dual-pol Radar Vegetation Index) and VV coherence were extracted, and temporal profiles were interpreted for catch crops and preceding main crops along with in situ, temperature, and precipitation data. Additionally, we examined the temporal profiles of winter main crops (winter oilseed rape and winter cereals), that are grown parallel to the catch crop growing cycle. Based on the analyzed temporal patterns, we defined 22 descriptive features from VV, VH, VH/VV and dpRVI, which are specific to catch crop identification. Then, we conducted a Kruskal–Wallis test on the extracted parameters, both crop-wise and group-wise, to assess the significance of statistical differences among different catch crop groups. Our results reveal that there exists a unique temporal pattern for catch crops compared to main crops, and each of these extracted parameters possess a different sensitivity to catch crops. Parameters VV and VH are sensitive to phenological stages and crop structure. On the other hand, VH/VV and dpRVI were found to be highly sensitive to crop biomass. Coherence can be used to detect the sowing and harvest events. The preceding main crop analysis reveals that winter wheat and winter barley are the two dominant main crops grown before catch crops. Moreover, winter main crops (winter oilseed rape, winter cereals) cultivated during the catch crop cycle can be distinguished by exploiting the observed sowing window differences. The extracted descriptive features provide information about sowing, harvest, vigor, biomass, and early/late die-off nature specific to catch crop types. In the Kruskal–Wallis test, the observed high H-statistic and low p-value in several predictors indicates significant variability at 0.001 level. Furthermore, Dunn’s post hoc test among catch crop group pairs highlights the substantial differences between cold-sensitive and legume groups (p < 0.001). Full article
Show Figures

Figure 1

22 pages, 18268 KiB  
Article
Enhancement of Comparative Assessment Approaches for Synthetic Aperture Radar (SAR) Vegetation Indices for Crop Monitoring and Identification—Khabarovsk Territory (Russia) Case Study
by Aleksei Sorokin, Alexey Stepanov, Konstantin Dubrovin and Andrey Verkhoturov
Remote Sens. 2024, 16(14), 2532; https://doi.org/10.3390/rs16142532 - 10 Jul 2024
Cited by 1 | Viewed by 2185
Abstract
Crop identification at the field level using remote sensing data is a very important task. However, the use of multispectral data for the construction of vegetation indices is sometimes impossible or limited. For such situations, solutions based on the use of time series [...] Read more.
Crop identification at the field level using remote sensing data is a very important task. However, the use of multispectral data for the construction of vegetation indices is sometimes impossible or limited. For such situations, solutions based on the use of time series of synthetic aperture radar (SAR) indices are promising, eliminating the problems associated with cloudiness and providing an assessment of crop development characteristics during the growing season. We evaluated the use of time series of synthetic aperture radar (SAR) indices to characterize crop development during the growing season. The use of SAR imagery for crop identification addresses issues related to cloudiness. Therefore, it is important to choose the SAR index that is the most stable and has the lowest spatial variability throughout the growing season while being comparable to the normalized difference vegetation index (NDVI). The presented work is devoted to the study of these issues. In this study, the spatial variabilities of different SAR indices time series were compared for a single region for the first time to identify the most stable index for use in precision agriculture, including the in-field heterogeneity of crop sites, crop rotation control, mapping, and other tasks in various agricultural areas. Seventeen Sentinel-1B images of the southern part of the Khabarovsk Territory in the Russian Far East at a spatial resolution of 20 m and temporal resolution of 12 days for the period between 14 April 2021 and 1 November 2021 were obtained and processed to generate vertical–horizontal/vertical–vertical polarization (VH/VV), radar vegetation index (RVI), and dual polarimetric radar vegetation index (DpRVI) time series. NDVI time series were constructed from multispectral Sentinel-2 images using a cloud cover mask. The characteristics of time series maximums were calculated for different types of crops: soybean, oat, buckwheat, and timothy grass. The DpRVI index exhibited the highest stability, with coefficients of variation of the time series that were significantly lower than those for RVI and VH/VV. The main characteristics of the SAR and NDVI time series—the maximum values, the dates of the maximum values, and the variability of these indices—were compared. The variabilities of the maximum values and dates of maximum values for DpRVI were lower than for RVI and VH/VV, whereas the variabilities of the maximum values and the dates of maximum values were comparable for DpRVI and NDVI. On the basis of the DpRVI index, classifications were carried out using seven machine learning methods (fine tree, quadratic discriminant, Gaussian naïve Bayes, fine k nearest neighbors or KNN, random under-sampling boosting or RUSBoost, random forest, and support vector machine) for experimental sites covering a total area of 1009.8 ha. The quadratic discriminant method yielded the best results, with a pixel classification accuracy of approximately 82% and a kappa value of 0.67. Overall, 90% of soybean, 74.1% of oat, 68.9% of buckwheat, and 57.6% of timothy grass pixels were correctly classified. At the field level, 94% of the fields included in the test dataset were correctly classified. The paper results show that the DpRVI can be used in cases where the NDVI is limited, allowing for the monitoring of phenological development and crop mapping. The research results can be used in the south of Khabarovsk Territory and in neighboring territories. Full article
(This article belongs to the Special Issue Remote Sensing in Land Management)
Show Figures

Figure 1

26 pages, 13995 KiB  
Article
Evaluation of C and X-Band Synthetic Aperture Radar Derivatives for Tracking Crop Phenological Development
by Marta Pasternak and Kamila Pawłuszek-Filipiak
Remote Sens. 2023, 15(20), 4996; https://doi.org/10.3390/rs15204996 - 17 Oct 2023
Cited by 6 | Viewed by 3686
Abstract
Due to the expanding population and the constantly changing climate, food production is now considered a crucial concern. Although passive satellite remote sensing has already demonstrated its capabilities in accurate crop development monitoring, its limitations related to sunlight and cloud cover significantly restrict [...] Read more.
Due to the expanding population and the constantly changing climate, food production is now considered a crucial concern. Although passive satellite remote sensing has already demonstrated its capabilities in accurate crop development monitoring, its limitations related to sunlight and cloud cover significantly restrict real-time temporal monitoring resolution. Considering synthetic aperture radar (SAR) technology, which is independent of the Sun and clouds, SAR remote sensing can be a perfect alternative to passive remote sensing methods. However, a variety of SAR sensors and delivered SAR indices present different performances in such context for different vegetation species. Therefore, this work focuses on comparing various SAR-derived indices from C-band and (Sentinel-1) and X-band (TerraSAR-X) data with the in situ information (phenp; pgy development, vegetation height and soil moisture) in the context of tracking the phenological development of corn, winter wheat, rye, canola, and potato. For this purpose, backscattering coefficients in VV and VH polarizations (σVV0, σVH0), interferometric coherence, and the dual pol radar vegetation index (DpRVI) were calculated. To reduce noise in time series data and evaluate which filtering method presents a higher usability in SAR phenology tracking, signal filtering, such as Savitzky–Golay and moving average, with different parameters, were employed. The achieved results present that, for various plant species, different sensors (Sentinel-1 or TerraSAR-X) represent different performances. For instance, σVH0 of TerraSAR-X offered higher consistency with corn development (r = 0.81), while for canola σVH0 of Sentinel-1 offered higher performance (r = 0.88). Generally, σVV0, σVH0 performed better than DpRVI or interferometric coherence. Time series filtering makes it possible to increase an agreement between phenology development and SAR-delivered indices; however, the Savitzky–Golay filtering method is more recommended. Besides phenological development, high correspondences can be found between vegetation height and some of SAR indices. Moreover, in some cases, moderate correlation was found between SAR indices and soil moisture. Full article
Show Figures

Graphical abstract

22 pages, 5181 KiB  
Article
Cropland Mapping Using Sentinel-1 Data in the Southern Part of the Russian Far East
by Konstantin Dubrovin, Alexey Stepanov and Andrey Verkhoturov
Sensors 2023, 23(18), 7902; https://doi.org/10.3390/s23187902 - 15 Sep 2023
Cited by 7 | Viewed by 2290
Abstract
Crop identification is one of the most important tasks in digital farming. The use of remote sensing data makes it possible to clarify the boundaries of fields and identify fallow land. This study considered the possibility of using the seasonal variation in the [...] Read more.
Crop identification is one of the most important tasks in digital farming. The use of remote sensing data makes it possible to clarify the boundaries of fields and identify fallow land. This study considered the possibility of using the seasonal variation in the Dual-polarization Radar Vegetation Index (DpRVI), which was calculated based on data acquired by the Sentinel-1B satellite between May and October 2021, as the main characteristic. Radar images of the Khabarovskiy District of the Khabarovsk Territory, as well as those of the Arkharinskiy, Ivanovskiy, and Oktyabrskiy districts in the Amur Region (Russian Far East), were obtained and processed. The identifiable classes were soybean and oat crops, as well as fallow land. Classification was carried out using the Support Vector Machines, Quadratic Discriminant Analysis (QDA), and Random Forest (RF) algorithms. The training (848 ha) and test (364 ha) samples were located in Khabarovskiy District. The best overall accuracy on the test set (82.0%) was achieved using RF. Classification accuracy at the field level was 79%. When using the QDA classifier on cropland in the Amur Region (2324 ha), the overall classification accuracy was 83.1% (F1 was 0.86 for soybean, 0.84 for fallow, and 0.79 for oat). Application of the Radar Vegetation Index (RVI) and VV/VH ratio enabled an overall classification accuracy in the Amur region of 74.9% and 74.6%, respectively. Thus, using DpRVI allowed us to achieve greater performance compared to other SAR data, and it can be used to identify crops in the south of the Far East and serve as the basis for the automatic classification of cropland. Full article
(This article belongs to the Special Issue Radar Remote Sensing and Applications)
Show Figures

Figure 1

19 pages, 15585 KiB  
Article
Land Cover Classification of SAR Based on 1DCNN-MRF Model Using Improved Dual-Polarization Radar Vegetation Index
by Yabo Huang, Mengmeng Meng, Zhuoyan Hou, Lin Wu, Zhengwei Guo, Xiajiong Shen, Wenkui Zheng and Ning Li
Remote Sens. 2023, 15(13), 3221; https://doi.org/10.3390/rs15133221 - 21 Jun 2023
Cited by 5 | Viewed by 2894
Abstract
Accurate land cover classification (LCC) is essential for studying global change. Synthetic aperture radar (SAR) has been used for LCC due to its advantage of weather independence. In particular, the dual-polarization (dual-pol) SAR data have a wider coverage and are easier to obtain, [...] Read more.
Accurate land cover classification (LCC) is essential for studying global change. Synthetic aperture radar (SAR) has been used for LCC due to its advantage of weather independence. In particular, the dual-polarization (dual-pol) SAR data have a wider coverage and are easier to obtain, which provides an unprecedented opportunity for LCC. However, the dual-pol SAR data have a weak discrimination ability due to limited polarization information. Moreover, the complex imaging mechanism leads to the speckle noise of SAR images, which also decreases the accuracy of SAR LCC. To address the above issues, an improved dual-pol radar vegetation index based on multiple components (DpRVIm) and a new LCC method are proposed for dual-pol SAR data. Firstly, in the DpRVIm, the scattering information of polarization and terrain factors were considered to improve the separability of ground objects for dual-pol data. Then, the Jeffries-Matusita (J-M) distance and one-dimensional convolutional neural network (1DCNN) algorithm were used to analyze the effect of difference dual-pol radar vegetation indexes on LCC. Finally, in order to reduce the influence of the speckle noise, a two-stage LCC method, the 1DCNN-MRF, based on the 1DCNN and Markov random field (MRF) was designed considering the spatial information of ground objects. In this study, the HH-HV model data of the Gaofen-3 satellite in the Dongting Lake area were used, and the results showed that: (1) Through the combination of the backscatter coefficient and dual-pol radar vegetation indexes based on the polarization decomposition technique, the accuracy of LCC can be improved compared with the single backscatter coefficient. (2) The DpRVIm was more conducive to improving the accuracy of LCC than the classic dual-pol radar vegetation index (DpRVI) and radar vegetation index (RVI), especially for farmland and forest. (3) Compared with the classic machine learning methods K-nearest neighbor (KNN), random forest (RF), and the 1DCNN, the designed 1DCNN-MRF achieved the highest accuracy, with an overall accuracy (OA) score of 81.76% and a Kappa coefficient (Kappa) score of 0.74. This study indicated the application potential of the polarization decomposition technique and DEM in enhancing the separability of different land cover types in SAR LCC. Furthermore, it demonstrated that the combination of deep learning networks and MRF is suitable to suppress the influence of speckle noise. Full article
Show Figures

Graphical abstract

22 pages, 12296 KiB  
Article
Classification of Land Cover in Complex Terrain Using Gaofen-3 SAR Ascending and Descending Orbit Data
by Hongxia Wang, Haoran Yang, Yabo Huang, Lin Wu, Zhengwei Guo and Ning Li
Remote Sens. 2023, 15(8), 2177; https://doi.org/10.3390/rs15082177 - 20 Apr 2023
Cited by 8 | Viewed by 2312
Abstract
Synthetic aperture radar (SAR) image is an effective remote sensing data source for geographic surveys. However, accurate land cover mapping based on SAR image in areas of complex terrain has become a challenge due to serious geometric distortions and the inadequate separation ability [...] Read more.
Synthetic aperture radar (SAR) image is an effective remote sensing data source for geographic surveys. However, accurate land cover mapping based on SAR image in areas of complex terrain has become a challenge due to serious geometric distortions and the inadequate separation ability of dual-polarization data. To address these issues, a new land cover mapping framework which is suitable for complex terrain is proposed based on Gaofen-3 data of ascending and descending orbits. Firstly, the geometric distortion area is determined according to the local incident angle, based on analysis of the SAR imaging mechanism, and the correct polarization information of the opposite track is used to compensate for the geometric distortion area, including layovers and shadows. Then, the dual orbital polarization characteristics (DOPC) and dual polarization radar vegetation index (DpRVI) of dual-pol SAR data are extracted, and the optimal feature combination is found by means of Jeffries–Matusita (J-M) distance analysis. Finally, the deep learning method 2D convolutional neural network (2D-CNN) is applied to classify the compensated images. The proposed method was applied to a mountainous region of the Danjiangkou ecological protection area in China. The accuracy and reliability of the method were experimentally compared using the uncompensated images and the images without DpRVI. Quantitative evaluation revealed that the proposed method achieved better performance in complex terrain areas, with an overall accuracy (OA) score of 0.93, and a Kappa coefficient score of 0.92. Compared with the uncompensated image, OA increased by 5% and Kappa increased by 6%. Compared with the images without DpRVI, OA increased by 4% and Kappa increased by 5%. In summary, the results demonstrate the importance of ascending and descending orbit data to compensate geometric distortion and reveal the effectiveness of optimal feature combination including DpRVI. Its simple and effective polarization information compensation capability can broaden the promising application prospects of SAR images. Full article
Show Figures

Graphical abstract

Back to TopTop