Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Doppler centroid anomaly (DCA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4875 KiB  
Article
Ocean Surface Wind Field Retrieval Simultaneously Using SAR Backscatter and Doppler Shift Measurements
by Yulei Xu, Kangyu Zhang, Liwei Jing, Biao Zhang, Shengren Fan and He Fang
Remote Sens. 2025, 17(10), 1742; https://doi.org/10.3390/rs17101742 - 16 May 2025
Viewed by 544
Abstract
Sea surface wind retrieval methods using synthetic aperture radar (SAR) are generally classified into two categories: the direct inversion method and the variational analysis method (VAM). Traditional VAM retrieves wind fields by integrating background wind information with SAR normalized radar cross-section (NRCS). Recent [...] Read more.
Sea surface wind retrieval methods using synthetic aperture radar (SAR) are generally classified into two categories: the direct inversion method and the variational analysis method (VAM). Traditional VAM retrieves wind fields by integrating background wind information with SAR normalized radar cross-section (NRCS). Recent studies have shown that incorporating SAR Doppler centroid anomaly (DCA) as an additional observation for variational analysis can improve the accuracy of wind speed and direction retrieval. However, this method has yet to be systematically evaluated, particularly with respect to its applicability to Sentinel-1 SAR data. This study presents a comprehensive assessment based on 1803 Sentinel-1 vertical–vertical (VV) polarization level-2 Ocean (OCN) product scenes collocated with in situ measurements from the National Data Buoy Center (NDBC), yielding a total of 2826 matched data pairs. We systematically evaluate the performance of three distinct VAM configurations: VAM1 (JNRCS), utilizing only NRCS; VAM2 (JDCA), employing solely DCA; and VAM3 (JNRCS+DCA), which combines both NRCS and DCA. The results demonstrate that VAM3 (JNRCS+DCA) achieves the best performance, with the lowest root mean square error (RMSE) of 1.42 m/s for wind speed and 26.00° for wind direction across wind speeds up to 23.2 m/s, outperforming both VAM1 (JNRCS) and VAM2 (JDCA). Furthermore, the accuracy of background wind speed is identified as a critical factor affecting VAM performance. After correcting the background wind speed, the RMSE and bias of the retrieved wind speed decreased significantly across all VAMs. The most notable bias reduction was observed at wind speeds exceeding 10 m/s. These findings provide essential theoretical support for the operational application of Sentinel-1 OCN products in sea surface wind retrieval. Full article
Show Figures

Figure 1

19 pages, 40083 KiB  
Article
A Comparative Analysis Between the ENVISAT and ICEYE SAR Systems for the Estimation of Sea Surface Current Velocity
by Virginia Zamparelli, Pietro Mastro, Antonio Pepe and Simona Verde
J. Mar. Sci. Eng. 2025, 13(1), 164; https://doi.org/10.3390/jmse13010164 - 18 Jan 2025
Cited by 1 | Viewed by 1606
Abstract
In this work, we present the results of a comparative analysis between the first-generation Advanced Synthetic Aperture Radar (ASAR) sensor mounted on board the ENVISAT platform and the novel ICEYE micro-satellite synthetic aperture radar (SAR) sensor in measuring the radial velocity of ocean [...] Read more.
In this work, we present the results of a comparative analysis between the first-generation Advanced Synthetic Aperture Radar (ASAR) sensor mounted on board the ENVISAT platform and the novel ICEYE micro-satellite synthetic aperture radar (SAR) sensor in measuring the radial velocity of ocean currents through the Doppler Centroid Anomaly (DCA) technique. First, the basic principles of DCA and the theoretical precision of the Doppler Centroid (DC) estimates are introduced. Subsequently, the role of the DC measurements in retrieving the sea surface current velocity is addressed. To achieve this goal, two sets of SAR data gathered by ASAR (C-band) and from the X-band ICEYE instruments, respectively, are exploited. The standard deviation of DCA measurements is derived and tested against what is expected by theory. The presented analysis results are beneficial to evaluate the pros and cons of the new-generation X-band to the first-generation ASAR/ENVISAT system, which has been extensively exploited for ocean currents monitoring applications. As an outcome, we find that with inherently selected methods for DC estimates, the performance offered by ICEYE is comparable to, or even better than (with specific parameters selection), the consolidated approaches based on the ASAR sensor. Nonetheless, new SAR constellations offer an undoubted advantage regarding improved spatial resolution and time repeatability. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Marine Environmental Monitoring)
Show Figures

Figure 1

13 pages, 5080 KiB  
Article
Joint Inversion of Sea Surface Wind and Current Velocity Based on Sentinel-1 Synthetic Aperture Radar Observations
by Jingbei Sun, Huimin Li, Wenming Lin and Yijun He
J. Mar. Sci. Eng. 2024, 12(3), 450; https://doi.org/10.3390/jmse12030450 - 2 Mar 2024
Cited by 5 | Viewed by 2258
Abstract
Spaceborne synthetic aperture radar (SAR) has been proven to be a useful technique for observing the sea surface wind and current over the open ocean given its all-weather data-gathering capability and high spatial resolution. In addition to the commonly used radar return magnitude [...] Read more.
Spaceborne synthetic aperture radar (SAR) has been proven to be a useful technique for observing the sea surface wind and current over the open ocean given its all-weather data-gathering capability and high spatial resolution. In addition to the commonly used radar return magnitude quantified by normalized radar cross section (NRCS), the Doppler centroid anomaly (DCA) has added another dimension of information. In this study, we combine the NRCS and DCA for a joint inversion of wind and surface current information using a Bayesian method. SAR-estimated Doppler is corrected by a series of steps, including the removal of scalloping effect and land correction. The cost function of this inversion scheme is constructed based on NRCS, DCA, and a background model wind. The retrieved wind results show the quality of performance through comparison with the in situ buoy measurements, showing a mean bias and a root-mean-square error (RMSE) of 0.33 m/s and 1.45 m/s for wind speed and 6.94° and 35.74° for wind direction, respectively. The correlation coefficients for wind speed and direction reach 0.931 and 0.661, respectively. Based on the obtained wind field, the line-of-sight velocity of the sea surface current is then derived by removing the wind contribution using the empirical model. The results show a consistent spatial pattern relative to the high-frequency radars, with the comparison relative to the drifter-measured current velocity exhibiting a mean bias of 0.02 m/s and RMSE of 0.32 m/s, demonstrating the reliability of the proposed inversion scheme. Such results will serve as a prototype for future spaceborne sensors to combine the radar return and Doppler information for the joint retrieval of wind vector and surface current velocity. This technique could be readily extended to the radar configuration of rotating beams for monitoring winds and current vectors. Full article
(This article belongs to the Special Issue Remote Sensing Techniques in Marine Environment)
Show Figures

Figure 1

18 pages, 4088 KiB  
Article
SAR Based Sea Surface Complex Wind Fields Estimation: An Analysis over the Northern Adriatic Sea
by Virginia Zamparelli, Francesca De Santi, Giacomo De Carolis and Gianfranco Fornaro
Remote Sens. 2023, 15(8), 2074; https://doi.org/10.3390/rs15082074 - 14 Apr 2023
Cited by 10 | Viewed by 2540
Abstract
Nowadays, sea surface analysis and monitoring increasingly use remote sensing, with particular interest in Synthetic Aperture Radar (SAR). Several SAR techniques exist in literature to understand the marine phenomena affecting the sea surface. In this work, we focus on the Doppler Centroid Anomaly [...] Read more.
Nowadays, sea surface analysis and monitoring increasingly use remote sensing, with particular interest in Synthetic Aperture Radar (SAR). Several SAR techniques exist in literature to understand the marine phenomena affecting the sea surface. In this work, we focus on the Doppler Centroid Anomaly (DCA), which accounts for the Doppler shift induced by sea surface movements. Starting from SAR raw data, we develop a processing chain to elaborate them and output the surface velocity map using DCA. The DCA technique has often been presented in the marine literature for estimating sea surface velocity, but more recently it has also been used to detect near-surface wind fields. This paper deals with estimating the sea surface wind field using Doppler information and SAR backscatter, combined with wind information provided by ECMWF and geophysical wind and Doppler model functions. We investigate the application of the approach in the coastal area of the northern Adriatic Sea (Northeast Italy). The test site is interesting, both for its particular orography, as it is a semi-enclosed basin largely surrounded by mountains, and for its complex meteorological phenomena, such as the Bora wind. Results obtained combining SAR backscatter and DCA information show an improvement in wind field estimation. Full article
(This article belongs to the Special Issue Remote Sensing of the Aquatic Environments-Part II)
Show Figures

Figure 1

17 pages, 25188 KiB  
Article
Measuring Ocean Surface Current in the Kuroshio Region Using Gaofen-3 SAR Data
by Yan Li, Jinsong Chong, Kai Sun, Yawei Zhao and Xue Yang
Appl. Sci. 2021, 11(16), 7656; https://doi.org/10.3390/app11167656 - 20 Aug 2021
Cited by 6 | Viewed by 2506
Abstract
The Kuroshio is the strongest warm current in the western North Pacific, which plays a crucial role in climate and human activities. In terms of this, the accurate acquisition of ocean surface current velocity and direction in the Kuroshio region is of great [...] Read more.
The Kuroshio is the strongest warm current in the western North Pacific, which plays a crucial role in climate and human activities. In terms of this, the accurate acquisition of ocean surface current velocity and direction in the Kuroshio region is of great research value. Gaofen-3 synthetic aperture radar (SAR) provides data support for the study of ocean surface current measurements in the Kuroshio region, but no relevant experimental result has been published yet. In this paper, four available stripmap mode SARs’ data acquired by Gaofen-3 in the Kuroshio region are used for measuring the ocean surface current field. In general, the Doppler centroid anomaly (DCA) estimation is a common method to infer ocean surface currents from single-antenna stripmap data, but only the radial velocity component can be retrieved. In order to measure current vectors, a novel method combining the sub-aperture processing and the least squares (LS) technology is suggested and demonstrated by applying to the Gaofen-3 SAR data processing. The experiment’s results agree well with model-derived ocean current data, indicating that the Gaofen-3 SAR has the capability to accurately retrieve the ocean surface current field in the Kuroshio region and motivate further research by providing more data. Full article
(This article belongs to the Special Issue Sensors and Measurement Systems for Marine Engineering Applications)
Show Figures

Figure 1

Back to TopTop