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Abstract: The Kuroshio is the strongest warm current in the western North Pacific, which plays a
crucial role in climate and human activities. In terms of this, the accurate acquisition of ocean surface
current velocity and direction in the Kuroshio region is of great research value. Gaofen-3 synthetic
aperture radar (SAR) provides data support for the study of ocean surface current measurements
in the Kuroshio region, but no relevant experimental result has been published yet. In this paper,
four available stripmap mode SARs’ data acquired by Gaofen-3 in the Kuroshio region are used
for measuring the ocean surface current field. In general, the Doppler centroid anomaly (DCA)
estimation is a common method to infer ocean surface currents from single-antenna stripmap data,
but only the radial velocity component can be retrieved. In order to measure current vectors, a novel
method combining the sub-aperture processing and the least squares (LS) technology is suggested
and demonstrated by applying to the Gaofen-3 SAR data processing. The experiment’s results agree
well with model-derived ocean current data, indicating that the Gaofen-3 SAR has the capability
to accurately retrieve the ocean surface current field in the Kuroshio region and motivate further
research by providing more data.

Keywords: ocean surface current; Gaofen-3 SAR data; the Kuroshio region; sub-aperture processing;
the least squares

1. Introduction

Current is ubiquitous in the global ocean, the information about which is valuable
in many applications. The circulation current in different regions of the deep ocean will
exchange material and energy, which is of great importance for the global climate process.
Moreover, monitoring currents in the coastal waters is conducive to navigation, offshore
oil and gas field development, fishery resources management, and so forth. According
to the data requirements survey report on oceanic variables issued by EuroGOOS, the
ocean surface current velocity and direction were the two most requested [1]. Therefore,
it is necessary to investigate various methods for measuring the velocity and direction
values of the ocean current field. Compared with the in-situ current measurement tools,
such as drift buoy and current meter, which are time-consuming and limited in spatial
measurement range, the spaceborne synthetic aperture radar (SAR) has become a vital tool
for ocean remote sensing mainly due to its day/night and quasi-all-weather capability and
its high-spatial resolution [2].

There are two common techniques used for current measurement with SAR data, that
is, one is Doppler centroid analysis (DCA) and the other is along-track interferometry
(ATI) [3,4]. DCA is suitable for single-antenna SAR data processing and has low require-
ments for the system. Chapron [5] first proposed the DCA method in 2005 and processed
the ENVISAT ASAR data to retrieve the radial velocity of the sea surface in different areas
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including the current field near the Gulf Stream. In the following years, the DCA method
was used many times to measure the ocean surface current field in the Agulhas Current
regime [6–8]. These studies show that DCA has good applications in these regions with
strong boundary currents. The Kuroshio Current is also one of the strongest western bound-
ary currents, but there have not yet been any relevant SAR experimental results applied to
the Kuroshio region. In addition, the DCA method using Doppler centroid shift can only
derive the line-of sight (LOS) velocity component of ocean surface current, not including
the direction values. The ATI method uses interferometric phase to achieve high-resolution
ocean surface current measurements. Moreover, ATI systems can be transformed into
ones with squint beams to measure the ocean current vectors [9–11]. However, ATI needs
to operate the SAR data of at least two antennas; the related system is complicated, the
experimental data are small, and it is far from scale application than DCA using single
SAR data.

Like the Gulf Stream in the North Atlantic, the Kuroshio is a powerful western
boundary current and forms the western limb of the North Pacific Subtropical Gyre. Owing
to the influence of the geostrophic Coriolis force, the remote sensing measurement of
Kuroshio current speed can be performed with the spaceborne altimeters [12,13], but the
spatial resolution is relatively rough, reaching tens of kilometers, and the data around
the land are easily missed. Gaofen-3 is China’s first C-band full-polarization synthetic
aperture radar imaging satellite, which provides reliable high-resolution SAR image data
for ocean remote sensing [14]. So far, Gaofen-3 SAR data have been used to study ocean
surface waves [15], ocean winds [16] and internal waves [17]. Gaofen-3 provides data
support for the ocean current retrieval in the Kuroshio region, which will promote relevant
application research.

This paper uses four available Gaofen-3 SAR datasets to measure the ocean surface
current in the Kuroshio region. In order to retrieve current velocity and direction informa-
tion at the same time, a novel method combining sub-aperture processing technology and
least squares technology is proposed and applied. The following second part introduces
the principle and process of the data processing method in detail. The third part is to
carry out the ocean current measurement experiment of the Gaofen-3 SAR data and verify
the experimental results. The fourth part discusses and analyzes the applicability of the
method, including the influence of system and environmental factors on the results, and
the fifth part presents conclusions.

2. Measurement of the Ocean Surface Current
2.1. Ocean Doppler Information of Single Antenna SAR Data

Due to the relative motion between the SAR platform and the ocean surface, the
azimuth Doppler information of the echo signal would change, suggesting that the Doppler
frequency can be used to retrieve the ocean surface motion. In fact, considering the
complexity of ocean motion and the particularity of SAR for ocean imaging, the estimated
Doppler centroid shift in SAR ocean data usually includes the following items [18]:

fdc = f phys
dc + f geo

dc + f ele
dc +4 fdc. (1)

In Equation (1), f phys
dc is the geophysical term, f geo

dc is the geometric attitude term, f ele
dc

indicates electronic misdirection of antenna, 4 fdc represents the residual error in data
processing. As one of our concerns, f phys

dc is proportional to the ocean surface Doppler
velocity in the line-of-sight direction, which contains not only the information of ocean
currents, but also the contributions of wind and wave motion. In Bragg theory, wind and
wave motion primarily involve Bragg wave phase velocity and large-scale wave orbit
velocity. Therefore, f phys

dc can be expressed as

f phys
dc = fc + fb + fo, (2)
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where fc, fb and fo denote the Doppler centroid frequency variation caused by ocean
currents, Bragg wave phase velocity, and large-scale wave orbit velocity, respectively. How
to estimate f phys

dc from fdc has been studied in detail in reference [8], and the relevant data
processing process will not be discussed. The focus of this paper is to separate fc from
f phys
dc and further extract the ocean current information.

According to the geometric relationship between ocean current and SAR platform
shown in Figure 1, fc can be expressed as:

fc =
2
λ
(ux cos ϕ sin θ + uy sin ϕ sin θ), (3)

where ux and uy represent the azimuth and range velocity components of the current,
respectively. ϕ is the angle between the beam center and the flight direction in the hor-
izontal plane, which is called the azimuth angle. θ is the incidence angle, and λ is the
electromagnetic wavelength. We can also obtain the Doppler frequency caused by platform
movement as:

fp =
2vp

λ
cos ϕ sin θ, (4)

where vp is the radar speed.

Figure 1. Schematic diagram of the geometric relationship between current and radar.

In Bragg scattering theory, Bragg resonance is the main SAR imaging mechanism for
the ocean surface. Furthermore, the phase velocity of the Bragg wave is the main factor
affecting the deviation of current measurements, which is expressed as [19,20]:

c =
√

g/kb + Tkb, (5)

where g is the acceleration of gravity, and T is the ratio of water surface tension to seawater
density. kb = 2π/λb is the wavenumber of Bragg waves, which can be expressed by
electromagnetic wavenumber ke and incidence angle θe as

kb = 2ke sin θe. (6)

Therefore, the Doppler centroid variation caused by the Bragg wave phase velocity is

fb =
2
λ

√
g/kb + Tkb. (7)

In the composite surface model, as one form of Bragg theory, there are not only small-
scale Bragg waves but also large-scale modulating waves on the ocean surface. In this
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situation, the large-scale waves will be displayed in SAR images by modulating the energy
distribution of Bragg waves, and the Doppler centroid will also shift with the variation of
large-scale wave orbital velocity, that is, there is fo, which also results in the deviation of
current measurements. Generally, the orbital velocity is affected by the weighted average
of the local backscatter within the SAR resolution cell and during the SAR integration
time [4,5]. In some studies [4,21,22], the empirical model derived from actual data fitting
can be used to remove the motion induced by wind and waves, including the effect of
orbital speed. This processing method is in good agreement with the actual situation, but
is limited by different sensor data and sea surface position, the measurement accuracy will
be different. Yu et al. [23] also pointed out that the influence of orbital velocity can be
suppressed by space averaging. This operation is simple, but the residual error will be left.

Motion errors will affect SAR imaging and sea surface current field estimation. Ref-
erence [24] states that motion errors decrease the image quality in the course of imaging.
In principle, the uncertainty caused by motion errors can be corrected with the motion
measurement data obtained from the global positioning system (GPS) or other ancillary
instrument. In Reference [24], a deep SAR motion compensation scheme is proposed to be
combined with the deep SAR imaging algorithm, which could eliminate the influence of
motion errors and improve SAR imagery quality in practical applications. Reference [25]
also discusses the influence of motion errors on imaging, and points out that classical mo-
tion compensation is typically not required for spaceborne systems due to their stable and
homogeneous motion. The Gaofen-3 satellite adopts a dual frequency GPS system to realize
precise orbit determination, which has high attitude control accuracy and stability [26].
Therefore, the motion errors have a limited impact on the imaging results.

For the application of current measurements, the influence of motion and attitude
errors on the predicted Doppler shift is mainly considered, as shown in Reference [8].
Due to errors in satellite position and attitude used to predict the Doppler shift, the ocean
current product will deviate. After attitude control, the Gaofen-3 satellite eliminates the
change of Doppler center frequency caused by earth rotation, earth ellipticity and satellite
orbit oblateness [26]. Therefore, the predicted Doppler shift of SAR data is close to zero. If
the azimuth angle error4ϕ is considered in current measurements with actual data, the
Doppler frequency caused by platform motion will have errors [27]. Therefore, Equation (8)
can be obtained based on Equation (4), and the Doppler frequency caused by current
becomes Equation (9):

4 fa =
2vp

λ
[cos(ϕ +4ϕ) sin θ − cos ϕ sin θ]

≈ − 2
λ

vp4ϕ sin ϕ sin θ

(8)

f
′
c =

2 sin θ

λ

[
ux cos(ϕ + ∆ϕ) + uy sin(ϕ + ∆ϕ)

]
≈ 2 sin θ

λ

[(
ux + ∆ϕuy

)
cos ϕ +

(
uy − ∆ϕux

)
sin ϕ

]
.

(9)

2.2. Measurement Method with Single Antenna SAR Data

According to the above analysis, the Doppler centroids in different azimuth angles
reflect the current information in different directions. However, single antenna full-aperture
SAR data usually only provide the Doppler frequency in one direction. Therefore, the
method in this paper firstly carries out sub-aperture processing to acquire sub-apertures
image data representing different look directions, and then carries out Doppler centroid
estimation, respectively. Furthermore, the equations are established according to the
estimated Doppler centroids. Finally, the current vectors are estimated by the least squares
method. This method can be divided into three steps: sub-aperture processing, Doppler
centroid estimation and vector estimation of current. The flow chart is shown in Figure 2.

In the first step, the input is Gaofen-3 single look complex (SLC) data. After implement-
ing azimuth FFT of the input SLC, the sub-aperture data is extracted by aperture division
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in the Doppler frequency domain, then IFFT is performed to acquire L sub-aperture SLC in
time-domain as the output of the first step. Besides, the azimuth angle ϕk corresponding to
each sub-aperture is also the output and used as the input for the third step. The L sub-
aperture SLC is inputted in step 2 to estimate the Doppler frequency of each sub-aperture,
respectively. In step 2, each input sub-aperture SLC data is divided into M ∗ N blocks,
and the Doppler centroid frequency of each block is estimated. The Doppler frequency
at the same spatial position block (i, j) with different sub-apertures form a vector Yi,j as
the output. Therefore, azimuth angle ϕk and vector Yi,j are the inputs of the third part.
The coefficient matrix W is generated by combining the Gaofen-3 system parameters, that
is, wavelength, incident angle, flight speed, and the azimuth angle of L sub-apertures.
Then, the vector equation of the unknown vector X is established with vectors Yi,j and
W. The unknown vector X includes current vector information, so the current vector at
each position in space can be calculated by solving the equation with the least squares
method. The output of step 3 is the sea surface current field of the entire data. The spe-
cific processing process and the calculation of variables are explained respectively in the
following subsection.

Figure 2. Flow chart of ocean current field measurement using single antenna SAR data.

2.2.1. Sub-Aperture Processing

Generally, the beam of SAR is perpendicular to the direction of flight, and the current
velocity component in the range direction is obtained by Doppler centroid estimation with
full-aperture data. However, through the above analysis, in order to retrieve the current
vectors, it is necessary to derive the Doppler centroids in different directions, so the data
under different azimuth angles can be processed through sub-aperture processing.

In the basic theory of SAR, there is a linear relationship between Doppler frequency
and azimuth time. By dividing Doppler frequency, the full-resolution image is decomposed
into a series of low-resolution images formed by beams in different directions, which is
sub-aperture processing technology [28].

In this method, sub-aperture data are divided in the azimuth frequency domain. The
divided beam is shown in Figure 3, where the solid line represents the beam center of
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different sub-aperture S. The sub-aperture bandwidths are same, and the sub-aperture
center frequency is fk, k = 1, 2, · · · , L, where L is the number of sub-apertures. In the
ideal side-looking condition, the estimated Doppler centroid should be zero when the
full-aperture beam irradiates the stationary target. However, in practical systems, the
full-aperture beam is not always perpendicular to the azimuth direction. The full-aperture
azimuth angle is calculated from the data recorded by the Inertial Navigation System (INS)
or estimated from the data in the stationary area, such as land. According to Equation (4),
the azimuth angle ϕk of the sub-apertures beam center line can be expressed as

ϕk = arccos(
λ fk

2vp sin θ
). (10)

Figure 3. Schematic diagram of sub-aperture processing.

2.2.2. Doppler Centroid Estimation

Accurate Doppler centroid estimation of real data is the basis of subsequent processing
through the above analysis. According to Reference [29], the methods used for Doppler
centroid estimation include the energy balance method, the power spectrum correlation
method, the correlation Doppler centroid estimation method and the optimal estimation
method. They use different weighting functions B( f ). The results of the optimal estimation
method are more accurate, very close to the Cramer–Rao bound, so this paper uses this
method to estimate Doppler centroid. The weighting function of optimal estimation
method is shown in Equation (11), where E( f ) denotes the Doppler power spectrum.
According to [29], Figure 4 shows E( f ) and B( f ), where Fa is pulse repeat frequency
(PRF). In Figure 4a, we show the Doppler bandwidth of the sub-aperture image, which
corresponds to S in Figure 3. In data processing, we use a band-pass filter to extract the
sub-aperture frequency band from the azimuth spectrum. The specific process is referred
to in Reference [30]. The frequency point at the center of each sub-aperture bandwidth
corresponds to a sub-aperture azimuth angle, and the sub-aperture azimuth angles at both
ends are the extreme values, so we can get

B( f ) =
E′( f )
E2( f )

. (11)

As shown in Figure 4, the Doppler power spectrum E( f ) is an even function, while
the weighting function B( f ) is an odd function. The convolution of the two functions has
only one zero-crossing point, which is then calculated by mathematical methods such as
the least squares. The zero-crossing point is the Doppler centroid frequency. We convolute
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the Doppler spectrum of each sub-aperture with the weighted function in Figure 4b to find
the zero-crossing point, so as to estimate the Doppler centroid.

(a) (b)

Figure 4. (a) Doppler power spectrum with sub-apertures bandwidth. (b) Weighting function used
for Doppler centroid estimation.

In order to accurately estimate the Doppler centroid in actual data, enough sampling
points need to be taken in the azimuth and range direction for calculation. Therefore, it
is necessary to block sub-aperture image data for Doppler estimation and eliminate the
influence of non-geophysical terms. Finally, an average Doppler frequency for several
kilometers’ range of ocean surface is acquired, which is expressed as fi,j (i = 1, 2, · · · , M,
j = 1, 2, · · · , N, M and N represent the number of blocks in azimuth and range direction of
each sub-aperture datapoint , respectively). Generally, there is a time interval between sub-
aperture images, and the variation of the resulting ocean surface is usually at the pixel level.
However, the Doppler estimation of sub-apertures requires thousands of pixels to obtain
the mean motion state of the ocean surface over several kilometers, so it is considered that
the changes of Doppler frequency between different sub-apertures are mainly caused by
different beam directions, rather than the ocean surface evolution.

It should be noted that the Doppler centroid estimation process in this paper acts on
the correctly imaged single look complex data for the purpose of current inversion. In some
of the literature, the Doppler estimation process acts on SAR raw data to improve imaging
quality, such as in [31,32]. Compared with imaging processing, this paper pays more
attention to the application process of imaging data. In addition, the Doppler estimation
algorithm in References [31,32] is applied to airborne SAR data with large squint and high
contrast. In this paper, the squint angle of the Gaofen-3 satellite is close to zero, and the
SAR data scattering is uniform and the contrast is low.

2.2.3. Vector Estimation of Ocean Current

In this section, we assume that the Doppler frequency caused by the Bragg wave phase
velocity is the same at the same spatial position in each sub-aperture image. In addition,
in order to improve the efficiency of the algorithm, we deal with the influence of orbital
velocity through space averaging, and consider that the residual errors in the same Doppler
estimation block are the same. Set the Doppler frequency shift caused by the influence of
Bragg wave phase velocity and residual orbit velocity to fB, and combine Equations (8)
and (9), then we can get:

f k
i,j = 4 f k

a + f k
c (i, j) + fB(i, j)

= − 2
λ

vp4ϕ sin ϕk sin θ

+
2
λ

(
ux(i, j) +4ϕuy(i, j)

)
cos ϕk sin θ

+
2
λ

(
uy(i, j)−4ϕux(i, j)

)
sin ϕk sin θ + fB(i, j),

(12)

where f k
i,j represents the Doppler results of the data block at the central coordinate (i, j) of
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the k-th sub-aperture image. Let Yi,j represent the vector composed of Doppler centroids of
all L sub-aperture resolution units at spatial coordinates (i, j), expressed as

Y i,j = [ f 1
i,j, f 2

i,j · · · f k
i,j · · · f L

i,j]
T . (13)

Then, the overdetermined linear equations are established and expressed in matrix
form as:

Y i,j = WX i,j, (14)

where the coefficient matrix W and the unknown vector Xi,j containing the current infor-
mation are respectively expressed as

W =
2 sin θ

λ


−vp sin ϕ1 cos ϕ1 sin ϕ1 λ/2 sin θ
−vp sin ϕ2 cos ϕ2 sin ϕ2 λ/2 sin θ

...
...

...
...

−vp sin ϕL cos ϕL sin ϕL λ/2 sin θ

 (15)

X i,j = [4ϕ, ux(i, j) +4ϕuy(i, j), uy(i, j)−4ϕux(i, j), fB(i, j)]T . (16)

Then, after the least squares method is used to solve Xi,j, the azimuth velocity compo-
nent ux and range velocity component uy corresponding to the data block at coordinates
(i, j) can be expressed as

ux =
Xi,j(2)− Xi,j(1)Xi,j(3)

1 + Xi,j(1)2 (17)

uy =
Xi,j(1)Xi,j(2) + Xi,j(3)

1 + Xi,j(1)2 . (18)

Therefore, the current velocity uc and direction φc can be obtained:

uc =
√

u2
x + u2

y =

√√√√X2
i,j(2) + X2

i,j(3)

1 + X2
i,j(1)

. (19)

φc = arctan
(

ux

uy

)
= arctan

(
Xi,j(2)− Xi,j(1)Xi,j(3)
Xi,j(1)Xi,j(2) + Xi,j(3)

)
. (20)

The current field corresponding to the whole SAR image can be measured by solving
the current vector of each spatial position in turn.

3. Gaofen-3 Data Experiment and Results
3.1. Experiment Description

The experiment site is located in the Kuroshio Current region. The Kuroshio originates
from the North Equator, enters the East China Sea via the Philippines, close to the eastern
part of Taiwan, and then flows through the Ryukyu Islands, along the southern part of the
Japanese archipelago, and ends in the waters near 142◦ E and 35◦ N. The Kuroshio has the
characteristics of strong flow velocity, large flow, narrow flow range, deep extension, high
temperature and high salt, and so forth.

Gaofen-3 is a Chinese spacecraft carrying a C-band SAR, which was launched in
August 2016, from Taiyuan (Shanxi Province, China). The Gaofen-3 satellite is capable of
high resolution, large imaging width, high radiation accuracy, multiple imaging modes
and long-term operation. It can monitor global marine and land information all day
and all night, and expand the earth observation range and improve the rapid response
capability through left–right attitude maneuver. The satellite has 12 imaging modes, which
is the SAR satellite with the most imaging modes in the world. Gaofen-3 has outstanding
flexibility, high attitude control accuracy and stability, and has the ability of continuous two-
dimensional attitude guidance maneuver. In addition, the satellite adopts an independent
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health management mechanism to reduce the risk of whole satellite failure. Some Gaofen-3
SAR system parameters are shown in Table 1. For more specific parameters and technical
details, please refer to [26].

Table 1. Gaofen-3 system parameters.

Parameters Values Units

Radar Frequency 5.4 GHz
Incidence Angle 20–60 deg

Polarization HH/HV/VH/VV –
Spatial Resolution 1–500 m

Swath 10–650 km
Platform Speed 7567 m/s
Orbit Altitude 755 km

The four Gaofen-3 SAR datasets are single look complex (SLC) images acquired in
ultra-fine strip-map (UFS) mode, of 3 m high resolution within 30 km swath owing to the
dual-receive technique. The Gaofen-3 raw data is imaged by a special integrated SAR data
processor, and a chirp scaling (CS) algorithm is used for UFS mode data. More details
can be found in Reference [33]. The radar wavelength of the Gaofen-3 SAR system is 5.6
cm, the central incident angle is 22.5 degrees in ultra-fine strip-map mode. The GF-3 SAR
system is right view, and implemented zero Doppler through attitude control. Further
information about the data is shown in Table 2. Figure 5 depicts the geographical locations
in the red marks.

Figure 5. Geographic location of Gaofen-3 SAR data (marked in red).

Table 2. Gaofen-3 experimental data parameters.

Number Date Center Coordinates Orbit Polarization Swath

1 8 May 2021 132.79◦ E, 31.53◦ N Descend HH 30 km
2 23 April 2021 129.70◦ E, 30.46◦ N Descend HH 30 km
3 15 April 2021 123.86◦ E, 25.92◦ N Ascend HH 30 km
4 16 November 2020 121.44◦ E, 21.75◦ N Ascend HH 30 km

Figure 6 shows four SAR intensity images. It can be observed that all the images are
relatively uniform in intensity, and are not affected by vortices, internal waves and other
sea surface phenomena, which means that the weighted effect of the sea surface normalized
radar cross section (NRCS) on Doppler centroid variation is minimal. Note that Johannessen
et al. [6] pointed out that the Doppler estimation method works best for the quasi-uniform
radar cross section, which is consistent with the image features in this experiment.
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(a) (b)

(c) (d)

Figure 6. SAR intensity images corresponding to the four positions in Figure 5. (a–d) correspond to
the labels 1, 2, 3, and 4, respectively.

3.2. Retrieved Ocean Surface Current

In the first step of the proposed method, we extracted six sub-apertures for compu-
tation. Taking the processing result of label 1 SAR data as an example, after the first step
of sub-aperture processing, one of the sub-aperture intensity images is shown in Figure 7.
Obviously, the speckle noise of sub-aperture image is more serious and the resolution is
reduced. In addition, the maximum azimuth angle of the sub-apertures is 0.3 degrees. In
the second part, we divided each sub-aperture dataset into 30 × 30 blocks, which resulted
in a grid spatial resolution of 1 km × 1 km for each block. Then, after the Doppler centroid
estimation, the corresponding Doppler image is shown in Figure 7b.

In the third step, the Doppler image results of each sub-aperture data are calculated
according to the flow chart, and finally the two-dimensional current field results are
obtained. Corresponding to the four Gaofen-3 SAR datasets in Figure 6, the retrieved
ocean surface current field after the proposed method processing is shown in Figure 8,
where the color ruler and the arrow point represent the velocity and direction of the ocean
current, respectively.

As can be seen from Figure 8, the ocean currents at panel (a), (c) and (d), that is, the
positions at labels 1, 3 and 4 in Figure 5, are moving in a direction close to the northeast,
which is consistent with the trend of the Kuroshio Current movement. Figure 8a is close to
the Japanese islands, with the highest latitude, and the current velocity is the largest. In
Figure 8b, the current velocity is the lowest and the direction changes, which is mainly due



Appl. Sci. 2021, 11, 7656 11 of 17

to the hindrance from the south of Japan island. The current field in Figure 8c is usually
affected by the surrounding islands, making the velocity slower and the current direction
closer to the east. Figure 8d has the lowest latitude, and the current field is closest to the
equator, which is the source of the Kuroshio, so the current velocity is relatively high, and
it moves northeast along the Taiwan island.

(a) (b)

Figure 7. The result of sub-aperture processing: (a) one of the sub-apertures intensity image, and the
result of Doppler centroid estimation: (b) the corresponding Doppler image.

(a) (b)

(c) (d)

Figure 8. The retrieved ocean surface current field corresponding to the acquisitions in Figure 6.
(a–d) correspond to the labels 1, 2, 3, and 4, respectively.

3.3. Results Validation

Generally, the in-situ data derived by Argos drifter buoys, current meters, and so forth,
is optimally used for the verification of ocean current results. In addition, satellite altimeter
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data can also be used to verify geostrophic current. Unfortunately, there is no spatio-
temporal synchronization in-situ data and altimeter data available for this experiment. In
fact, since the ocean current retrieved by the altimeter is usually at a resolution of tens of
kilometers, it is not suitable for comparison with the data with a smaller width and higher
resolution in this article.

Ocean circulation model data can also be used for ocean current verification. The
hybrid coordinate ocean model (HYCOM) has been widely used in a variety of ocean
current research projects [34–36]. Therefore, the HYCOM model data are used to verify
the results in this article. In this section, HYCOM’s global reanalysis dataset with a spatial
resolution of 1/12◦ and a temporal resolution of 1 day is acquired for comparison. Figure 9
shows the HYCOM ocean current model data consistent with the SAR acquisition time and
location. The black box represents the boundary of the experimental area. The length and
color of the arrow represent the current velocity, and the direction of the arrow indicates
the current direction. It is obvious that the ocean current state in the black box compares
qualitatively well with the experimental results in Figure 8.

(a) (b)

(c) (d)

Figure 9. The HYCOM model data corresponding to the ocean current results in Figure 8. (a–d)
correspond to the labels 1, 2, 3, and 4, respectively.

In order to quantitatively analyze the relationship between experimental results and
the model data, the results in Figure 8 were down-sampled and matched with the data in
Figure 9, and the current velocity and direction scatter plots are shown in Figures 10 and 11,
respectively. Figure 10 illustrates the statistical comparison of current velocity, where the
minimum correlation coefficient is close to 0.9 and the maximum correlation
coefficient is 0.98. Both root mean square error (RMSE) and bias are less than 0.1 m/s, which
meets the requirements for accuracy of current velocity measurement in marine environ-
ment applications.
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(a) (b)

(c) (d)

Figure 10. The scatter plot of the current velocity after comparing the experimental results in Figure 8
with the model data in Figure 9. (a–d) correspond to the labels 1, 2, 3, and 4, respectively.

(a) (b)

(c) (d)

Figure 11. The scatter plot of the current direction after comparing the experimental results in
Figure 8 with the model data in Figure 9. (a–d) correspond to the labels 1, 2, 3, and 4, respectively.

Figure 11 shows the statistical comparison for the current direction results, where a
direction of zero means the ocean current is going eastward. The current direction statistics
of the four plots show that the correlation coefficients between the experimental results and
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the model data are all greater than 0.95. Both RMSE and bias are less than 10◦. Although
the HYCOM data represent the average state of the current field in the day, the Kuroshio
current does not change much in one day. The results in Figures 10 and 11 suggest that,
after using the proposed method to process Gaofen-3 data, the ocean surface current fields
in the Kuroshio region are measured accurately.

The current characteristics in this paper and HYCOM need to be further compared.
The proposed method has the advantages of flexible data acquisition time and high spatial
sampling rate. The Gaofen-3 system can image the sea area of interest and obtain the
current information at specific times, with high spatial resolution of only a couple of
kilometers. However, the disadvantage is that the acquisition of current field in the case of
complex sea conditions and uneven sea surface scattering is not applicable, so it needs to
be further studied in combination with other information. The advantage of the current
field obtained from HYCOM data is that the model integrates a variety of sensor data
and is applicable to a wide range of sea environment, but the disadvantage is that it only
represents the average motion state of one day, and the spatial resolution is only tens of
kilometers, and there is a lack of data in the nearshore sea area. Therefore, in terms of the
factors that lead to the difference between the two models in retrieving the current field,
the input data type and accuracy, the calculation and processing process, and the temporal
and spatial characteristics of the current field products will make them different.

4. Discussion

Considering that the marine environment is complex and full of many unknowns
and uncertainties, many works about ocean surface current field measurement are mainly
based on data-driven studies, especially in the application of using Doppler centroids to
estimate ocean currents. As mentioned in the introduction, ENVISAT ASAR data has been
used to study the sea surface current field in different regions including Gulf Stream and
Agulhas Stream [5,6,8]. The SAR data acquired by different systems, such as ERS [37],
TerraSAR-X [38] and Sentinel-1 [39], are also used in sea surface current measurement
research, respectively, demonstrating the ability of currents retrieval. The work in this
paper focuses on using the Gaofen-3 SAR data to carry out application research on the
ocean surface current measurement in the Kuroshio region. In terms of this, the promising
experimental results have proved the current measurement capability of the Gaofen-3
system. However, it should be noted that the results will also be affected by the system,
environment, and processing methods. Since there is little knowledge about the actual sea
surface state, it is hard to accurately and quantitatively analyze the dynamic process of the
sea surface. Nevertheless, the main influencing factors and processes of the system and
environment on the experimental results will be discussed below in this section, and the
applicable scope of the proposed method will be given.

The incidence angle will affect the SAR ocean surface imaging mechanism. At a
medium incidence angle range from 20◦ to 60◦, which is consistent with the Gaofen-3
system design, the sea surface is dominated by Bragg scattering, and Bragg waves are the
main scatterers on the sea surface, which is in line with the principles of the proposed
method. At steep incidence angles, the specular scattering will increase imaging nonlinear-
ity, which is not conductive to current measurement. Moreover, if the incidence angle is
too large, the sea surface will be affected by wave breaking. In the experiment, the azimuth
beam width determines the number of sub-apertures, which in turn also affects the current
measurement results. When the azimuth beam width of the system is large, the number
of sub-apertures will be more, and the number of azimuth angles will increase, which
will lead to more equations used for least squares estimation to suppress the influence of
random noise. However, in the case of the designed azimuth beam width, an increase in
the number of sub-apertures will result in a decrease in sub-aperture time illuminating the
ocean surface, which results in a decrease in the signal-to-noise ratio and current accuracy.
Therefore, the number of sub-apertures is a compromise selection based on the data pro-
cessing process. In this paper, six sub-apertures are used in the Gaofen-3 data experiment.
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Generally, in order to improve the accuracy of Doppler estimation, the size of the resolution
cell for ocean current products exceeds 1 km. When the system resolution increases, the
amount of data that can be used to estimate the Doppler center increases, which will also
increase the accuracy of Doppler estimation. The resolution of the Gaofen-3 UFS mode
data used in this paper is about 2 m, and the spatial resolution of the current field is 1 km.

Usually, the wind field will cause the variation of sea surface wave motion, resulting
in the deviation of current measurement results. Therefore, in traditional current measure-
ment methods, such as DCA and ATI, it is necessary to first estimate the deviation value
using the known wind field information, and then subtract it from the current measure-
ment results. This process makes the current measurement process more complex, and the
accuracy of wind field information and the difference of deviation estimation methods will
affect the current measurement accuracy. The method used in this paper does not need
prior wind field information to estimate wave motion, but reasonably introduces variables
representing Bragg wave phase velocity and residual orbital velocity into the equations,
and finally directly solves the current information. The experimental results show that
this procedure is feasible. Note that the actual sea surface environment is complex and
changeable, and it is difficult to consider all the characteristics of the marine environment
in one method. In this article, the experiment is located in the Kuroshio region, which has
the characteristics of high current velocity and uniform ocean surface backscattering, and
is less affected by strong sea surface motion phenomena such as hurricanes and vortices.
These are the basic environmental features for the success of the experiment.

In summary, the method proposed in this paper is suitable for SAR systems with a
medium incidence angle and high resolution, and the appropriate number of sub-apertures
is selected according to the azimuth beam width and processing process. The sea surface
current field with high velocity and uniform backscattering, such as Kuroshio, Agulhas
current and Gulf Stream, and so forth, is an ideal measurement object. The marine environ-
ment is required to be stable without being affected by complex ocean motion phenomena.

5. Conclusions

The ocean surface current field affects global climate change and human activities,
and its speed and direction information is one of the most valuable parameters in ocean
research. At present, using the Doppler centroid anomaly to process a single SAR image
is a commonly used method of remote sensing current measurement, and the SAR data
of different systems have retrieved relatively satisfactory ocean surface radial velocities
in the Gulf Stream, Agulhas Stream and other sea areas. The Kuroshio Current is also
one of the largest western boundary currents in the world, but there are no more relevant
experimental reports on the application of SAR data current measurement. Gaofen-3 SAR
data have played an important role in retrieving ocean waves, ocean winds and other
ocean parameters, but its ability to measure ocean currents needs to be verified. Therefore,
this paper uses four available Gaofen-3 SAR datasets to carry out the ocean surface current
measurement experiment in the Kuroshio region.

In order to derive the ocean surface current vectors, a Doppler-based current mea-
surement method combining sub-aperture processing and the least squares technology is
suggested. Instead of prior wind information, the method considers the influence of wave
motion in the equations, and then estimates the current field directly. The ocean current
results derived from Gaofen-3 SAR data are compared with those from ocean model data.
It is found that the current velocity and direction both show good agreement. The velocity
accuracy is within 0.1 m/s and the direction accuracy is within 10°, which can meet the
application requirements and demonstrate the current measurement capability of Gaofen-3.

Finally, the influencing factors of the experimental process and the applicable con-
ditions of the method are discussed. System parameters, such as incidence angle and
resolution, sea conditions, and changes in the processing process, will all have an impact
on the current measurement results. The proposed method is suitable for SAR data with
medium incidence angle, high resolution and uniform sea surface scattering. The data pro-
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cessing procedures under more complex sea conditions need further research and analysis
in future work.
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