Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Derris trifoliata

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3443 KB  
Article
Evaluating the Potential of Cuscuta japonica as Biological Control Agent for Derris trifoliata Management in Mangrove Forests
by Huiying Wu, Yunhong Xue and Wenai Liu
Forests 2025, 16(8), 1250; https://doi.org/10.3390/f16081250 - 1 Aug 2025
Viewed by 542
Abstract
Climbing vines have recently induced increasing threats to forest growth under favourable environmental changes. In mangrove forests, the native vine Derris trifoliata became invasive and is now one of the main threats. Yet current management relies on manual removal with low efficiency. Exploring [...] Read more.
Climbing vines have recently induced increasing threats to forest growth under favourable environmental changes. In mangrove forests, the native vine Derris trifoliata became invasive and is now one of the main threats. Yet current management relies on manual removal with low efficiency. Exploring an alternative, cost-effective method is required. To assess the potential of a proposed biological control method, this study performed a pot-plant experiment using Cuscuta japonica to infect D. trifoliata and three common mangrove species in Beihai, China. Results showed that D. trifoliata had a higher infection rate and high host mortality (90%) than mangrove (0%). It also had significantly decreased moisture by 4%, nitrogen by 14%, phosphorus by 27%, potassium by 49% and increased soluble sugar by 49% and protein by 20%, whereas only moisture (2% reduction) and one or two minerals of Excoecaria agallocha and Aegiceras corniculatum were influenced. Only Kandelia obovata had neither effective haustoria nor any nutrients impact from the infection. This study indicated that C. japonica can cause more damage to D. trifoliata than to mangrove species and has the potential to be used as a biological control agent for the threatened mangrove forests of A. corniculatum and K. obovata with monitoring and control. Further field tests are required to bring this method into practice. Full article
(This article belongs to the Special Issue Forest Invasive Species: Distribution, Control and Management)
Show Figures

Figure 1

14 pages, 3473 KB  
Article
Phenomenon and Mechanisms of Sonneratia apetala Introduction and Spread Promoting Excessive Growth of Derris trifoliata
by Wenai Liu, Lifeng Li, Yunhong Xue, Qiuxia Liang, Yancheng Tao, Huiying Wu and Weiguo Jiang
Forests 2024, 15(3), 525; https://doi.org/10.3390/f15030525 - 12 Mar 2024
Cited by 2 | Viewed by 2687
Abstract
Sonneratia apetala Buch., an alien species with strong growth and adaptability, has been introduced and cultivated in Southeastern China. Meanwhile, Derris trifoliata Lour., native to coastal and riparian areas in Guangdong, Guangxi, and Fujian provinces, has experienced a rapid surge in population, impacting [...] Read more.
Sonneratia apetala Buch., an alien species with strong growth and adaptability, has been introduced and cultivated in Southeastern China. Meanwhile, Derris trifoliata Lour., native to coastal and riparian areas in Guangdong, Guangxi, and Fujian provinces, has experienced a rapid surge in population, impacting the health of mangrove ecosystems. Our research focuses on understanding the interactions between Oriental mangroves and D. trifoliata, particularly their proliferation and long-term symbiotic relationships. We investigated how Oriental mangrove proliferation promotes excessive D. trifoliata growth and explored the underlying mechanisms. In Leizhou Bay, Guangxi, the annual growth rate surged from 12.03% (2005–2015) to 55.36% (2015–2019), indicating a significant acceleration post-2015 and a concerning trend towards overgrowth. D. trifoliata failed to produce seeds on sea rockets or bulrushes, instead yielding 10.5 and 97.43 seeds/m2 on native red mangroves and Oriental mangroves, respectively. Along riverbanks, 68% of Oriental mangroves hosted D. trifoliata, and the suitable regions for these species overlapped significantly. Oriental mangroves reach 15 m tall with 10 × 10 m crown diameters, providing ample vine space, optimal photosynthesis conditions, sturdy support, and convenient dispersal routes. This study offers insights into introduced–native species interactions in mangrove ecosystems, with significance for management and preservation. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 2696 KB  
Article
The Genetic and Environmental Adaptation of the Associated Liana Species Derris trifoliata Lour. (Leguminosae) in Mangroves
by Yun Zhang, Kun Xin, Baowen Liao, Xihang Ai and Nong Sheng
Forests 2021, 12(10), 1375; https://doi.org/10.3390/f12101375 - 9 Oct 2021
Cited by 5 | Viewed by 2470
Abstract
Derris trifoliata Lour. is an indigenous and associated liana species of mangroves in China; however, its rapid dispersal is threatening mangrove survival. To explore and evaluate their persistence in past disturbances and their potential resistance to future climate and environmental changes, 120 D. [...] Read more.
Derris trifoliata Lour. is an indigenous and associated liana species of mangroves in China; however, its rapid dispersal is threatening mangrove survival. To explore and evaluate their persistence in past disturbances and their potential resistance to future climate and environmental changes, 120 D. trifoliata samples were collected from three sites in Guangdong Province, China, and they were used to develop single nucleotide polymorphic markers using specific-locus amplified fragment sequencing technology. A total of 351.59 Mb reads and 97,998 polymorphic specific-locus amplified fragment sequencing tags were identified, including 360,672 single nucleotide polymorphisms. The principal component analysis, phylogenetic tree, and genetic structure all clustered the samples according to their geographic positions. The three populations showed medium genetic diversity levels and high clonal diversity, indicating that sexual propagation played vital roles in the populations’ succession, although clonal growth was intense within the populations. An association analysis revealed that 9 out of 16 markers were correlated with nitrogen, which indicated the positive roles of nitrogen in population formation and maintenance. This study provides an ecological and molecular basis for understanding the outbreaks of D. trifoliata in mangroves. To control the further expansion of D. trifoliata in mangroves, preventive and control measures should be taken against clonal growth and sexual propagation, respectively; obstructing the clonal growth, especially that of the stolon, should be mainly considered at the junctions of D. trifoliata and mangroves. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

7 pages, 189 KB  
Article
A New Prenylated Flavanone from Derris trifoliata Lour.
by Cheng Jiang, Shengzi Liu, Weihong He, Xiongming Luo, Si Zhang, Zhihui Xiao, Ximin Qiu and Hao Yin
Molecules 2012, 17(1), 657-663; https://doi.org/10.3390/molecules17010657 - 11 Jan 2012
Cited by 13 | Viewed by 6740
Abstract
A new flavanone, 4′,5,7-trihydroxy-6,8-di-(2-hydroxy-3-methylbut-3-enyl)- flavanone, was isolated from the aerial parts of Derris trifoliate, together with eleven known compounds: rotenone, tephrosin, 12a-hydroxyrotenone, deguelin, 6a,12a-dehydro-rotenone, dehydrodeguelin, 7a-O-methyldeguelol, 7a-O-methylelliptonol, 5,7,3',4'-tetra-hydroxy-6,8-diprenylisoflavone, daidzein and 4'-hydroxy-7-methoxyflavanone. 7a-O-Methylelliptonol was isolated for the [...] Read more.
A new flavanone, 4′,5,7-trihydroxy-6,8-di-(2-hydroxy-3-methylbut-3-enyl)- flavanone, was isolated from the aerial parts of Derris trifoliate, together with eleven known compounds: rotenone, tephrosin, 12a-hydroxyrotenone, deguelin, 6a,12a-dehydro-rotenone, dehydrodeguelin, 7a-O-methyldeguelol, 7a-O-methylelliptonol, 5,7,3',4'-tetra-hydroxy-6,8-diprenylisoflavone, daidzein and 4'-hydroxy-7-methoxyflavanone. 7a-O-Methylelliptonol was isolated for the first time from the genus Derris. Their structures were characterized on the basis of spectral data. Eight of the isolated compounds were found to be significantly toxic to brine shrimp (LC50 range 0.06–9.95 μg/mL). The new compound showed weak toxicity (LC50 = 211.31 μg/mL). Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop