Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Davenport Spectrum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5034 KiB  
Article
Fatigue Damage and Reliability Assessment of Wind Turbine Structure During Service Utilizing Real-Time Monitoring Data
by Jiaxing Wang, Yu Liu and Zhenhao Zhang
Buildings 2024, 14(11), 3453; https://doi.org/10.3390/buildings14113453 - 30 Oct 2024
Cited by 3 | Viewed by 1384
Abstract
Under the action of wind load, a wind turbine tower will produce alternating stress, which leads to fatigue failure. According to the mean wind speed at the wind turbine impeller collected from the SCADA system, the mean wind speed of the simulation point [...] Read more.
Under the action of wind load, a wind turbine tower will produce alternating stress, which leads to fatigue failure. According to the mean wind speed at the wind turbine impeller collected from the SCADA system, the mean wind speed of the simulation point is calculated by using the wind speed exponential model formula. Davenport spectra are used to simulate the pulsating wind speed time series. The wind spectrum is obtained using the harmonic superposition method. Subsequently, the wind speed time series and wind load time series at the simulation point are calculated. Structural modeling of a 5 MW wind turbine tower is performed in ABAQUS 2021. The modal shape and natural frequency are obtained by modal analysis to verify the rationality of the model. Subsequently, wind loads are applied to the model, and structural stress time history is obtained by transient modal dynamics analysis. The stress time history of the maximum stress area of the tower structure is extracted, and the rain flow counting method is applied to it to obtain the stress spectrum. The Weibull distribution of the stress spectrum is fitted, the mean and variance of the total damage in one day are calculated, and the fatigue reliability analysis of the maximum stress area of the tower structure is carried out. And the nonlinear fatigue cumulative damage analysis of the region is carried out. This work has implications for fatigue reliability studies for approximate operating conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 9242 KiB  
Article
Passive-Tuned Mass Dampers for the Pointing Accuracy Mitigation of VLBI Earth-Based Antennae Subject to Aerodynamic Gust
by Victor E. L. Gasparetto, Jackson Reid and Mostafa S. A. ElSayed
Appl. Mech. 2023, 4(3), 816-840; https://doi.org/10.3390/applmech4030042 - 13 Jul 2023
Cited by 3 | Viewed by 1696
Abstract
This paper proposes an optimization procedure to achieve the best configuration of multiple degrees of freedom Tuned Mass Dampers (TMDs) to mitigate the pointing error of Very-Long-Baseline Interferometry (VLBI) Earth-based radio antennae operating under aerodynamic gust conditions. In order to determine the optimum [...] Read more.
This paper proposes an optimization procedure to achieve the best configuration of multiple degrees of freedom Tuned Mass Dampers (TMDs) to mitigate the pointing error of Very-Long-Baseline Interferometry (VLBI) Earth-based radio antennae operating under aerodynamic gust conditions. In order to determine the optimum sets of TMDs, a Multi-Objective design optimization employing a genetic algorithm is implemented. A case study is presented where fourteen operational scenarios of wind gust are considered, employing two models of atmospheric disturbances, namely the Power Spectral Density (PSD) function with a statistical profile presented by the Davenport Spectrum (DS) and a Tuned Discrete Gust (TDG) modeled as a one-minus cosine signal. It is found that the optimal configurations of TMDs are capable of reducing the pointing error of the antenna by an average of 66% and 50% for the PSD and TDG gust excitation scenarios, respectively, with a mass inclusion of 1% of the total mass of the antenna structure. The optimal TMD parameters determined herein can be utilized for design and field implementation in antenna systems, such that their structural efficiency can be enhanced for radio astronomy applications. Full article
Show Figures

Figure 1

26 pages, 6892 KiB  
Article
Multi-Objective Design Optimization of Multiple Tuned Mass Dampers for Attenuation of Dynamic Aeroelastic Response of Aerospace Structures
by Victor E. L. Gasparetto, Jackson Reid, William P. Parsons, Mostafa S. A. ElSayed, Mohamed Saad, Stephen Shieldand, Gary L. Brown and Lawrence M. Hilliard
Aerospace 2023, 10(3), 235; https://doi.org/10.3390/aerospace10030235 - 27 Feb 2023
Cited by 4 | Viewed by 2396
Abstract
This paper proposes a design procedure to determine the optimal configuration of multi-degrees of freedom (MDOF) multiple tuned mass dampers (MTMD) to mitigate the global dynamic aeroelastic response of aerospace structures. The computation of the aerodynamic excitations is performed considering two models of [...] Read more.
This paper proposes a design procedure to determine the optimal configuration of multi-degrees of freedom (MDOF) multiple tuned mass dampers (MTMD) to mitigate the global dynamic aeroelastic response of aerospace structures. The computation of the aerodynamic excitations is performed considering two models of atmospheric disturbances, namely, the Power Spectral Density (PSD) modelled with the Davenport Spectrum (DS) and the Tuned Discrete Gust (TDG) with the one-minus cosine profile. In order to determine the optimum sets of MTMD, a Multi-objective design Optimization considering Genetic Algorithm (MOGA) is implemented, where the selected fitness functions for the analysis are the minimization of the total mass of the resonators as well as the concurrent minimization of the peak displacements of a specified structural node in all translational degrees of freedom. A case study is presented to demonstrate the proposed methodology, where the optimal sets of MTMD are determined for the concurrent minimization of the pointing error of a truss-like antenna structure as well as the mass of the considered MTMD. It is found that the placement of the MTMD in the primary reflector of the antenna structure provided a maximum reduction in the pointing error of 62.0% and 39.2%, considering the PSD and the TDG models, respectively. Finally, this paper presents an advanced framework to estimate optimal parameters of MTMD control devices under convoluted loading cases as an initial step towards the use of such passive systems in applications that commonly employ active or semi-active solutions. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 4837 KiB  
Article
Experimental Study of the Fluctuating Wind Characteristics of Typhoon Jangmi Measured at the Top of a Building
by Yanru Wang, Yongguang Li, Qianqian Qi, Chuanxiong Zhang, Xu Wang, Guangyu Fan and Bin Fu
Sustainability 2022, 14(15), 9266; https://doi.org/10.3390/su14159266 - 28 Jul 2022
Cited by 2 | Viewed by 1714
Abstract
Based on wind field data measured during the landfall of Typhoon Jangmi in Wenzhou in 2008, this study analyzes wind field characteristics, including wind speed, wind direction, probability density, turbulence intensity, gust factor, peak factor, power spectrum, turbulence integral scale, coherence, and the [...] Read more.
Based on wind field data measured during the landfall of Typhoon Jangmi in Wenzhou in 2008, this study analyzes wind field characteristics, including wind speed, wind direction, probability density, turbulence intensity, gust factor, peak factor, power spectrum, turbulence integral scale, coherence, and the autocorrelation coefficient of Typhoon Jangmi. Results showed that the wind field characteristics for the east and west measuring points were basically the same and followed an approximately similar pattern. The probability density of fluctuating wind tends to obey a Gaussian distribution. The turbulence intensity gradually decreases with increasing 10 min averaged wind speed, but the reduction rate gradually drops. The turbulence intensity is affected by the change in a time interval because turbulence intensity decreases as the time interval increases. With an increase in the 10 min average wind speed and time interval, the gust factor decreases. The peak factor decreases, though insignificantly, with increasing mean wind speed, and the distribution of peak factors is greatly scattered. The variation in the peak factor with time is in good agreement with the Durst curve. The gust factor increases as the turbulence intensity increases and is in line with the empirical curves of Ishizaki, Choi, and Cao. The power spectra of the fluctuating wind speed of Typhoon Jangmi in all directions agree well with Von Karman’s empirical spectrum. The turbulence integral scale increases slightly with increasing average wind speed, and the distribution is relatively scattered. The coherence of the fluctuating wind speed components matches the exponential function proposed by Davenport, and the autocorrelation coefficient decreases as τ increases. Full article
Show Figures

Figure 1

Back to TopTop