Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = Dam safety and sustainability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 4024 KiB  
Review
Exploring Purpose-Driven Methods and a Multifaceted Approach in Dam Health Monitoring Data Utilization
by Zhanchao Li, Ebrahim Yahya Khailah, Xingyang Liu and Jiaming Liang
Buildings 2025, 15(15), 2803; https://doi.org/10.3390/buildings15152803 (registering DOI) - 7 Aug 2025
Abstract
Dam monitoring tracks environmental variables (water level, temperature) and structural responses (deformation, seepage, and stress) to assess safety and performance. Structural health monitoring (SHM) refers to the systematic observation and analysis of the structural condition over time, and it is essential in maintaining [...] Read more.
Dam monitoring tracks environmental variables (water level, temperature) and structural responses (deformation, seepage, and stress) to assess safety and performance. Structural health monitoring (SHM) refers to the systematic observation and analysis of the structural condition over time, and it is essential in maintaining the safety, functionality, and long-term performance of dams. This review examines monitoring data applications, covering structural health assessment methods, historical motivations, and key challenges. It discusses monitoring components, data acquisition processes, and sensor roles, stressing the need to integrate environmental, operational, and structural data for decision making. Key objectives include risk management, operational efficiency, safety evaluation, environmental impact assessment, and maintenance planning. Methodologies such as numerical modeling, statistical analysis, and machine learning are critically analyzed, highlighting their strengths and limitations and the demand for advanced predictive techniques. This paper also explores future trends in dam monitoring, offering insights for engineers and researchers to enhance infrastructure resilience. By synthesizing current practices and emerging innovations, this review aims to guide improvements in dam safety protocols, ensuring reliable and sustainable dam operations. The findings provide a foundation for the advancement of monitoring technologies and optimization of dam management strategies worldwide. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
17 pages, 5789 KiB  
Article
Experimental Studies on the Local Scour Development of the Riverbed Below the Piaseczno Weir
by Marta Kiraga, Sławomir Bajkowski, Janusz Urbański and Piotr Siwicki
Water 2025, 17(13), 1916; https://doi.org/10.3390/w17131916 - 27 Jun 2025
Viewed by 351
Abstract
The article investigates the development of local scour downstream of a damming structure, emphasizing the dynamic equilibrium of river morphology influenced by both natural processes and human interventions like the construction of weirs. It distinguishes between clear-water and live-bed conditions, discussing how sediment [...] Read more.
The article investigates the development of local scour downstream of a damming structure, emphasizing the dynamic equilibrium of river morphology influenced by both natural processes and human interventions like the construction of weirs. It distinguishes between clear-water and live-bed conditions, discussing how sediment transport interacts with hydraulic forces to shape the riverbed. The introduction of a damming structure disrupts sediment flow and initiates local scour formation, which varies depending on stream conditions. In the experimental section, a physical model of a damming weir was tested under controlled conditions. The laboratory model was inspired by an existing damming weir on the Radomka River in Poland. Granulometric analysis and eleven flow series were conducted to assess scour evolution over time. The results showed the fastest erosion in the first hours, followed by stabilization in scour depth but continued elongation of the scour hole. The analysis identified four phases of scour development: initiation, intensive growth, stabilization, and equilibrium. Despite depth stabilization, scour length continued to increase, indicating that full equilibrium had not been reached. The study highlights the complexity of predicting scour behavior and recommends incorporating both depth and length evolution into design analyses to improve the resilience of such damming structures. The innovative aspect of the present study lies in the inclusion of coarse sediment transport, previously accumulated in the upstream reach due to the weir’s impoundment effect, into the scour development process. This specific effect has not been addressed in the studies cited by other authors. This research provides crucial insights for the sustainable design of hydraulic structures and effective sediment management strategies, contributing to the long-term stability and safety of riverine infrastructure. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

14 pages, 3423 KiB  
Article
Urban Flood Risk Sustainable Management: Risk Analysis of Dam Break Induced Flash Floods in Mountainous Valley Cities
by Yuanyuan Liu, Yesen Liu, Qian Yu and Shu Liu
Sustainability 2025, 17(13), 5863; https://doi.org/10.3390/su17135863 - 25 Jun 2025
Viewed by 515
Abstract
Small reservoirs in hilly areas serve as critical water conservancy infrastructure, playing an essential role in flood control, irrigation, and regional water security. However, dam-break events pose significant risks to downstream urban areas, threatening the sustainability and resilience of cities. This study takes [...] Read more.
Small reservoirs in hilly areas serve as critical water conservancy infrastructure, playing an essential role in flood control, irrigation, and regional water security. However, dam-break events pose significant risks to downstream urban areas, threatening the sustainability and resilience of cities. This study takes Guangyuan City as a case study and employs numerical simulation methods—including dam-break modeling, hydrological modeling, and hydrodynamic modeling—to analyze the impact of dam-break floods on downstream urban regions. The results reveal that dam failure in small reservoirs can cause peak flood velocities exceeding 15 m/s, severely endangering urban infrastructure, ecosystems, and public safety. Additionally, for reservoirs with large catchment areas, dam-break floods combined with rainfall-induced flash floods may create compound disaster effects, intensifying urban flood risks. These findings underscore the importance of sustainable reservoir management and integrated flood risk strategies to enhance urban resilience and reduce disaster vulnerability. This research contributes to sustainable development by providing scientific insights and practical support for flood risk mitigation and resilient infrastructure planning in mountainous regions. Full article
Show Figures

Figure 1

22 pages, 3254 KiB  
Article
A Data-Driven Analysis of Work-Related Accidents in the Brazilian Mining Sector (2019–2022)
by João Oliveira and Anna Luiza Marques Ayres da Silva
Int. J. Environ. Res. Public Health 2025, 22(6), 939; https://doi.org/10.3390/ijerph22060939 - 14 Jun 2025
Viewed by 694
Abstract
This study applied data analysis techniques to analyze work-related accidents in Brazil’s mining sector from 2019 onward, identifying key risks and patterns. Using public datasets from governmental sources, it categorized accidents by the type of injury, causal agents, and affected body parts. The [...] Read more.
This study applied data analysis techniques to analyze work-related accidents in Brazil’s mining sector from 2019 onward, identifying key risks and patterns. Using public datasets from governmental sources, it categorized accidents by the type of injury, causal agents, and affected body parts. The methodology employed included data cleaning, processing, and the development of interactive visualizations using advanced analytical tools, such as Python and Power BI, to facilitate data interpretation. Among the most significant events, the Brumadinho tailings dam collapse in 2019 emerged as a major outlier, substantially affecting multiple aspects of the analysis. This single incident accounted for 71.7% of all work-related fatalities recorded during the four-year period under study, highlighting its disproportionate impact on the dataset. This study also examined the main causes and consequences of mining accidents and facilitated the creation of victim profiles based on gender and age group, incorporating psychological theories regarding risk perception. It was concluded that, although the mining sector represents a small fraction of all work-related accidents in Brazil, the proportion of accidents relative to the number of workers in the sector is substantial, highlighting the need for stricter occupational safety management. The results can guide regulations and help companies and institutions to create safer, more sustainable mining policies. The methodology proved to be highly suitable, indicating its potential for application in safety analysis across other sectors. Full article
(This article belongs to the Special Issue Promoting Health and Safety in the Workplace)
Show Figures

Figure 1

23 pages, 7688 KiB  
Article
Assessing River Corridor Stability and Erosion Dynamics in the Mekong Delta: Implications for Sustainable Management
by Dinh Van Duy, Tran Van Ty, Lam Tan Phat, Huynh Vuong Thu Minh, Nguyen Truong Thanh and Nigel K. Downes
Earth 2025, 6(2), 34; https://doi.org/10.3390/earth6020034 - 6 May 2025
Viewed by 679
Abstract
This study assessed riverbank erosion and stability along the Mekong and Bassac Rivers to propose safe river corridors and mitigate erosion risks in the Mekong Delta. Using Landsat imagery (2000–2023), field surveys, and numerical simulations, we identified severe erosion hotspots, where erosion rates [...] Read more.
This study assessed riverbank erosion and stability along the Mekong and Bassac Rivers to propose safe river corridors and mitigate erosion risks in the Mekong Delta. Using Landsat imagery (2000–2023), field surveys, and numerical simulations, we identified severe erosion hotspots, where erosion rates reach up to 40 m annually, in the meandering sections of the Mekong River,. In contrast, the Bassac River exhibited significant sedimentation, though this trend was diminishing due to upstream sediment deficits caused by hydropower dams. Stability assessments revealed optimal safety corridor distances ranging from 20 to 38 m, influenced by local geotechnical conditions and structural loads. A significant proportion of riverbanks in Dong Thap (88%) and An Giang (48%) do not comply with conservation standards, exacerbating erosion risks and threatening infrastructure. The results of this study highlight the urgent need for enforcing conservation regulations, implementing nature-based solutions like riparian buffers, and adopting sustainable land-use planning. By addressing the interplay between natural processes and anthropogenic pressures, these findings offer actionable insights to enhance riverbank stability, protect ecosystems, and sustain livelihoods in the Mekong Delta amidst growing environmental challenges. Full article
Show Figures

Figure 1

33 pages, 10634 KiB  
Review
UAV Applications for Monitoring and Management of Civil Infrastructures
by Alberto Villarino, Hugo Valenzuela, Natividad Antón, Manuel Domínguez and Ximena Celia Méndez Cubillos
Infrastructures 2025, 10(5), 106; https://doi.org/10.3390/infrastructures10050106 - 24 Apr 2025
Cited by 1 | Viewed by 1880
Abstract
Civil engineering is a field of knowledge in direct contact with the citizen, not only in the design and construction of infrastructure but also in its maintenance, conservation, monitoring, and management. The integration of new technologies, such as drones, is revolutionizing work methodologies, [...] Read more.
Civil engineering is a field of knowledge in direct contact with the citizen, not only in the design and construction of infrastructure but also in its maintenance, conservation, monitoring, and management. The integration of new technologies, such as drones, is revolutionizing work methodologies, offering new possibilities for the execution and management of infrastructure and minimizing human intervention in these jobs, with the increase in occupational safety and cost reduction that this entails. This study presents a comprehensive review of the literature on UAV applications for the monitoring and management of civil infrastructure. The applicability of UAVs and their connection with the main existing sensors and technologies are analyzed, such as visible cameras (RGB), multispectral cameras, and hyperspectral cameras, in the most relevant areas of civil engineering, such as building inspection, bridge inspection, dams, power line inspection, photovoltaic plants, inspection, hydrological studies road inspection, slope supervision, and the maintenance and monitoring of landfill operation. The impact and scope of these technologies are addressed, as well as the benefits in terms of process automation, efficiency, safety, and cost reduction. The incorporation of drones promises to significantly transform the practice of civil engineering, improving the sustainability and resilience of infrastructures. Full article
(This article belongs to the Section Infrastructures Inspection and Maintenance)
Show Figures

Figure 1

19 pages, 2443 KiB  
Article
Utilizing Iron Ore Tailings for the Development of a Sustainable Alkali-Activated Binder
by Fabiane Paschoal da Veiga, William Mateus Kubiaki Levandoski, Giovani Jordi Bruschi, Mariana Krogel, Maria Alice Piovesan, Deise Trevizan Pelissaro, Pedro Domingos Marques Prietto and Eduardo Pavan Korf
Mining 2025, 5(2), 26; https://doi.org/10.3390/mining5020026 - 2 Apr 2025
Viewed by 565
Abstract
The increasing production of iron ore has led to the accumulation of iron ore tailings (IOTs), which pose significant environmental and safety risks when stored in tailings dams. This study investigates the potential of IOTs as a precursor in alkali-activated binder systems, aiming [...] Read more.
The increasing production of iron ore has led to the accumulation of iron ore tailings (IOTs), which pose significant environmental and safety risks when stored in tailings dams. This study investigates the potential of IOTs as a precursor in alkali-activated binder systems, aiming to provide a sustainable solution for mining waste management. Industrial calcium carbide lime and sodium silicate (Na2SiO3) were used as activators in varying concentrations (Na2SiO3: 10%, 15%, 20%, 25%, and 30%; carbide lime: 5%, 7.5%, and 10%), with curing conditions of 23 °C for 7 days. Techniques including unconfined compressive strength tests, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and metal leaching tests were employed to evaluate the mechanical performance and environmental safety of the alkali-activated binders. The results reveal that a mixture containing 20% Na2SiO3 and 10% carbide lime achieved the highest compressive strength of 0.33 MPa at 7 days. The binder also showed negligible metal leaching, meeting environmental safety standards. These findings confirm the viability of using IOTs in the development of durable, eco-friendly construction materials, offering a scalable and sustainable solution for the management of mining waste and promoting circular economy principles in the construction sector. Full article
Show Figures

Graphical abstract

29 pages, 7270 KiB  
Review
Nature-Inspired Solutions for Sustainable Mining: Applications of NIAs, Swarm Robotics, and Other Biomimicry-Based Technologies
by Joven Tan, Noune Melkoumian, David Harvey and Rini Akmeliawati
Biomimetics 2025, 10(3), 181; https://doi.org/10.3390/biomimetics10030181 - 14 Mar 2025
Cited by 1 | Viewed by 1381
Abstract
Environmental challenges, high safety risks and operational inefficiencies are some of the issues facing the mining sector. The paper offers an integrated viewpoint to address these issues by combining swarm robotics, nature-inspired algorithms (NIAs) and other biomimicry-based technologies into a single framework. It [...] Read more.
Environmental challenges, high safety risks and operational inefficiencies are some of the issues facing the mining sector. The paper offers an integrated viewpoint to address these issues by combining swarm robotics, nature-inspired algorithms (NIAs) and other biomimicry-based technologies into a single framework. It presents a systematic classification of each methodology, emphasizing their key advantages and disadvantages as well as considering real-life mining application scenarios, including hazard detection, autonomous transportation and energy-efficient drilling. Case studies are citied to demonstrate how these methodologies work together, and an extensive comparison table considering their applications at mines, such as Boliden, Diavik Diamond Mine, Olympic Dam and others, presents a summary of their scalability and practicality. This paper highlights future directions such as multi-robot coordination and hybrid NIAs, to improve operational resilience and sustainability. It also provides a broad overview of biomimicry and critically examines unresolved issues like real-time adaptation, parameter tuning and mechanical wear. The paper aims to offer a comprehensive insight into using bio-inspired models to enhance mining efficiency, safety and environmental management, while proposing a road map for resolving the issues that continue to be a hurdle for wide adaptation of these technologies in the mining industry. Full article
(This article belongs to the Special Issue Bio-Inspired Robotics and Applications)
Show Figures

Figure 1

17 pages, 1875 KiB  
Review
Bibliometric-Based Research Status and Development Trends of Dam Breach Studies
by Pengtao Wang, Wei Guo, Chunling Liang, Bingyi She and Donghu Li
Sustainability 2025, 17(1), 209; https://doi.org/10.3390/su17010209 - 30 Dec 2024
Cited by 1 | Viewed by 1449
Abstract
Dam breach can trigger severe flood disasters, threatening life and property safety, and having long-term impacts on the environment, society, and the economy. Dam breach floods also contaminate water bodies, degrading water quality and its sustainability. This study analyzes the characteristics and trends [...] Read more.
Dam breach can trigger severe flood disasters, threatening life and property safety, and having long-term impacts on the environment, society, and the economy. Dam breach floods also contaminate water bodies, degrading water quality and its sustainability. This study analyzes the characteristics and trends of dam breach research using research findings included in the CNKI (China National Knowledge Infrastructure, Beijing, China) database and the Web of Science (WoS) core database. Bibliometric methods, including word frequency analysis, co-citation analysis, and clustering analysis, were applied to the retrieved data. Using the CiteSpace (v6.3.R2) visualization tool, the study conducted statistical analyses and generated maps for publication trends, research institutions, and research hotspots. The findings indicate the following. (1) From 2000 to 2023, the number of research outcomes has been continuously growing both domestically and internationally with significantly more foreign-language publications than Chinese ones. (2) Chinese research institutions, notably the Chinese Academy of Sciences and the Nanjing Hydraulic Research Institute, have substantial international influence. (3) In terms of research hotspots, Chinese studies focus on the failure mechanisms of earth-rock dams, while foreign studies emphasize dam breach flood flows. (4) Establishing numerical models has emerged as a common trend in both Chinese and foreign research. These insights help identify deficiencies in current methods and technologies, allowing for the proposal of more scientific strategies for dam safety assessment. Based on these conclusions, some insights are proposed with the aim of reducing the risk of dam breaches, ensuring sustainable water resource management and utilization, promoting environmental protection, and fostering harmonious socio-economic development. Full article
Show Figures

Figure 1

23 pages, 4196 KiB  
Article
Riverbed Adjustments in Gravel–Sand Reaches Immediately Downstream of Large Reservoirs
by Sixuan Li, Lingling Zhu, Jing Yuan, Bingjiang Dong, Chaonan Lv and Chenggang Yang
Sustainability 2024, 16(24), 11245; https://doi.org/10.3390/su162411245 - 21 Dec 2024
Viewed by 1159
Abstract
The operation of large reservoirs significantly modifies flow–sediment regimes, and the reaches immediately downstream of the dams are the first to undergo responsive channel adjustments. Considering that the geomorphological responses are directly related to the flood control safety, channel stability and other sustainable [...] Read more.
The operation of large reservoirs significantly modifies flow–sediment regimes, and the reaches immediately downstream of the dams are the first to undergo responsive channel adjustments. Considering that the geomorphological responses are directly related to the flood control safety, channel stability and other sustainable functions of rivers, this paper explores the similarities and dissimilarities of the channel adjustments in the two reaches with gravel–sand beds immediately downstream of the Xiangjiaba reservoir and the Three Gorges Dam, respectively. The results show that major erosion primarily occurred during the initial years of reservoir impoundment. And then with the prominent reduction in washable sediment on the riverbed, the erosion intensity further weakened. It takes 6 to 13 years for the two reaches to reach a new state of relative equilibrium. In comparison, after the equilibrium state has been achieved, the reach with significant tributary sediment inflows exhibits alternating erosion and deposition dynamics, while the other remains relatively stable. The tributaries that transport a large amount of sediment during floods are the main sources of sediment deposition in the downstream reaches of the Xiangjiaba reservoir. However, the tributary inflow of the Qing River with low sediment concentrations has little impact on the riverbed evolution of the reaches from Yichang to Zhicheng immediately downstream of the Three Gorges Dam. These findings contribute to a deeper understanding of geomorphic adjustments near dams in response to upstream damming. Full article
(This article belongs to the Special Issue Sediment Movement, Sustainable Water Conservancy and Water Transport)
Show Figures

Figure 1

17 pages, 4013 KiB  
Article
Risk Prediction Model for Tailings Ponds Based on EEMD-DA-LSTM Model
by Bin Ma, Jingwen Zhou and Chenchen Zhang
Appl. Sci. 2024, 14(19), 9141; https://doi.org/10.3390/app14199141 - 9 Oct 2024
Cited by 1 | Viewed by 1227
Abstract
With the passage of time, the constant changes in relevant factors, and the daily maintenance of tailings ponds, the difficulty of tailings pond safety management is increasing day by day. In order to systematically improve the early warning ability for tailings pond dam [...] Read more.
With the passage of time, the constant changes in relevant factors, and the daily maintenance of tailings ponds, the difficulty of tailings pond safety management is increasing day by day. In order to systematically improve the early warning ability for tailings pond dam break risk, the relationship between and influence of various related dam break risk factors of tailings ponds are utilised and the combination with dual attention is innovatively proposed. The risk prediction model for tailings ponds, EEMD-DA-LSTM, is improved. First, Pearson correlation coefficients are used to analyse the correlation between risk factors of tailings ponds. Then, the EEMD method is used to decompose the nonlinear displacement sequence, and the weights of input features are dynamically adjusted by double attention (DA). Finally, the LSTM network model is constructed to predict the displacement change. Taking valley-type tailings pond WKB-1 and mountainside tailings pond WKB-2 as examples, the dam break risk prediction models for tailings ponds are constructed based on three different models, the prediction results of different models are compared and analysed, and the prediction accuracy of the models is evaluated by three different evaluation criteria. The research results show that the integration of the EEMD-LSTM model with the DA model, that is, the EEMD-DA-LSTM model, has a better prediction effect for the dam break risk of tailings ponds WKB-1 and WKB-2 than other models through experimental verification. Therefore, the EEMD-DA-LSTM model is of great significance for preventing and resolving the safety risks of tailings ponds. It is valuable for practitioners in the mining industry and environmentally sustainable development. Full article
Show Figures

Figure 1

20 pages, 9997 KiB  
Article
A New Method for Constructing the Protection and Seepage Control Layer for CSGR Dam and Its Application
by Yangfeng Wu, Jinsheng Jia, Cuiying Zheng, Baozhen Jia, Yang Wang and Wambley Adomako Baah
Appl. Sci. 2024, 14(13), 5423; https://doi.org/10.3390/app14135423 - 22 Jun 2024
Cited by 3 | Viewed by 1985
Abstract
Effective seepage control is crucial for maintaining the structural integrity of Cemented Sand, Gravel and Rock (CSGR) dams. Traditional methods using conventional concrete (CVC) or grout-enriched roller-compacted concrete (GERCC) are costly and disruptive. This paper presents a novel technique for constructing the protection [...] Read more.
Effective seepage control is crucial for maintaining the structural integrity of Cemented Sand, Gravel and Rock (CSGR) dams. Traditional methods using conventional concrete (CVC) or grout-enriched roller-compacted concrete (GERCC) are costly and disruptive. This paper presents a novel technique for constructing the protection and seepage control layer in Cemented Sand, Gravel and Rock (CSGR) dams. The method involves grouting and vibrating the loosened Cemented Sand, Gravel and Rock (CSGR) material to create vibrated grout-enriched Cemented Sand, Gravel and Rock, which performs similarly to concrete. A new surface water stop structure has also been developed for the structural joints. Laboratory tests revealed that Cemented Sand, Gravel and Rock (CSGR) with a vibrating–compacted (VC) value of 2–6 s and a compressive strength of 4 MPa meets design requirements for medium and low dams when the slurry addition rate is 8–12%. The T-shaped surface water stop demonstrated a bonding strength of over 1.8 MPa, withstanding a water pressure of 1.6 MPa. This method, integrated with dam body construction, reduces material costs by about 50% and eliminates construction interference. Specialized equipment for this technique has been developed, with a capacity of 12 m2/h. Implemented in the Minjiang Navigation and Hydropower Qianwei Project and Shaping I Hydropower Station, it has shown significant economic, environmental and safety benefits, promoting sustainable dam construction. Full article
(This article belongs to the Special Issue Sustainability in Geotechnics)
Show Figures

Figure 1

14 pages, 5952 KiB  
Article
The Extent to Which the Available Water Resources in Upper Egypt Can Be Affected by Climate Change
by Mohamed A. Ashour, Yousra A. El Degwee, Radwa H. Hashem, Abdallah A. Abdou and Tarek S. Abu-Zaid
Limnol. Rev. 2024, 24(2), 164-177; https://doi.org/10.3390/limnolrev24020009 - 28 May 2024
Cited by 1 | Viewed by 4959
Abstract
Over the past two decades, rapid climate change has severely impacted people’s lives globally, affecting their safety and sustainability. Water, a vital human resource, has been severely affected, with drought and high temperatures leading to desertification, the drying up of rivers and lakes, [...] Read more.
Over the past two decades, rapid climate change has severely impacted people’s lives globally, affecting their safety and sustainability. Water, a vital human resource, has been severely affected, with drought and high temperatures leading to desertification, the drying up of rivers and lakes, spontaneous fires in forests, and massive floods and torrents due to melting ice and rising sea and ocean surface water levels. The expected impacts of climate change on the Nile, Egypt’s primary water source, are significant. These impacts can vary across regions, depending on factors like local climate, socio-economic dynamics, topography, and environmental nature. Upper Egypt, characterized by arid and semi-arid regions, faces water scarcity and socio-economic development challenges. Climate change exacerbates these issues, posing significant threats to the region’s ecological sustainability and socio-economic development. Therefore, it is crucial to address these impacts to ensure the Nile’s continued vitality and sustainability. The study aims to analyze the climate change data over the past few decades, analyze its characteristics, and model its effects on Upper Egypt’s water sources. The study expected a big decrease in the water resources of the Nile. While what is currently occurring in terms of fluctuating rainfall rates between scarcity and severity contradicts the results of those studies, that is the best evidence of the need for further research and studies to obtain more reliable and consistent results with the reality that it may help decision-makers to develop scenarios to manage climate change effectively, preventing or reducing negative effects, and finding suitable alternatives. Studies predict a 10% decrease in Nile revenue at Aswan High Dam Lake by 2095, with some predicting a 30% increase. This lack of credibility underscores the need for more comprehensive studies. Full article
Show Figures

Figure 1

41 pages, 5073 KiB  
Review
Towards a Circular Economy in the Mining Industry: Possible Solutions for Water Recovery through Advanced Mineral Tailings Dewatering
by Laila Hamraoui, Abdelilah Bergani, Mouna Ettoumi, Abdelmaula Aboulaich, Yassine Taha, Abdessamad Khalil, Carmen Mihaela Neculita and Mostafa Benzaazoua
Minerals 2024, 14(3), 319; https://doi.org/10.3390/min14030319 - 19 Mar 2024
Cited by 32 | Viewed by 9603
Abstract
The mining industry is confronted with substantial challenges in achieving environmental sustainability, particularly regarding water usage, waste management, and dam safety. The increasing global demand for minerals has led to increased mining activities, resulting in significant environmental consequences. By 2025, an estimated 19 [...] Read more.
The mining industry is confronted with substantial challenges in achieving environmental sustainability, particularly regarding water usage, waste management, and dam safety. The increasing global demand for minerals has led to increased mining activities, resulting in significant environmental consequences. By 2025, an estimated 19 billion tons of solid tailings are projected to accumulate worldwide, exacerbating concerns over their management. Tailings storage facilities represent the largest water sinks within mining operations. The mismanagement of water content in tailings can compromise their stability, leading to potential dam failures and environmental catastrophes. In response to these pressing challenges, the mining industry is increasingly turning to innovative solutions such as tailings dewatering and water reuse/recycling strategies to promote sustainable development. This review paper aims to (I) redefine the role of mine tailings and explore their physical, chemical, and mineralogical characteristics; (II) discuss environmental concerns associated with conventional disposal methods; (III) explore recent advancements in dewatering techniques, assessing their potential for water recovery, technical and economic constraints, and sustainability considerations; (IV) and present challenges encountered in water treatment and recycling within the mining industry, highlighting areas for future research and potential obstacles in maximizing the value of mine tailings while minimizing their environmental impact. Full article
(This article belongs to the Special Issue Eco-Sustainable Treatment for Mine Waters)
Show Figures

Graphical abstract

27 pages, 7467 KiB  
Article
Dynamic Analysis of the Almagrera Tailings Dam with Dry Closure Condition
by Antonio Morales-Esteban, José Luis de Justo Alpañés, Pablo Castillo and Muhammet Karabulut
Sustainability 2024, 16(4), 1607; https://doi.org/10.3390/su16041607 - 15 Feb 2024
Cited by 5 | Viewed by 2363
Abstract
In light of growing concerns over sustainability, particularly in the wake of environmental disasters like the Aznalcollar dam break, the Spanish authorities have heightened their awareness of issues surrounding ore tailings management. The main aim of this paper is to study the dynamic [...] Read more.
In light of growing concerns over sustainability, particularly in the wake of environmental disasters like the Aznalcollar dam break, the Spanish authorities have heightened their awareness of issues surrounding ore tailings management. The main aim of this paper is to study the dynamic behavior for the dry closure of the Almagrera dam under the action of an earthquake. This study was carried out with the Plaxis 2D v9.02 program, which uses the finite element (FE) method. The dynamic analysis of the dam was interpreted in terms of deformations, displacements and principal stresses. The construction of the Uniform Seismic Hazard Acceleration Response Spectrum (USHARS) and the selection of real accelerograms for the time-history dynamic calculations is a noted feature of this research. Numerical analyses show that the dam is safe enough because a failure surface has not been formed, although several plastic zones may appear in the dam. The FE study of deformations display that the tailings may attain large deformations, displacements and failure, although this does not jeopardize the safety of the dam where the displacements are smaller than 3 mm. Neither the tailings nor the dam are expected to suffer liquefaction. It was determined that the 0.09 g threshold value is not exceeded in the acceleration-time graphs on the old reservoir field surface, which is the most critical situation. Full article
Show Figures

Figure 1

Back to TopTop