Experimental Studies on the Local Scour Development of the Riverbed Below the Piaseczno Weir
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Survey
2.2. Granulometric Studies
- Dm (mm)—the nominal diameter of the grain D50 = 0.475 mm, for which 50% of the weight content of the sample has a diameter larger/smaller than specified;
- Dp (mm)—the average diameter of the grain, calculated as a weighted average of the considered interval of the weight percentage pi of the analyzed dimension Di, from the following formula:
- Cc—the index of curvature of the grain size curve is calculated using characteristic grain diameters according to the formula [26]:
- Cu—the index of material grain size homogeneity (Hazen sorting coefficient):
- Ck—differential grain size index according to Knoroz:
- Cd—dominance characteristic, reflecting the predominance of grains larger or smaller than the nominal diameter D50:
2.3. Weir Physical Model
2.4. Laboratory Experiment
3. Results
- Phase A: Initial onset of scour, increasing growth Dz(t,t+1);
- Phase B: Intensive development of the scour hole, constant growth Dz(t,t+1);
- Phase C: Stabilization of the process, decreasing growth Dz(t,t+1);
- Phase D: Dynamic equilibrium of the phenomena, no growth Dz(t,t+1) ≡ 0.
- (T/To) ≤ 1.0: the region of initiation and initial development of scour;
- (T/To) > 1.0: the region of final development, stabilization, attenuation, and equilibrium of the scour process.
- For vB ≤ vr (series numbers 3, 4, 7):
- For vB > vr (series numbers 1, 2, 5, 6, 8):
- For T > T0, at low water velocities (v < vr; series 3, 4, 7), the sediment transport process upstream of the structure begins at higher velocities than the movement of the finer fraction downstream. This results in a rapid increase in the downstream scour; the scour curve is steep, and the onset of the scour stabilization phase (Phase D) occurs earlier.
- For T > T0, at high water velocities (v > vr; series 1, 2, 5, 6, 8), the sediment transport process upstream of the structure begins simultaneously with scour initiation downstream. The delivery of the coarse fraction from the upstream section into the local scour area causes partial armoring of the bottom and a reduction in the intensity of scour formation. The scour hole continues to deepen; however, the stabilization process is longer, and the scour curve becomes gentler.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Copeland, R.; Soar, P.; Thorne, C. Channel-forming discharge and hydraulic geometry width predictors in meandering sand-bed river. In Impacts of Global Climate Change; American Society of Civil Engineers: Reston, VA, USA, 2005; Volume 1, pp. 1–12. [Google Scholar] [CrossRef]
- Simon, A.; Castro, J.; Rinaldi, M. Channel form and adjustment: Characterization, measurement, interpretation and analysis. In Tools in Fluvial Geomorphology, 1st ed.; Kondolf, M., Piégay, H., Eds.; John Wiley & Sons, Ltd.: New York, NY, USA, 2016; Volume 11, pp. 237–259. [Google Scholar] [CrossRef]
- Kirvel, I.; Kukshinov, M.; Volchek, A.; Kilvel, P. Channel formation in rivers downstream of water reservoirs. Limnol. Rev. 2018, 18, 47–57. [Google Scholar] [CrossRef]
- Akstinas, V.; Krisciunas, A.; Šidlauskas, A.; Čalnerytė, D.; Meilutyte-Lukauskiene, D.; Jakimavičius, D.; Fyleris, T.; Nazarenko, S.; Barauskas, R. Determination of river hydromorphological features in low-land rivers from aerial imagery and direct measurements using machine learning algorithms. Water 2022, 14, 4114. [Google Scholar] [CrossRef]
- Feng, C.; Kong, L.; Wang, Y.; Lu, J. Experimental study on scouring by submerged pulsed waterjet vertically impinging on cohesive bed. Ocean Eng. 2024, 298, 117308. [Google Scholar] [CrossRef]
- Jafari, S.; Vaghefi, M.; Mahmoudi, A. Experimental investigation of temporal evaluations of scouring downstream of culvert. Appl. Water Sci. 2024, 14, 128. [Google Scholar] [CrossRef]
- Choudhary, A.; Das, B.S.; Devi, K.; Khuntia, J.R. ANFIS- and GEP-based model for prediction of scour depth around bridge pier in clear-water scouring and live-bed scouring conditions. J. Hydroinformatics 2023, 25, 1004–1028. [Google Scholar] [CrossRef]
- Kumar, V.; Baranwal, A.; Das, B.S. Prediction of local scour depth around bridge piers: Modelling based on machine learning approaches 2023. Eng. Res. Express 2023, 6, 015009. [Google Scholar] [CrossRef]
- Kiraga, M.; Popek, Z. Using a modified Lane’s relation in local bed scouring studies in the laboratory channel. Water 2016, 8, 16. [Google Scholar] [CrossRef]
- Kiraga, M.; Markiewicz, A. Lane’s relation in local scour investigations. IEEE Access 2020, 8, 146967–146975. [Google Scholar] [CrossRef]
- Dust, D.; Wohl, E. Conceptual model for complex river responses using an expanded Lane’s relation. Geomorphology 2012, 139, 109–121. [Google Scholar] [CrossRef]
- Hohensinner, S.; Hauer, C.; Muhar, S. River morphology, channelization, and habitat restoration. In Riverine Ecosystem Management, 1st ed.; Schmutz, S., Sendzimir, J., Eds.; Springer Open: Cham, Switzerland, 2018; Volume 8, pp. 41–65. [Google Scholar] [CrossRef]
- Mugade, U.; Sapkale, J. Influence of aggradation and degradation on river channels: A review. Int. J. Eng. Tech. Res. 2015, 3, 209–212. [Google Scholar]
- Kayitesi, N.; Guzha, A.; Mariethoz, G. Impacts of land use land cover change and climate change on river hydro-morphology—A review of research studies in tropical regions. J. Hydrol. 2022, 615, 128702. [Google Scholar] [CrossRef]
- Bajkowski, S. Sediment segregation on weirs of lowland rivers. Ann. Wars. Univ. Life Sci.-SGGW Land Reclam. 2010, 42, 177–185. [Google Scholar] [CrossRef]
- Guan, D.; Melville, B.; Friedrich, H. Live-bed scour at submerged weirs. J. Hydraul. Eng. 2015, 141, 04014071. [Google Scholar] [CrossRef]
- Barbhuiya, A.; Dey, S. Local scour at abutments: A review. Sadhana 2004, 29, 449–476. [Google Scholar] [CrossRef]
- Wang, L.; Melville, B.; Guan, D.; Whittaker, C. Local scour at downstream sloped submerged weirs. J. Hydraul. Eng. 2018, 144, 04018044-2. [Google Scholar] [CrossRef]
- Haron, N.A.; Yusuf, B.; Sulaiman, M.S.; Razak, M.S.A.; Nurhidayu, S. Morphological assessment of river stability: Review of the most influential parameters. Sustainability 2022, 14, 10025. [Google Scholar] [CrossRef]
- Cheng, T.; Wei, J.; Ni, J.; Wang, J.; Lu, H.; Cheng, K.; Fu, H. The impact of ice on river morphology and hydraulic structures: A Review. Water 2025, 17, 480. [Google Scholar] [CrossRef]
- Smith, K.; Cockburn, J.M.H.; Villard, P.V. Rivers under ice: Evaluating simulated morphodynamics through a riffle-pool sequence. Water 2023, 15, 1604. [Google Scholar] [CrossRef]
- Le, T.; Koyuncu, B. On the impacts of ice cover on flow profiles in a bend. Water Resour. Res. 2022, 58, e2021WR031742. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Fang, B.; Sui, J. A revisit of the local scour around bridge piers under an ice-covered flow condition—An experimental study. J. Hydrodyn. 2021, 33, 928–937. [Google Scholar] [CrossRef]
- Namaee, M.; Sui, J.; Wu, P. Experimental study of local scour around side-by-side bridge piers under ice-covered flow conditions. In Current Practice in Fluvial Geomorphology—Dynamics and Diversity; Ghosh, K.G., Mukhopahyay, S., Eds.; IntechOpen: London, UK. [CrossRef]
- Peng, W.; Hirshfield, F.; Sui, J.; Wang, J.; Chen, P. Impacts of ice cover on local scour around semi-circular bridge abutment. J. Hydrodyn. Ser. B 2015, 26, 10–18. [Google Scholar] [CrossRef]
- PN-EN ISO 14688-1:2006; Badania Geotechniczne. Oznaczanie I Klasyfikowanie Gruntów. Część 1: Oznaczenie I Opis. Polish Standard PN-EN: Warsaw, Poland, 2006. (In Polish)
- Hammerling, M.; Zawadzki, P.; Walczak, N.; Wierzbicki, M. The bed load transport in rivers. Part II: Boundary velocity and the traction intensity. Acta Sci. Polonorum. Form. Circumiectus 2014, 13, 121–131. [Google Scholar] [CrossRef]
- Miedema, S.A. An analytical method to determine scour. In Proceedings of the Western Dredging Association Technical Conference. 28th 2008. (and the 39th Texas A&M Dredging Seminar), St. Louis, MO, USA, 8–11 June 2008. [Google Scholar]
- Breusers, H.N.C. Conformity and time scale in two-dimensional local scour. In Proceeding of the Symposium on Model and Prototype Conformity; Hydraulic Research Laboratoria: Poona, India, 1966; pp. 1–8. [Google Scholar]
- Dietz, J.W. Kolkbildung in Feiner Oder Leichten Sohlmaterialien Bei Strömen dem Abfluß, Mitteilungen des Theodor Rehbock Flußbaulaboratorium; Universitat Fridericiana Karlsruhe: Karlsruhe, Germany, 1969. [Google Scholar]
- Zanke, U. Zussamenhänge Zwischen Strömung und Sedimenttransport. Teil 2. Berechnung des Sedimenttransportes Hinter Befestigten Sohlenstreckn. Sonderfall Zweidimensionaler Kolk; Mittelungen des Franzius-Instituts de TU Hannover: Hannover, Germany, 1978. [Google Scholar]
- Hoffmans, G.; Pilarczyk, K. Local scour downstream of hydraulic structures. J. Hydraul. Eng. 1995, 121, 326–340. [Google Scholar] [CrossRef]
- Khalili, S.H.; Farhoudi, J. Local scour profiles downstream of adverse stilling basins. Sci. Iran. 2014, 22, 1–14. [Google Scholar]
- Aminpour, Y.; Farhoudi, J.; Khalili, S.H.; Roshan, R. Characteristics and time scale of local scour downstream stepped spillways. Iranica 2018, 25, 532–542. [Google Scholar] [CrossRef]
- Farhoudi, J.; Shayan, H.K. Investigation on local scour downstream of adverse stilling basins. Ain Shams Eng. J. 2014, 5, 361–375. [Google Scholar] [CrossRef]
- Farhoudi, J.; Smith, K.V.H. Local scour profiles downstream hydraulic jump. J. Hydraul. Res. 1985, 23, 342–358. [Google Scholar] [CrossRef]
- Dąbkowski, S.; Siwicki, P.; Urbański, J. Influence of scale models of the dam on local scour. Acta Sci. Pol. Archit. 2004, 3, 55–66. [Google Scholar]
No. | Characteristic | Unit | Value | Properties (PN-EN ISO 14688-1:2006) [26] |
---|---|---|---|---|
1 | 2 | 3 | 4 | |
1 | Dm = D50 | (mm) | 0.944 | |
2 | Dp | (mm) | 1.010 | |
3 | Cc | 1.113 | Cc ≅ 1—monofractional material Cu < 6—monofractional material | |
4 | Cu | 1.163 | ||
5 | Ck | 1.385 | Ck ≤ 4 ÷ 5—well-sorted material | |
6 | Cd | 0.916 | Cd < 1—particles with a diameter smaller than D50 |
No. | Characteristic | Unit | Value | Properties (PN-EN ISO 14688-1:2006) [26] |
---|---|---|---|---|
1 | 2 | 3 | 4 | |
1 | Dm = D50 | (mm) | 0.475 | |
2 | Dp | (mm) | 0.636 | |
3 | Cc | 1.049 | Cc ≅ 1—monofractional material Cu < 6—monofractional material | |
4 | Cu | 1.684 | ||
5 | Ck | 3.183 | Ck ≤ 4 ÷ 5—well-sorted material | |
6 | Cd | 1.651 | Cd > 1—particles with a diameter larger than D50 |
No. of Series | Qw | hA | hB | vB | vn | Bed Evolution Phase | |
---|---|---|---|---|---|---|---|
(m) | (m) | (–) | |||||
1 | 0.030 | 0.134 | 0.100 | 0.517 | 0.27 | 0.279 | erosion |
2 | 0.034 | 0.143 | 0.110 | 0.533 | 0.26 | 0.283 | erosion |
3 | 0.025 | 0.122 | 0.090 | 0.479 | 0.26 | 0.275 | erosion |
4 | 0.020 | 0.105 | 0.075 | 0.460 | 0.29 | 0.268 | erosion |
5 | 0.040 | 0.153 | 0.120 | 0.575 | 0.28 | 0.287 | erosion |
6 | 0.038 | 0.141 | 0.115 | 0.570 | 0.29 | 0.285 | erosion |
7 | 0.016 | 0.095 | 0.060 | 0.460 | 0.36 | 0.259 | erosion |
8 | 0.035 | 0.140 | 0.115 | 0.525 | 0.24 | 0.285 | erosion |
9 | 0.007 | 0.081 | 0.045 | 0.268 | 0.16 | 0.247 | erosion |
10 | 0.004 | 0.070 | 0.035 | 0.197 | 0.12 | 0.237 | accumulation/transport |
11 | 0.022 | 0.131 | 0.092 | 0.417 | 0.18 | 0.276 | erosion |
No. of Series | zmax (m) | Lmax (m) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
T (h) | T (h) | |||||||||
1.0 | 2.0 | 4.0 | 6.0 | 8.0 | 1.0 | 2.0 | 4.0 | 6.0 | 8.0 | |
1 | 0.053 | 0.100 | 0.133 | 0.147 | 0.150 | 0.22 | 0.35 | 0.56 | 0.76 | 0.80 |
2 | 0.048 | 0.120 | 0.149 | 0.165 | 0.173 | 0.19 | 0.26 | 0.44 | 0.66 | 0.66 |
3 | 0.062 | 0.138 | 0.151 | 0.161 | 0.161 | 0.34 | 0.45 | 0.67 | 0.84 | 0.91 |
4 | 0.043 | 0.129 | 0.134 | 0.143 | 0.152 | 0.21 | 0.28 | 0.42 | 0.49 | 0.56 |
5 | 0.132 | 0.142 | 0.172 | 0.184 | 0.184 | 0.31 | 0.33 | 0.55 | 0.64 | 0.76 |
6 | 0.060 | 0.127 | 0.174 | 0.179 | 0.179 | 0.34 | 0.45 | 0.54 | 0.67 | 1.01 |
7 | 0.039 | 0.089 | 0.104 | 0.113 | 0.113 | 0.38 | 0.40 | 0.44 | 0.55 | 0.59 |
8 | 0.048 | 0.101 | 0.137 | 0.137 | 0.137 | 0.24 | 0.23 | 0.31 | 0.49 | 0.65 |
9 | 0.013 | 0.014 | 0.007 | 0.009 | 0.009 | 0.17 | 0.18 | 0.21 | 0.27 | 0.33 |
10 | 0.015 | 0.012 | 0.011 | 0.011 | 0.011 | 0.15 | 0.15 | 0.22 | 0.30 | 0.37 |
11 | 0.013 | 0.003 | 0.020 | 0.020 | 0.020 | 0.15 | 0.13 | 0.23 | 0.38 | 0.55 |
Type of Hydraulic Structure | Researcher | a | k | Equation |
---|---|---|---|---|
Estuary closure structure without any hydraulic jump | Breusers [29] | 0.38 | 1 | (11) |
Spillway | Farhoudi and Smith [36] | 0.19 | 1 | (12) |
Sluice gate with horizontal rigid apron | Farhoudi and Shayan [35] | 0.32 | 0.986 | (13) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiraga, M.; Bajkowski, S.; Urbański, J.; Siwicki, P. Experimental Studies on the Local Scour Development of the Riverbed Below the Piaseczno Weir. Water 2025, 17, 1916. https://doi.org/10.3390/w17131916
Kiraga M, Bajkowski S, Urbański J, Siwicki P. Experimental Studies on the Local Scour Development of the Riverbed Below the Piaseczno Weir. Water. 2025; 17(13):1916. https://doi.org/10.3390/w17131916
Chicago/Turabian StyleKiraga, Marta, Sławomir Bajkowski, Janusz Urbański, and Piotr Siwicki. 2025. "Experimental Studies on the Local Scour Development of the Riverbed Below the Piaseczno Weir" Water 17, no. 13: 1916. https://doi.org/10.3390/w17131916
APA StyleKiraga, M., Bajkowski, S., Urbański, J., & Siwicki, P. (2025). Experimental Studies on the Local Scour Development of the Riverbed Below the Piaseczno Weir. Water, 17(13), 1916. https://doi.org/10.3390/w17131916