Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = DMOAD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
62 pages, 4641 KiB  
Review
Pharmacist-Driven Chondroprotection in Osteoarthritis: A Multifaceted Approach Using Patient Education, Information Visualization, and Lifestyle Integration
by Eloy del Río
Pharmacy 2025, 13(4), 106; https://doi.org/10.3390/pharmacy13040106 - 1 Aug 2025
Viewed by 151
Abstract
Osteoarthritis (OA) remains a major contributor to pain and disability; however, the current management is largely reactive, focusing on symptoms rather than preventing irreversible cartilage loss. This review first examines the mechanistic foundations for pharmacological chondroprotection—illustrating how conventional agents, such as glucosamine sulfate [...] Read more.
Osteoarthritis (OA) remains a major contributor to pain and disability; however, the current management is largely reactive, focusing on symptoms rather than preventing irreversible cartilage loss. This review first examines the mechanistic foundations for pharmacological chondroprotection—illustrating how conventional agents, such as glucosamine sulfate and chondroitin sulfate, can potentially restore extracellular matrix (ECM) components, may attenuate catabolic enzyme activity, and might enhance joint lubrication—and explores the delivery challenges posed by avascular cartilage and synovial diffusion barriers. Subsequently, a practical “What–How–When” framework is introduced to guide community pharmacists in risk screening, DMOAD selection, chronotherapeutic dosing, safety monitoring, and lifestyle integration, as exemplified by the CHONDROMOVING infographic brochure designed for diverse health literacy levels. Building on these strategies, the P4–4P Chondroprotection Framework is proposed, integrating predictive risk profiling (physicians), preventive pharmacokinetic and chronotherapy optimization (pharmacists), personalized biomechanical interventions (physiotherapists), and participatory self-management (patients) into a unified, feedback-driven OA care model. To translate this framework into routine practice, I recommend the development of DMOAD-specific clinical guidelines, incorporation of chondroprotective chronotherapy and interprofessional collaboration into health-professional curricula, and establishment of multidisciplinary OA management pathways—supported by appropriate reimbursement structures, to support preventive, team-based management, and prioritization of large-scale randomized trials and real-world evidence studies to validate the long-term structural, functional, and quality of life benefits of synchronized DMOAD and exercise-timed interventions. This comprehensive, precision-driven paradigm aims to shift OA care from reactive palliation to true disease modification, preserving cartilage integrity and improving the quality of life for millions worldwide. Full article
Show Figures

Figure 1

21 pages, 24649 KiB  
Article
In Silico Insights into the Inhibition of ADAMTS-5 by Punicalagin and Ellagic Acid for the Treatment of Osteoarthritis
by Austen N. Breland, Matthew K. Ross, Nicholas C. Fitzkee and Steven H. Elder
Int. J. Mol. Sci. 2025, 26(9), 4093; https://doi.org/10.3390/ijms26094093 - 25 Apr 2025
Viewed by 658
Abstract
ADAMTS-5 (aggrecanase-2) is a major metalloprotease involved in regulating the cartilage extracellular matrix. Due to its role in removing aggrecan in the progression of osteoarthritis (OA), ADAMTS-5 is often regarded as a potential therapeutic target for OA. Punicalagin (PCG), a polyphenolic ellagitannin found [...] Read more.
ADAMTS-5 (aggrecanase-2) is a major metalloprotease involved in regulating the cartilage extracellular matrix. Due to its role in removing aggrecan in the progression of osteoarthritis (OA), ADAMTS-5 is often regarded as a potential therapeutic target for OA. Punicalagin (PCG), a polyphenolic ellagitannin found in pomegranate (Punica grunatum L.), and ellagic acid (EA), a hydrolytic metabolite of PCG, have been widely investigated as potential disease-modifying osteoarthritis drugs (DMOADs) due to their potent antioxidant and anti-inflammatory properties, but their interaction with ADAMTS-5 has yet to be determined. In this study, molecular docking simulations were used to predict enzyme–inhibitor binding interactions. The results suggest that both compounds may be able to bind within the active site via the formation of H bonds and interactions between the ligand’s aromatic rings and hydrophobic residue in the enzyme with inhibition constants of 183.3 µM and 1.13 µM for PCG and EA, respectively. Biochemical activity against recombinant human ADAMTS-5 was assessed using a dimethylmethylene blue-based assay to determine residual sulfated glycosaminoglycan (sGAG) in porcine articular cartilage. Although its loss could not be attributed to ADAMTS-5, sGAG was effectively persevered by PCG and EA. The potential conversion of PCG to EA by enzyme-catalyzed hydrolysis activity was then investigated using liquid chromatography–mass spectroscopy to determine the potential for the use of PCG and EA as a prodrug–proactive metabolite pair in the development of drug delivery systems to arthritic synovial joints. Full article
(This article belongs to the Special Issue Natural Products as Multitarget Agents in Human Diseases)
Show Figures

Figure 1

47 pages, 2398 KiB  
Perspective
Rethinking Osteoarthritis Management: Synergistic Effects of Chronoexercise, Circadian Rhythm, and Chondroprotective Agents
by Eloy del Río
Biomedicines 2025, 13(3), 598; https://doi.org/10.3390/biomedicines13030598 - 1 Mar 2025
Cited by 2 | Viewed by 2116
Abstract
Osteoarthritis (OA) is a chronic and debilitating joint disease characterized by progressive cartilage degeneration for which no definitive cure exists. Conventional management approaches often rely on fragmented and poorly coordinated pharmacological and non-pharmacological interventions that are inconsistently applied throughout the disease course. Persistent [...] Read more.
Osteoarthritis (OA) is a chronic and debilitating joint disease characterized by progressive cartilage degeneration for which no definitive cure exists. Conventional management approaches often rely on fragmented and poorly coordinated pharmacological and non-pharmacological interventions that are inconsistently applied throughout the disease course. Persistent controversies regarding the clinical efficacy of chondroprotective agents, frequently highlighted by pharmacovigilance agencies, underscore the need for a structured evidence-based approach. Emerging evidence suggests that synchronizing pharmacotherapy and exercise regimens with circadian biology may optimize therapeutic outcomes by addressing early pathological processes, including low-grade inflammation, oxidative stress, and matrix degradation. Recognizing the influence of the chondrocyte clock on these processes, this study proposes a ‘prototype’ for a novel framework that leverages the circadian rhythm-aligned administration of traditional chondroprotective agents along with tailored, accessible exercise protocols to mitigate cartilage breakdown and support joint function. In addition, this model-based framework emphasizes the interdependence between cartilage chronobiology and time-of-day-dependent responses to exercise, where strategically timed joint activity enhances nutrient and waste exchange, mitigates mitochondrial dysfunction, supports cellular metabolism, and promotes tissue maintenance, whereas nighttime rest promotes cartilage rehydration and repair. This time-sensitive, comprehensive approach aims to slow OA progression, reduce structural damage, and delay invasive procedures, particularly in weight-bearing joints such as the knee and hip. However, significant challenges remain, including inter-individual variability in circadian rhythms, a lack of reliable biomarkers for pharmacotherapeutic monitoring, and limited clinical evidence supporting chronoexercise protocols. Future large-scale, longitudinal trials are critical to evaluate the efficacy and scalability of this rational integrative strategy, paving the way for a new era in OA management. Full article
(This article belongs to the Special Issue Molecular Research on Osteoarthritis and Osteoporosis)
Show Figures

Graphical abstract

20 pages, 691 KiB  
Review
Advances and Challenges in the Pursuit of Disease-Modifying Osteoarthritis Drugs: A Review of 2010–2024 Clinical Trials
by Mckenzie D. Brandt, Jason B. Malone and Thomas J. Kean
Biomedicines 2025, 13(2), 355; https://doi.org/10.3390/biomedicines13020355 - 4 Feb 2025
Cited by 4 | Viewed by 5188
Abstract
Background/Objectives: Osteoarthritis (OA) is a highly prevalent, degenerative joint disease capable of causing severe pain and impaired mobility. Current treatments mitigate symptoms but do not cure the disease. The development of a disease-modifying osteoarthritis drug (DMOAD) could improve patient outcomes by slowing, [...] Read more.
Background/Objectives: Osteoarthritis (OA) is a highly prevalent, degenerative joint disease capable of causing severe pain and impaired mobility. Current treatments mitigate symptoms but do not cure the disease. The development of a disease-modifying osteoarthritis drug (DMOAD) could improve patient outcomes by slowing, halting, or reversing joint damage. Many DMOADs have progressed to clinical trials, but very few have made a significant impact, and none have been approved for clinical use. The purpose of this review is to present an update on the current status of DMOADs with a particular focus on results published since 2010. Methods: A comprehensive search was conducted within PubMed and ClinicalTrials.gov for novel DMOADs enrolled in phase II and III clinical trials between 1 January 2010 and 1 July 2024. Results: Eleven DMOAD candidates are reviewed and critically analyzed for their potential benefit in OA treatment—Lorecivivint (SM04690), TissueGene-C, Cindunistat (SD-6010), Sprifermin, UBX0101, TPX-100, GLPG1972/S201086, Lutikizumab (ABT-981), SAR113945, MIV-711, and LNA043—and relevant challenges to their development are discussed. Conclusions: Six DMOADs have demonstrated statistically significant evidence of a structural or symptomatic benefit without major safety concerns in phase II and III randomized controlled trials post-2010. Full article
(This article belongs to the Special Issue Osteoarthritis: Molecular Pathways and Novel Therapeutic Strategies)
Show Figures

Figure 1

16 pages, 2838 KiB  
Article
Development of Anti-OSCAR Antibodies for the Treatment of Osteoarthritis
by Gyeong Min Kim, Doo Ri Park, Thi Thu Ha Nguyen, Jiseon Kim, Jihee Kim, Myung-Ho Sohn, Won-Kyu Lee, Soo Young Lee and Hyunbo Shim
Biomedicines 2023, 11(10), 2844; https://doi.org/10.3390/biomedicines11102844 - 19 Oct 2023
Cited by 3 | Viewed by 2581
Abstract
Osteoarthritis (OA) is the most common joint disease that causes local inflammation and pain, significantly reducing the quality of life and normal social activities of patients. Currently, there are no disease-modifying OA drugs (DMOADs) available, and treatment relies on pain relief agents or [...] Read more.
Osteoarthritis (OA) is the most common joint disease that causes local inflammation and pain, significantly reducing the quality of life and normal social activities of patients. Currently, there are no disease-modifying OA drugs (DMOADs) available, and treatment relies on pain relief agents or arthroplasty. To address this significant unmet medical need, we aimed to develop monoclonal antibodies that can block the osteoclast-associated receptor (OSCAR). Our recent study has revealed the importance of OSCAR in OA pathogenesis as a novel catabolic regulator that induces chondrocyte apoptosis and accelerates articular cartilage destruction. It was also shown that blocking OSCAR with a soluble OSCAR decoy receptor ameliorated OA in animal models. In this study, OSCAR-neutralizing monoclonal antibodies were isolated and optimized by phage display. These antibodies bind to and directly neutralize OSCAR, unlike the decoy receptor, which binds to the ubiquitously expressed collagen and may result in reduced efficacy or deleterious off-target effects. The DMOAD potential of the anti-OSCAR antibodies was assessed with in vitro cell-based assays and an in vivo OA model. The results demonstrated that the anti-OSCAR antibodies significantly reduced cartilage destruction and other OA signs, such as subchondral bone plate sclerosis and loss of hyaline cartilage. Hence, blocking OSCAR with a monoclonal antibody could be a promising treatment strategy for OA. Full article
Show Figures

Graphical abstract

9 pages, 257 KiB  
Brief Report
Role of Doxycycline as an Osteoarthritis Disease-Modifying Drug
by Saseendar Shanmugasundaram, Ketansinh Solanki, Samudeeswari Saseendar, Vijay K. Chavada and Riccardo D’Ambrosi
J. Clin. Med. 2023, 12(8), 2927; https://doi.org/10.3390/jcm12082927 - 18 Apr 2023
Cited by 4 | Viewed by 5530
Abstract
Doxycycline is a drug that has been proposed to modify osteoarthritis (OA) progression, in addition to its role as an antibiotic. However, available evidence thus far comprises sporadic reports, with no consensus on its benefits. Hence, this review attempts to analyze the evidence [...] Read more.
Doxycycline is a drug that has been proposed to modify osteoarthritis (OA) progression, in addition to its role as an antibiotic. However, available evidence thus far comprises sporadic reports, with no consensus on its benefits. Hence, this review attempts to analyze the evidence available thus far on the role of doxycycline as a disease-modifying osteoarthritis drug (DMOAD) in knee osteoarthritis. The earliest evidence of doxycycline in OA appeared in 1991 when doxycycline was found to inhibit the type XI collagenolytic activity of extracts from the human osteoarthritic cartilage, and gelatinase and tetracycline were found to inhibit this metalloproteinase activity in articular cartilage in vivo, which could modify cartilage breakdown in osteoarthritis. Apart from the inhibition of cartilage damage by metalloproteinases (MMPs) and other cartilage-related mechanisms, doxycycline also affects the bone and interferes with many enzyme systems. The most significant finding after reviewing various studies was that doxycycline has a definitive role in structural changes in osteoarthritis progression and radiological joint space width, but its role in the improvement of clinical outcomes as a DMOAD has not been established. However, there is much of a gap and lack of evidence in this regard. Doxycycline, as an MMP inhibitor, has theoretical advantages for clinical outcomes, but the present studies reveal only beneficial structural changes in osteoarthritis and very minimal or nonexistent advantages in clinical outcomes. Current evidence does not favor the regular use of doxycycline for the treatment of osteoarthritis as an individual treatment option or in combination with others. However, multicenter large cohort studies are warranted to determine the long-term benefits of doxycycline. Full article
(This article belongs to the Special Issue Clinical Advances in Knee Surgery)
33 pages, 1989 KiB  
Review
Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues
by Margaret M. Smith and James Melrose
Pharmaceuticals 2023, 16(3), 437; https://doi.org/10.3390/ph16030437 - 13 Mar 2023
Cited by 9 | Viewed by 7619
Abstract
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological [...] Read more.
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

13 pages, 2500 KiB  
Article
Using Microphysiological System for the Development of Treatments for Joint Inflammation and Associated Cartilage Loss—A Pilot Study
by Meagan J. Makarczyk, Sophie Hines, Haruyo Yagi, Zhong Alan Li, Alyssa M. Aguglia, Justin Zbikowski, Anne-Marie Padget, Qi Gao, Bruce A. Bunnell, Stuart B. Goodman and Hang Lin
Biomolecules 2023, 13(2), 384; https://doi.org/10.3390/biom13020384 - 17 Feb 2023
Cited by 12 | Viewed by 4596
Abstract
Osteoarthritis (OA) is a painful and disabling joint disease affecting millions worldwide. The lack of clinically relevant models limits our ability to predict therapeutic outcomes prior to clinical trials, where most drugs fail. Therefore, there is a need for a model that accurately [...] Read more.
Osteoarthritis (OA) is a painful and disabling joint disease affecting millions worldwide. The lack of clinically relevant models limits our ability to predict therapeutic outcomes prior to clinical trials, where most drugs fail. Therefore, there is a need for a model that accurately recapitulates the whole-joint disease nature of OA in humans. Emerging microphysiological systems provide a new opportunity. We recently established a miniature knee joint system, known as the miniJoint, in which human bone-marrow-derived mesenchymal stem cells (hBMSCs) were used to create an osteochondral complex, synovial-like fibrous tissue, and adipose tissue analogs. In this study, we explored the potential of the miniJoint in developing novel treatments for OA by testing the hypothesis that co-treatment with anti-inflammation and chondroinducing agents can suppress joint inflammation and associated cartilage degradation. Specifically, we created a “synovitis”-relevant OA model in the miniJoint by treating synovial-like tissues with interleukin-1β (IL-1β), and then a combined treatment of oligodeoxynucleotides (ODNs) suppressing the nuclear factor kappa beta (NF-κB) genetic pathway and bone morphogenic protein-7 (BMP-7) was introduced. The combined treatment with BMP-7 and ODNs reduced inflammation in the synovial-like fibrous tissue and showed an increase in glycosaminoglycan formation in the cartilage portion of the osteochondral complex. For the first time, this study demonstrated the potential of the miniJoint in developing disease-modifying OA drugs. The therapeutic efficacy of co-treatment with NF-κB ODNs and BMP-7 can be further validated in future clinical studies. Full article
Show Figures

Figure 1

16 pages, 4292 KiB  
Article
A Fenchone Derivative Effectively Abrogates Joint Damage Following Post-Traumatic Osteoarthritis in Lewis Rats
by Idan Carmon, Reem Smoum, Eli Farhat, Eli Reich, Leonid Kandel, Zhannah Yekhtin, Ruth Gallily, Raphael Mechoulam and Mona Dvir-Ginzberg
Cells 2022, 11(24), 4084; https://doi.org/10.3390/cells11244084 - 16 Dec 2022
Cited by 2 | Viewed by 2759
Abstract
Background: In a previous report, we have identified the cannabinoid receptor 2 (CB2) agonist HU308 to possess a beneficial effect in preventing age and trauma-induced osteoarthritis (OA) in mice. The effects of HU308 were largely related to the capacity of this compound to [...] Read more.
Background: In a previous report, we have identified the cannabinoid receptor 2 (CB2) agonist HU308 to possess a beneficial effect in preventing age and trauma-induced osteoarthritis (OA) in mice. The effects of HU308 were largely related to the capacity of this compound to induce cartilage anabolism which was dependent on the CREB/SOX9 axis, and exhibited pro-survival and pro-proliferative hallmarks of articular cartilage following treatment. Here, we utilized the novel cannabinoid-fenchone CB2 agonists (1B, 1D), which were previously reported to render anti-inflammatory effects in a zymosan model. Methods: Initially, we assessed the selectivity of CB2 using a Gs-protein receptor cAMP potency assay, which was also validated for antagonistic effects dependent on the Gi-protein receptor cAMP pathway. Based on EC50 values, 1D was selected for a zymosan inflammatory pain model. Next, 1D was administered in two doses intra-articularly (IA), in a post-traumatic medial meniscal tear (MMT, Lewis rats) model, and compared to sham, vehicle, and a positive control consisting of fibroblast growth factor 18 (FGF18) administration. The histopathological assessment was carried out according to the Osteoarthritis Research Society International (OARSI) guidelines for rat models following 28 days post-MMT. Results: The G protein receptor assays confirmed that both 1B and 1D possess CB2 agonistic effects in cell lines and in chondrocytes. Co-administering a CB2 antagonists to 25 mg/kg 1D in a paw inflammatory pain model abolished 1D-related anti-swelling effect and partially abolishing its analgesic effects. Using an MMT model, the high dose (i.e., 24 µg) of 1D administered via IA route, exhibited reduced cartilage damage. Particularly, this dose of 1D exhibited a 30% improvement in cartilage degeneration (zonal/total tibial scores) and lesion depth ratios (44%), comparable to the FGF18 positive control. Synovitis scores remained unaffected and histopathologic evaluation of subchondral bone damage did not suggest that 1D treatment changed the load-bearing ability of the rats. Contrary to the anabolic effect of FGF18, synovial inflammation was observed and was accompanied by increased osteophyte size. Conclusion: The structural histopathological analysis supports a disease-modifying effect of IA-administered 1D compound without any deleterious effects on the joint structure. Full article
(This article belongs to the Special Issue Advances in Molecular Genetics and Epigenetics in Osteoarthritis)
Show Figures

Figure 1

18 pages, 877 KiB  
Review
Targeting Inflammation and Regeneration: Scaffolds, Extracellular Vesicles, and Nanotechnologies as Cell-Free Dual-Target Therapeutic Strategies
by Maria Peshkova, Nastasia Kosheleva, Anastasia Shpichka, Stefka Radenska-Lopovok, Dmitry Telyshev, Alexey Lychagin, Fangzhou Li, Peter Timashev and Xing-Jie Liang
Int. J. Mol. Sci. 2022, 23(22), 13796; https://doi.org/10.3390/ijms232213796 - 9 Nov 2022
Cited by 13 | Viewed by 3387
Abstract
Osteoarthritis (OA) affects over 250 million people worldwide and despite various existing treatment strategies still has no cure. It is a multifactorial disease characterized by cartilage loss and low-grade synovial inflammation. Focusing on these two targets together could be the key to developing [...] Read more.
Osteoarthritis (OA) affects over 250 million people worldwide and despite various existing treatment strategies still has no cure. It is a multifactorial disease characterized by cartilage loss and low-grade synovial inflammation. Focusing on these two targets together could be the key to developing currently missing disease-modifying OA drugs (DMOADs). This review aims to discuss the latest cell-free techniques applied in cartilage tissue regeneration, since they can provide a more controllable approach to inflammation management than the cell-based ones. Scaffolds, extracellular vesicles, and nanocarriers can be used to suppress inflammation, but they can also act as immunomodulatory agents. This is consistent with the latest tissue engineering paradigm, postulating a moderate, controllable inflammatory reaction to be beneficial for tissue remodeling and successful regeneration. Full article
(This article belongs to the Special Issue Bone and Cartilage Biology)
Show Figures

Figure 1

17 pages, 2032 KiB  
Review
Xylan Prebiotics and the Gut Microbiome Promote Health and Wellbeing: Potential Novel Roles for Pentosan Polysulfate
by Margaret M. Smith and James Melrose
Pharmaceuticals 2022, 15(9), 1151; https://doi.org/10.3390/ph15091151 - 16 Sep 2022
Cited by 9 | Viewed by 4771
Abstract
This narrative review highlights the complexities of the gut microbiome and health-promoting properties of prebiotic xylans metabolized by the gut microbiome. In animal husbandry, prebiotic xylans aid in the maintenance of a healthy gut microbiome. This prevents the colonization of the gut by [...] Read more.
This narrative review highlights the complexities of the gut microbiome and health-promoting properties of prebiotic xylans metabolized by the gut microbiome. In animal husbandry, prebiotic xylans aid in the maintenance of a healthy gut microbiome. This prevents the colonization of the gut by pathogenic organisms obviating the need for dietary antibiotic supplementation, a practice which has been used to maintain animal productivity but which has led to the emergence of antibiotic resistant bacteria that are passed up the food chain to humans. Seaweed xylan-based animal foodstuffs have been developed to eliminate ruminant green-house gas emissions by gut methanogens in ruminant animals, contributing to atmospheric pollution. Biotransformation of pentosan polysulfate by the gut microbiome converts this semi-synthetic sulfated disease-modifying anti-osteoarthritic heparinoid drug to a prebiotic metabolite that promotes gut health, further extending the therapeutic profile and utility of this therapeutic molecule. Xylans are prominent dietary cereal components of the human diet which travel through the gastrointestinal tract as non-digested dietary fibre since the human genome does not contain xylanolytic enzymes. The gut microbiota however digest xylans as a food source. Xylo-oligosaccharides generated in this digestive process have prebiotic health-promoting properties. Engineered commensal probiotic bacteria also have been developed which have been engineered to produce growth factors and other bioactive factors. A xylan protein induction system controls the secretion of these compounds by the commensal bacteria which can promote gut health or, if these prebiotic compounds are transported by the vagal nervous system, may also regulate the health of linked organ systems via the gut–brain, gut–lung and gut–stomach axes. Dietary xylans are thus emerging therapeutic compounds warranting further study in novel disease prevention protocols. Full article
Show Figures

Graphical abstract

27 pages, 4133 KiB  
Review
Potential Methods of Targeting Cellular Aging Hallmarks to Reverse Osteoarthritic Phenotype of Chondrocytes
by Yuchen He, Katelyn E. Lipa, Peter G. Alexander, Karen L. Clark and Hang Lin
Biology 2022, 11(7), 996; https://doi.org/10.3390/biology11070996 - 30 Jun 2022
Cited by 8 | Viewed by 4413
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that causes pain, physical disability, and life quality impairment. The pathophysiology of OA remains largely unclear, and currently no FDA-approved disease-modifying OA drugs (DMOADs) are available. As has been acknowledged, aging is the primary independent [...] Read more.
Osteoarthritis (OA) is a chronic degenerative joint disease that causes pain, physical disability, and life quality impairment. The pathophysiology of OA remains largely unclear, and currently no FDA-approved disease-modifying OA drugs (DMOADs) are available. As has been acknowledged, aging is the primary independent risk factor for OA, but the mechanisms underlying such a connection are not fully understood. In this review, we first revisit the changes in OA chondrocytes from the perspective of cellular hallmarks of aging. It is concluded that OA chondrocytes share many alterations similar to cellular aging. Next, based on the findings from studies on other cell types and diseases, we propose methods that can potentially reverse osteoarthritic phenotype of chondrocytes back to a healthier state. Lastly, current challenges and future perspectives are summarized. Full article
Show Figures

Figure 1

16 pages, 4102 KiB  
Article
Improved Joint Health Following Oral Administration of Glycosaminoglycans with Native Type II Collagen in a Rabbit Model of Osteoarthritis
by Vicente Sifre, Carme Soler, Sergi Segarra, José Ignacio Redondo, Luis Doménech, Amadeo Ten-Esteve, Laura Vilalta, Luis Pardo-Marín and Claudio Iván Serra
Animals 2022, 12(11), 1401; https://doi.org/10.3390/ani12111401 - 30 May 2022
Cited by 4 | Viewed by 3817
Abstract
A prospective, experimental, randomized, double blinded study was designed to evaluate the effects of glycosaminoglycans, with or without native type II collagen (NC), in an osteoarthritis model induced by cranial cruciate ligament transection. The following compounds were tested: chondroitin sulfate (CS), glucosamine hydrochloride [...] Read more.
A prospective, experimental, randomized, double blinded study was designed to evaluate the effects of glycosaminoglycans, with or without native type II collagen (NC), in an osteoarthritis model induced by cranial cruciate ligament transection. The following compounds were tested: chondroitin sulfate (CS), glucosamine hydrochloride (GlHCl), hyaluronic acid (HA) and NC. Fifty-four female 12-week-old New Zealand rabbits were classified into three groups: CTR (control–no treatment), CGH (CS + GlHCl + HA) and CGH-NC (CS + GlHCl + HA + NC). Each group was subdivided into three subgroups according to survival times of 24, 56 and 84 days. Over time, all rabbits developed degenerative changes associated with osteoarthritis. CGH-NC showed significantly improved values on macroscopic evaluation, compared to CTR and CGH. Microscopically, significantly better results were seen with CGH and CGH-NC, compared to CTR, and synovial membrane values were significantly better with CGH-NC compared to CGH. A significant improvement in magnetic resonance imaging biomarkers was also observed with CGH-NC in cartilage transversal relaxation time (T2) and subchondral bone D2D fractal dimension in the lateral condyle. In conclusion, our results show beneficial effects on joint health of CGH and CGH-NC and also supports that adding NC to CGH results in even greater efficacy. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

15 pages, 7720 KiB  
Article
Urocortin-1 Is Chondroprotective in Response to Acute Cartilage Injury via Modulation of Piezo1
by Rebecca C. Jones, Kevin M. Lawrence, Scott M. Higgins, Stephen M. Richardson and Paul A. Townsend
Int. J. Mol. Sci. 2022, 23(9), 5119; https://doi.org/10.3390/ijms23095119 - 4 May 2022
Cited by 10 | Viewed by 2856
Abstract
Post-traumatic OA (PTOA) is often triggered by injurious, high-impact loading events which result in rapid, excessive chondrocyte cell death and a phenotypic shift in residual cells toward a more catabolic state. As such, the identification of a disease-modifying OA drug (DMOAD) that can [...] Read more.
Post-traumatic OA (PTOA) is often triggered by injurious, high-impact loading events which result in rapid, excessive chondrocyte cell death and a phenotypic shift in residual cells toward a more catabolic state. As such, the identification of a disease-modifying OA drug (DMOAD) that can protect chondrocytes from death following impact injury, and thereby prevent cartilage degradation and progression to PTOA, would offer a novel intervention. We have previously shown that urocortin-1 (Ucn) is an essential endogenous pro-survival factor that protects chondrocytes from OA-associated pro-apoptotic stimuli. Here, using a drop tower PTOA-induction model, we demonstrate the extent of Ucn’s chondroprotective role in cartilage explants exposed to excessive impact load. Using pathway-specific agonists and antagonists, we show that Ucn acts to block load-induced intracellular calcium accumulation through blockade of the non-selective cation channel Piezo1 rather than TRPV4. This protective effect is mediated primarily through the Ucn receptor CRF-R1 rather than CRF-R2. Crucially, we demonstrate that the chondroprotective effect of Ucn is maintained whether it is applied pre-impact or post-impact, highlighting the potential of Ucn as a novel DMOAD for the prevention of injurious impact overload-induced PTOA. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

25 pages, 2299 KiB  
Review
Exosomes in the Pathogenesis, Progression, and Treatment of Osteoarthritis
by Yishu Fan, Zhong Li and Yuchen He
Bioengineering 2022, 9(3), 99; https://doi.org/10.3390/bioengineering9030099 - 27 Feb 2022
Cited by 39 | Viewed by 8991
Abstract
Osteoarthritis (OA) is a prevalent and debilitating age-related joint disease characterized by articular cartilage degeneration, synovial membrane inflammation, osteophyte formation, as well as subchondral bone sclerosis. OA drugs at present are mainly palliative and do not halt or reverse disease progression. Currently, no [...] Read more.
Osteoarthritis (OA) is a prevalent and debilitating age-related joint disease characterized by articular cartilage degeneration, synovial membrane inflammation, osteophyte formation, as well as subchondral bone sclerosis. OA drugs at present are mainly palliative and do not halt or reverse disease progression. Currently, no disease-modifying OA drugs (DMOADs) are available and total joint arthroplasty remains a last resort. Therefore, there is an urgent need for the development of efficacious treatments for OA management. Among all novel pharmaco-therapeutical options, exosome-based therapeutic strategies are highly promising. Exosome cargoes, which include proteins, lipids, cytokines, and various RNA subtypes, are potentially capable of regulating intercellular communications and gene expression in target cells and tissues involved in OA development. With extensive research in recent years, exosomes in OA studies are no longer limited to classic, mesenchymal stem cell (MSC)-derived vesicles. New origins, structures, and functions of exosomes are constantly being discovered and investigated. This review systematically summarizes the non-classic origins, biosynthesis, and extraction of exosomes, describes modification and delivery techniques, explores their role in OA pathogenesis and progression, and discusses their therapeutic potential and hurdles to overcome in OA treatment. Full article
Show Figures

Figure 1

Back to TopTop