Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = DMD camera

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4423 KB  
Review
Laser Active Optical Systems (LAOSs) for Material Processing
by Vladimir Chvykov
Micromachines 2025, 16(7), 792; https://doi.org/10.3390/mi16070792 - 2 Jul 2025
Viewed by 3081
Abstract
The output energy of Laser Active Optical Systems (LAOSs), in which image brightness is amplified within the laser-active medium, is always higher than the input energy. This contrasts with conventional optical systems (OSs). As a result, a LAOS enables the creation of laser [...] Read more.
The output energy of Laser Active Optical Systems (LAOSs), in which image brightness is amplified within the laser-active medium, is always higher than the input energy. This contrasts with conventional optical systems (OSs). As a result, a LAOS enables the creation of laser beams with tailored energy distribution across the aperture, making them ideal for material processing applications. This concept was first successfully implemented using metal vapor lasers as the gain medium. In these systems, material processing was achieved by using a laser beam that either carried the required energy profile or the image of the object itself. Later, other laser media were utilized for LAOSs, including barium vapor, strontium vapor, excimer XeCl lasers, and solid-state media. Additionally, during the development of these systems, several modifications were introduced. For example, Space-Time Light Modulators (STLMs) and CCD cameras were incorporated, along with the use of multipass amplifiers, disk-shaped or thin-disk (TD) solid-state laser amplifiers, and other advancements. These techniques have significantly expanded the range of power, energy, pulse durations, and operating wavelengths. Currently, TD laser amplifiers and STLMs based on Digital Light Processor (DLP) technology or Digital Micromirror Devices (DMDs) enhance the potential to develop LAOS devices for Subtractive and Additive Technologies (ST, AT), applicable in both macromachining (cutting, welding, drilling) and micro-nano processing. This review presents comparable characteristics and requirements for these various LAOS applications. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

10 pages, 1419 KB  
Article
Time-Domain Full-Field Confocal Optical Coherence Tomography with Digital Scanning
by Danielis Rutkauskas, Karolis Adomavičius and Egidijus Auksorius
Photonics 2025, 12(4), 304; https://doi.org/10.3390/photonics12040304 - 26 Mar 2025
Viewed by 731
Abstract
Full-field optical coherence tomography (FF-OCT) is a fast, en face interferometric technique that allows imaging inside a scattering tissue with high spatial resolution. However, camera-based detection, which lacks confocal gating, results in a suboptimal signal-to-noise ratio (SNR). To address this, we implemented a [...] Read more.
Full-field optical coherence tomography (FF-OCT) is a fast, en face interferometric technique that allows imaging inside a scattering tissue with high spatial resolution. However, camera-based detection, which lacks confocal gating, results in a suboptimal signal-to-noise ratio (SNR). To address this, we implemented a time-domain FF-OCT system that uses a digital micromirror device (DMD). The DMD allows us to scan multiple illumination spots across the sample and simultaneously realize confocal detection with multiple pinholes. Confocal imaging can also be demonstrated with line illumination and detection. Using a USAF target mounted behind a scattering layer, we demonstrate an order-of-magnitude improvement in SNR. Full article
Show Figures

Figure 1

12 pages, 5701 KB  
Article
Camera-Based Dynamic Vibration Analysis Using Transformer-Based Model CoTracker and Dynamic Mode Decomposition
by Liangliang Cheng, Justin de Groot, Kun Xie, Yanxin Si and Xiaodong Han
Sensors 2024, 24(11), 3541; https://doi.org/10.3390/s24113541 - 30 May 2024
Cited by 3 | Viewed by 2316
Abstract
Accelerometers are commonly used to measure vibrations for condition monitoring in mechanical and civil structures; however, their high cost and point-based measurement approach present practical limitations. With rapid advancements in computer vision and deep learning, research into tracking the motion of individual pixels [...] Read more.
Accelerometers are commonly used to measure vibrations for condition monitoring in mechanical and civil structures; however, their high cost and point-based measurement approach present practical limitations. With rapid advancements in computer vision and deep learning, research into tracking the motion of individual pixels with vision cameras has increased. The recently developed CoTracker, a transformer-based model, has demonstrated excellence in motion tracking, yet its performance in measuring structural vibrations has not been fully explored. This paper investigates the efficacy of the CoTracker model in extracting full-field structural vibrations using cameras. It is initially applied to capture the dense point movements in video sequences of a cantilever beam recorded using a high-speed camera. Subsequently, modal analysis using delay-embedding dynamic mode decomposition (DMD) is conducted to extract modal parameters including natural frequencies, damping ratios, and mode shapes. The results, benchmarked against those from a reference accelerometer and the Finite Element Method (FEM) result, demonstrate CoTracker’s high potential for general applicability in structural vibration measurements. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

14 pages, 2816 KB  
Article
Smile Reproducibility and Its Relationship to Self-Perceived Smile Attractiveness
by Denitsa Dobreva, Nikolaos Gkantidis, Demetrios Halazonetis, Carlalberta Verna and Georgios Kanavakis
Biology 2022, 11(5), 719; https://doi.org/10.3390/biology11050719 - 7 May 2022
Cited by 8 | Viewed by 4138
Abstract
The reproducibility of facial expressions has been previously explored, however, there is no detailed information regarding the reproducibility of lip morphology forming a social smile. In this study, we recruited 93 young adults, aged 21–35 years old, who agreed to participate in two [...] Read more.
The reproducibility of facial expressions has been previously explored, however, there is no detailed information regarding the reproducibility of lip morphology forming a social smile. In this study, we recruited 93 young adults, aged 21–35 years old, who agreed to participate in two consecutive study visits four weeks apart. On each visit, they were asked to perform a social smile, which was captured on a 3D facial image acquired using the 3dMD camera system. Assessments of self-perceived smile attractiveness were also performed using a VAS scale. Lip morphology, including smile shape, was described using 62 landmarks and semi-landmarks. A Procrustes superimposition of each set of smiling configurations (first and second visit) was performed and the Euclidean distance between each landmark set was calculated. A linear regression model was used to test the association between smile consistency and self-perceived smile attractiveness. The results show that the average landmark distance between sessions did not exceed 1.5 mm, indicating high repeatability, and that females presented approximately 15% higher smile consistecy than males (p < 0.05). There was no statistically significant association between smile consistency and self-perceived smile attractiveness (η2 = 0.015; p = 0.252), when controlling for the effect of sex and age. Full article
Show Figures

Figure 1

14 pages, 12871 KB  
Article
Non-Invasive Optical Motion Tracking Allows Monitoring of Respiratory Dynamics in Dystrophin-Deficient Mice
by Angelika Svetlove, Jonas Albers, Swen Hülsmann, Marietta Andrea Markus, Jana Zschüntzsch, Frauke Alves and Christian Dullin
Cells 2022, 11(5), 918; https://doi.org/10.3390/cells11050918 - 7 Mar 2022
Cited by 3 | Viewed by 2903
Abstract
Duchenne muscular dystrophy (DMD) is the most common x-chromosomal inherited dystrophinopathy which leads to progressive muscle weakness and a premature death due to cardiorespiratory dysfunction. The mdx mouse lacks functional dystrophin protein and has a comparatively human-like diaphragm phenotype. To date, diaphragm function [...] Read more.
Duchenne muscular dystrophy (DMD) is the most common x-chromosomal inherited dystrophinopathy which leads to progressive muscle weakness and a premature death due to cardiorespiratory dysfunction. The mdx mouse lacks functional dystrophin protein and has a comparatively human-like diaphragm phenotype. To date, diaphragm function can only be inadequately mapped in preclinical studies and a simple reliable translatable method of tracking the severity of the disease still lacks. We aimed to establish a sensitive, reliable, harmless and easy way to assess the effects of respiratory muscle weakness and subsequent irregularity in breathing pattern. Optical respiratory dynamics tracking (ORDT) was developed utilising a camera to track the movement of paper markers placed on the thoracic-abdominal region of the mouse. ORDT successfully distinguished diseased mdx phenotype from healthy controls by measuring significantly higher expiration constants (k) in mdx mice compared to wildtype (wt), which were also observed in the established X-ray based lung function (XLF). In contrast to XLF, with ORDT we were able to distinguish distinct fast and slow expiratory phases. In mdx mice, a larger part of the expiratory marker displacement was achieved in this initial fast phase as compared to wt mice. This phenomenon could not be observed in the XLF measurements. We further validated the simplicity and reliability of our approach by demonstrating that it can be performed using free-hand smartphone acquisition. We conclude that ORDT has a great preclinical potential to monitor DMD and other neuromuscular diseases based on changes in the breathing patterns with the future possibility to track therapy response. Full article
Show Figures

Figure 1

33 pages, 23991 KB  
Article
A Self-Adaptive Method for Mapping Coastal Bathymetry On-The-Fly from Wave Field Video
by Matthijs Gawehn, Sierd de Vries and Stefan Aarninkhof
Remote Sens. 2021, 13(23), 4742; https://doi.org/10.3390/rs13234742 - 23 Nov 2021
Cited by 17 | Viewed by 4674
Abstract
Mapping coastal bathymetry from remote sensing becomes increasingly more attractive for the coastal community. It is facilitated by a rising availability of drone and satellite data, advances in data science, and an open-source mindset. Coastal bathymetry, but also wave directions, celerity and near-surface [...] Read more.
Mapping coastal bathymetry from remote sensing becomes increasingly more attractive for the coastal community. It is facilitated by a rising availability of drone and satellite data, advances in data science, and an open-source mindset. Coastal bathymetry, but also wave directions, celerity and near-surface currents can simultaneously be derived from aerial video of a wave field. However, the required video processing is usually extensive, requires skilled supervision, and is tailored to a fieldsite. This study proposes a video-processing algorithm that resolves these issues. It automatically adapts to the video data and continuously returns mapping updates and thereby aims to make wave-based remote sensing more inclusive to the coastal community. The code architecture for the first time includes the dynamic mode decomposition (DMD) to reduce the data complexity of wavefield video. The DMD is paired with loss-functions to handle spectral noise and a novel spectral storage system and Kalman filter to achieve fast converging measurements. The algorithm is showcased for fieldsites in the USA, the UK, the Netherlands, and Australia. The performance with respect to mapping bathymetry was validated using ground truth data. It was demonstrated that merely 32 s of video footage is needed for a first mapping update with average depth errors of 0.9–2.6 m. These further reduced to 0.5–1.4 m as the videos continued and more mapping updates were returned. Simultaneously, coherent maps for wave direction and celerity were achieved as well as maps of local near-surface currents. The algorithm is capable of mapping the coastal parameters on-the-fly and thereby offers analysis of video feeds, such as from drones or operational camera installations. Hence, the innovative application of analysis techniques like the DMD enables both accurate and unprecedentedly fast coastal reconnaissance. The source code and data of this article are openly available. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

19 pages, 27317 KB  
Communication
Geometric Change Detection in Digital Twins
by Tiril Sundby, Julia Maria Graham, Adil Rasheed, Mandar Tabib and Omer San
Digital 2021, 1(2), 111-129; https://doi.org/10.3390/digital1020009 - 15 Apr 2021
Cited by 14 | Viewed by 5166
Abstract
Digital twins are meant to bridge the gap between real-world physical systems and virtual representations. Both stand-alone and descriptive digital twins incorporate 3D geometric models, which are the physical representations of objects in the digital replica. Digital twin applications are required to rapidly [...] Read more.
Digital twins are meant to bridge the gap between real-world physical systems and virtual representations. Both stand-alone and descriptive digital twins incorporate 3D geometric models, which are the physical representations of objects in the digital replica. Digital twin applications are required to rapidly update internal parameters with the evolution of their physical counterpart. Due to an essential need for having high-quality geometric models for accurate physical representations, the storage and bandwidth requirements for storing 3D model information can quickly exceed the available storage and bandwidth capacity. In this work, we demonstrate a novel approach to geometric change detection in a digital twin context. We address the issue through a combined solution of dynamic mode decomposition (DMD) for motion detection, YOLOv5 for object detection, and 3D machine learning for pose estimation. DMD is applied for background subtraction, enabling detection of moving foreground objects in real-time. The video frames containing detected motion are extracted and used as input to the change detection network. The object detection algorithm YOLOv5 is applied to extract the bounding boxes of detected objects in the video frames. Furthermore, we estimate the rotational pose of each object in a 3D pose estimation network. A series of convolutional neural networks (CNNs) conducts feature extraction from images and 3D model shapes. Then, the network outputs the camera orientation’s estimated Euler angles concerning the object in the input image. By only storing data associated with a detected change in pose, we minimize necessary storage and bandwidth requirements while still recreating the 3D scene on demand. Our assessment of the new geometric detection framework shows that the proposed methodology could represent a viable tool in emerging digital twin applications. Full article
Show Figures

Figure 1

19 pages, 6973 KB  
Article
A High-Speed Imaging Method Based on Compressive Sensing for Sound Extraction Using a Low-Speed Camera
by Ge Zhu, Xu-Ri Yao, Zhi-Bin Sun, Peng Qiu, Chao Wang, Guang-Jie Zhai and Qing Zhao
Sensors 2018, 18(5), 1524; https://doi.org/10.3390/s18051524 - 11 May 2018
Cited by 11 | Viewed by 5337
Abstract
This paper reports an efficient method for sound extraction from high-speed light spot videos reconstructed from the coded light spot images captured with a low-speed camera based on compressive sensing, but at the expense of consuming time. The proposed method first gets the [...] Read more.
This paper reports an efficient method for sound extraction from high-speed light spot videos reconstructed from the coded light spot images captured with a low-speed camera based on compressive sensing, but at the expense of consuming time. The proposed method first gets the high-speed video of the light spot that is illuminated on the vibrating target caused by sound. Then the centroid of the light spot is used to recover the sound. Simulations of the proposed method are carried out and experimental results are demonstrated. The results show that high-speed videos with a frame rate of 2000 Hz can be reconstructed with a low-speed (100 Hz) charge-coupled device (CCD) camera, which is randomly modulated by a digital micro-mirror device (DMD) 20 times during each exposure time. This means a speed improvement of 20 times is achieved. The effects of synchronization between CCD image recording and DMD modulation, the optimal sampling patterns of DMD, and sound vibration amplitudes on the performance of the proposed method are evaluated. Using this compressive camera, speech (counting from one to four in Chinese) was recovered well. This has been confirmed by directly listening to the recovered sound, and the intelligibility value (0–1) that evaluated the similarity between them was 0.8185. Although we use this compressive camera for sound detection, we expect it to be useful in applications related to vibration and motion. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 884 KB  
Article
Dynamic Mode Decomposition of Fast Pressure Sensitive Paint Data
by Mohd Y. Ali, Anshuman Pandey and James W. Gregory
Sensors 2016, 16(6), 862; https://doi.org/10.3390/s16060862 - 11 Jun 2016
Cited by 39 | Viewed by 9028
Abstract
Fast-response pressure sensitive paint (PSP) is used in this work to measure and analyze the acoustic pressure field in a rectangular cavity. The high spatial resolution and fast frequency response of PSP effectively captures the spatial and temporal detail of surface pressure resulting [...] Read more.
Fast-response pressure sensitive paint (PSP) is used in this work to measure and analyze the acoustic pressure field in a rectangular cavity. The high spatial resolution and fast frequency response of PSP effectively captures the spatial and temporal detail of surface pressure resulting in the acoustic pressure field. In this work, a high-speed camera is used to generate a continuous time record of the acoustic pressure fluctuations with PSP. Since the level of the acoustic pressure is near the resolution limit of the sensor system, advanced analysis techniques are used to extract the spatial modes of the pressure field. Both dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD) are compared with phase averaging for data analysis. While all three techniques effectively extract the pressure field and reduce the impact of sensor noise, DMD and POD are more robust techniques that can be applied to aperiodic or multi-frequency signals. Furthermore, DMD is better than POD at suppressing noise in particular regions of the spectrum and at effectively separating spectral energy when multiple acoustic excitation frequencies are present. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

15 pages, 4246 KB  
Article
Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera
by Wei Feng, Fumin Zhang, Xinghua Qu and Shiwei Zheng
Sensors 2016, 16(3), 331; https://doi.org/10.3390/s16030331 - 4 Mar 2016
Cited by 20 | Viewed by 8436
Abstract
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of [...] Read more.
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop