Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = DAMPs/alarmins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1136 KiB  
Article
Association of HMGB1, IL-1β, IL-8, IL-10, and MCP-1 with the Development of Systemic Inflammatory Response Syndrome in Pediatric Patients with Recently Diagnosed Acute Lymphoblastic Leukemia
by Carmen Maldonado-Bernal, Horacio Márquez-González, Erandi Pérez-Figueroa, Rocío Nieto-Meneses, Víctor Olivar-López, Aurora Medina-Sanson and Elva Jiménez-Hernández
Life 2025, 15(8), 1187; https://doi.org/10.3390/life15081187 - 25 Jul 2025
Viewed by 280
Abstract
In acute lymphoblastic leukemia (ALL), neutropenia and fever of unknown origin may occur, indicating the use of antimicrobials to control a probable infection. However, in 60–70% of cases there is no obvious infectious focus so treatment is empirical, increasing the risk of developing [...] Read more.
In acute lymphoblastic leukemia (ALL), neutropenia and fever of unknown origin may occur, indicating the use of antimicrobials to control a probable infection. However, in 60–70% of cases there is no obvious infectious focus so treatment is empirical, increasing the risk of developing systemic inflammatory response syndrome (SIRS). The construction of a prognostic model of fever and development of SIRS based on the identification of endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs) and inflammatory cytokines, can help identify children with ALL and fever or SIRS and who do not have an infection. A cohort of 30 children with recently diagnosed ALL and absence of infectious microorganisms before starting the remission induction phase was studied. Two groups were identified: (1) a group with SIRS (fever, tachycardia, tachypnea, and leukopenia, without focus of infection) and (2) a group without SIRS. The DAMPs, namely HMGB1 and S100A8 proteins, were quantified by ELISA and inflammatory mediators were determined by multiple protein analysis. The medians of DAMPs and inflammatory mediators in children with SIRS were higher than in children who did not have SIRS, and the delta values of the biomarkers studied in patients with and without SIRS showed important differences, with statistically higher medians in patients with SIRS compared to those without SIRS. HMGB1 together with IL-1β, IL-8, IL-10, and MCP-1 can serve as biomarkers to identify children with ALL and fever or SIRS who should not receive antimicrobial treatment because the origin of their fever is not due to an infectious agent. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

18 pages, 1655 KiB  
Review
Omega-3 Fatty Acids and Neuroinflammation in Depression: Targeting Damage-Associated Molecular Patterns and Neural Biomarkers
by Ikbal Andrian Malau, Jane Pei-Chen Chang, Yi-Wen Lin, Cheng-Chen Chang, Wei-Che Chiu and Kuan-Pin Su
Cells 2024, 13(21), 1791; https://doi.org/10.3390/cells13211791 - 29 Oct 2024
Cited by 10 | Viewed by 8251
Abstract
Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex pathophysiology involving neuroinflammation, neurodegeneration, and disruptions in neuronal and glial cell function. Microglia, the innate immune cells of the central nervous system, release inflammatory cytokines in response to pathological changes [...] Read more.
Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex pathophysiology involving neuroinflammation, neurodegeneration, and disruptions in neuronal and glial cell function. Microglia, the innate immune cells of the central nervous system, release inflammatory cytokines in response to pathological changes associated with MDD. Damage-associated molecular patterns (DAMPs) act as alarms, triggering microglial activation and subsequent inflammatory cytokine release. This review examines the cellular mechanisms underlying MDD pathophysiology, focusing on the lipid-mediated modulation of neuroinflammation. We explore the intricate roles of microglia and astrocytes in propagating inflammatory cascades and discuss how these processes affect neuronal integrity at the cellular level. Central to our analysis are three key molecules: High Mobility Group Box 1 (HMGB1) and S100 Calcium Binding Protein β (S100β) as alarmins, and Neuron-Specific Enolase (NSE) as an indicator of neuronal stress. We present evidence from in vitro and ex vivo studies demonstrating how these molecules reflect and contribute to the neuroinflammatory milieu characteristic of MDD. The review then explores the potential of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) as neuroinflammation modulators, examining their effects on microglial activation, cytokine production, and neuronal resilience in cellular models of depression. We critically analyze experimental data on how ω-3 PUFA supplementation influences the expression and release of HMGB1, S100β, and NSE in neuronal and glial cultures. By integrating findings from lipidomic and cellular neurobiology, this review aims to elucidate the mechanisms by which ω-3 PUFAs may exert their antidepressant effects through modulation of neuroinflammatory markers. These insights contribute to our understanding of lipid-mediated neuroprotection in MDD and may inform the development of targeted, lipid-based therapies for both depression and neurodegenerative disorders. Full article
(This article belongs to the Special Issue Lipids and Lipidomics in Neurodegenerative Diseases)
Show Figures

Figure 1

12 pages, 1583 KiB  
Article
In Vitro Bioassay for Damage-Associated Molecular Patterns Arising from Injured Oral Cells
by Layla Panahipour, Chiara Micucci, Benedetta Gelmetti and Reinhard Gruber
Bioengineering 2024, 11(7), 687; https://doi.org/10.3390/bioengineering11070687 - 5 Jul 2024
Cited by 2 | Viewed by 1367
Abstract
Gingival fibroblasts are a significant source of paracrine signals required to maintain periodontal homeostasis and to mediate pathological events linked to periodontitis and oral squamous cell carcinomas. Among the potential paracrine signals are stanniocalcin-1 (STC1), involved in oxidative stress and cellular survival; amphiregulin [...] Read more.
Gingival fibroblasts are a significant source of paracrine signals required to maintain periodontal homeostasis and to mediate pathological events linked to periodontitis and oral squamous cell carcinomas. Among the potential paracrine signals are stanniocalcin-1 (STC1), involved in oxidative stress and cellular survival; amphiregulin (AREG), a growth factor that mediates the cross-talk between immune cells and epithelial cells; chromosome 11 open reading frame 96 (C11orf96) with an unclear biologic function; and the inflammation-associated prostaglandin E synthase (PTGES). Gingival fibroblasts increasingly express these genes in response to bone allografts containing remnants of injured cells. Thus, the gene expression might be caused by the local release of damage-associated molecular patterns arising from injured cells. The aim of this study is consequently to use the established gene panel as a bioassay to measure the damage-associated activity of oral cell lysates. To this aim, we have exposed gingival fibroblasts to lysates prepared from the squamous carcinoma cell lines TR146 and HSC2, oral epithelial cells, and gingival fibroblasts. We report here that all lysates significantly increased the transcription of the entire gene panel, supported for STC1 at the protein level. Blocking TGF-β receptor 1 kinase with SB431542 only partially reduced the forced expression of STC1, AREG, and C11orf96. SB431542 even increased the PTGES expression. Together, these findings suggest that the damage signals originating from oral cells can change the paracrine activity of gingival fibroblasts. Moreover, the expression panel of genes can serve as a bioassay for testing the biocompatibility of materials for oral application. Full article
(This article belongs to the Special Issue Tissue Engineering for Regenerative Dentistry)
Show Figures

Figure 1

14 pages, 3210 KiB  
Article
ATP/IL-33-Co-Sensing by Mast Cells (MCs) Requires Activated c-Kit to Ensure Effective Cytokine Responses
by Johanna Seifert, Claudia Küchler and Sebastian Drube
Cells 2023, 12(23), 2696; https://doi.org/10.3390/cells12232696 - 24 Nov 2023
Cited by 4 | Viewed by 1586
Abstract
Mast cells (MCs) are sentinel cells which represent an important part of the first line of defense of the immune system. MCs highly express receptors for danger-associated molecular patterns (DAMPs) such as the IL-33R and P2X7, making MCs to potentially effective sensors for [...] Read more.
Mast cells (MCs) are sentinel cells which represent an important part of the first line of defense of the immune system. MCs highly express receptors for danger-associated molecular patterns (DAMPs) such as the IL-33R and P2X7, making MCs to potentially effective sensors for IL-33 and adenosine-triphosphate (ATP), two alarmins which are released upon necrosis-induced cell damage in peripheral tissues. Besides receptors for alarmins, MCs also express the stem cell factor (SCF) receptor c-Kit, which typically mediates MC differentiation, proliferation and survival. By using bone marrow-derived MCs (BMMCs), ELISA and flow cytometry experiments, as well as p65/RelA and NFAT reporter MCs, we aimed to investigate the influence of SCF on alarmin-induced signaling pathways and the resulting cytokine production and degranulation. We found that the presence of SCF boosted the cytokine production but not degranulation in MCs which simultaneously sense ATP and IL-33 (ATP/IL-33 co-sensing). Therefore, we conclude that SCF maintains the functionality of MCs in peripheral tissues to ensure appropriate MC reactions upon cell damage, induced by pathogens or allergens. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

24 pages, 5522 KiB  
Review
The Role of Alarmins in Osteoarthritis Pathogenesis: HMGB1, S100B and IL-33
by Antonino Palumbo, Fabiola Atzeni, Giuseppe Murdaca and Sebastiano Gangemi
Int. J. Mol. Sci. 2023, 24(15), 12143; https://doi.org/10.3390/ijms241512143 - 29 Jul 2023
Cited by 9 | Viewed by 3092
Abstract
Osteoarthritis (OA) is a multifactorial disease in which genetics, aging, obesity, and trauma are well-known risk factors. It is the most prevalent joint disease and the largest disability problem worldwide. Recent findings have described the role of damage-associated molecular patterns (DAMPs) in the [...] Read more.
Osteoarthritis (OA) is a multifactorial disease in which genetics, aging, obesity, and trauma are well-known risk factors. It is the most prevalent joint disease and the largest disability problem worldwide. Recent findings have described the role of damage-associated molecular patterns (DAMPs) in the course of the disease. In particular, alarmins such as HMGB1, IL-33, and S100B, appear implicated in enhancing articular inflammation and favouring a catabolic switch in OA chondrocytes. The aims of this review are to clarify the molecular signalling of these three molecules in OA pathogenesis, to identify their possible use as staging biomarkers, and, most importantly, to find out whether they could be possible therapeutic targets. Osteoarthritic cartilage expresses increased levels of all three alarmins. HMGB1, in particular, is the most studied alarmin with increased levels in cartilage, synovium, and synovial fluid of OA patients. High levels of HMGB1 in synovial fluid of OA joints are positively correlated with radiological and clinical severity. Counteracting HMGB1 strategies have revealed improving results in articular cells from OA patients and in OA animal models. Therefore, drugs against this alarmin, such as anti-HMGB1 antibodies, could be new treatment possibilities that can modify the disease course since available medications only alleviate symptoms. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 1198 KiB  
Review
The Emerging Role of Innate Lymphoid Cells (ILCs) and Alarmins in Celiac Disease: An Update on Pathophysiological Insights, Potential Use as Disease Biomarkers, and Therapeutic Implications
by Angela Rizzi, Mario Di Gioacchino, Luca Gammeri, Riccardo Inchingolo, Raffaella Chini, Francesca Santilli, Eleonora Nucera and Sebastiano Gangemi
Cells 2023, 12(14), 1910; https://doi.org/10.3390/cells12141910 - 21 Jul 2023
Cited by 6 | Viewed by 2668
Abstract
Celiac disease (CD) is an intestinal disease that develops in genetically predisposed individuals and is triggered by the ingestion of gluten. CD was considered a Th1-disease. Today, the role of Th17, IL-21, and IL-17A lymphocytes is well known. Inflammation is regulated by the [...] Read more.
Celiac disease (CD) is an intestinal disease that develops in genetically predisposed individuals and is triggered by the ingestion of gluten. CD was considered a Th1-disease. Today, the role of Th17, IL-21, and IL-17A lymphocytes is well known. Inflammation is regulated by the activity of gluten-specific CD4+ T lymphocytes that produce pro-inflammatory cytokines, including IFN-γ, TNF-α, and IL-21, perpetuating the Th1 response. These cytokines determine an inflammatory state of the small intestine, with consequent epithelial infiltration of lymphocytes and an alteration of the architecture of the duodenal mucosa. B cells produce antibodies against tissue transglutaminase and against deamidated gliadin. Although the role of the adaptive immune response is currently known, the evidence about the role of innate immunity cells is still poorly understood. Epithelial damage determines the release of damage-associated molecular patterns (DAMPs), also known as alarmins. Together with the intestinal epithelial cells and the type 1 innate lymphoid cells (ILC1s), alarmins like TSLP, IL-33, and HMGB1 could have a fundamental role in the genesis and maintenance of inflammation. Our study aims to evaluate the evidence in the literature about the role of ILCs and alarmins in celiac disease, evaluating the possible future diagnostic and therapeutic implications. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

14 pages, 3133 KiB  
Review
Non-Vesicular Release of Alarmin Prothymosin α Complex Associated with Annexin-2 Flop-Out
by Hiroshi Ueda
Cells 2023, 12(12), 1569; https://doi.org/10.3390/cells12121569 - 6 Jun 2023
Cited by 2 | Viewed by 2425
Abstract
Nuclear protein prothymosin α (ProTα) is a unique member of damage-associated molecular patterns (DAMPs)/alarmins. ProTα prevents neuronal necrosis by causing a cell death mode switch in serum-starving or ischemic/reperfusion models in vitro and in vivo. Underlying receptor mechanisms include Toll-like receptor 4 (TLR4) [...] Read more.
Nuclear protein prothymosin α (ProTα) is a unique member of damage-associated molecular patterns (DAMPs)/alarmins. ProTα prevents neuronal necrosis by causing a cell death mode switch in serum-starving or ischemic/reperfusion models in vitro and in vivo. Underlying receptor mechanisms include Toll-like receptor 4 (TLR4) and Gi-coupled receptor. Recent studies have revealed that the mode of the fatal stress-induced extracellular release of nuclear ProTα from cortical neurons in primary cultures, astrocytes and C6 glioma cells has two steps: ATP loss-induced nuclear release and the Ca2+-mediated formation of a multiple protein complex and its extracellular release. Under the serum-starving condition, ProTα is diffused from the nucleus throughout the cell due to the ATP loss-induced impairment of importin α–mediated nuclear transport. Subsequent mechanisms are all Ca2+-dependent. They include the formation of a protein complex with ProTα, S100A13, p40 Syt-1 and Annexin A2 (ANXA2); the fusion of the protein complex to the plasma membrane via p40 Syt-1–Stx-1 interaction; and TMEM16F scramblase-mediated ANXA2 flop-out. Subsequently, the protein complex is extracellularly released, leaving ANXA2 on the outer cell surface. The ANXA2 is then flipped in by a force of ATP8A2 activity, and the non-vesicular release of protein complex is repeated. Thus, the ANXA2 flop-out could play key roles in a new type of non-vesicular and non-classical release for DAMPs/alarmins, which is distinct from the modes conducted via gasdermin D or mixed-lineage kinase domain-like pseudokinase pores. Full article
(This article belongs to the Special Issue Immune- and Neurobiology of Prothymosin Alpha)
Show Figures

Figure 1

18 pages, 1257 KiB  
Review
Role of HMGB1 in Cutaneous Melanoma: State of the Art
by Federica Li Pomi, Francesco Borgia, Paolo Custurone, Mario Vaccaro, Giovanni Pioggia and Sebastiano Gangemi
Int. J. Mol. Sci. 2022, 23(16), 9327; https://doi.org/10.3390/ijms23169327 - 18 Aug 2022
Cited by 26 | Viewed by 3745
Abstract
High-mobility Group Box 1 (HMGB1) is a nuclear protein that plays a key role in acute and chronic inflammation. It has already been studied in several diseases, among them melanoma. Indeed, HMGB1 is closely associated with cell survival and proliferation and may be [...] Read more.
High-mobility Group Box 1 (HMGB1) is a nuclear protein that plays a key role in acute and chronic inflammation. It has already been studied in several diseases, among them melanoma. Indeed, HMGB1 is closely associated with cell survival and proliferation and may be directly involved in tumor cell metastasis development thanks to its ability to promote cell migration. This research aims to assess the role of this molecule in the pathogenesis of human melanoma and its potential therapeutic role. The research has been conducted on the PubMed database, and the resulting articles are sorted by year of publication, showing an increasing interest in the last five years. The results showed that HMGB1 plays a crucial role in the pathogenesis of skin cancer, prognosis, and therapeutical response to therapy. Traditional therapies target this molecule indirectly, but future perspectives could include the development of new target therapy against HMGB1, thus adding a new approach to the therapy, which has often shown primary and secondary resistance. This could add a new therapy arm which has to be prolonged and specific for each patient. Full article
(This article belongs to the Special Issue Novel Biomarkers and Therapeutic Targets for Melanoma)
Show Figures

Figure 1

27 pages, 4391 KiB  
Review
Multifunctional Role of S100 Protein Family in the Immune System: An Update
by Parul Singh and Syed Azmal Ali
Cells 2022, 11(15), 2274; https://doi.org/10.3390/cells11152274 - 23 Jul 2022
Cited by 118 | Viewed by 11489
Abstract
S100 is a broad subfamily of low-molecular weight calcium-binding proteins (9–14 kDa) with structural similarity and functional discrepancy. It is required for inflammation and cellular homeostasis, and can work extracellularly, intracellularly, or both. S100 members participate in a variety of activities in a [...] Read more.
S100 is a broad subfamily of low-molecular weight calcium-binding proteins (9–14 kDa) with structural similarity and functional discrepancy. It is required for inflammation and cellular homeostasis, and can work extracellularly, intracellularly, or both. S100 members participate in a variety of activities in a healthy cell, including calcium storage and transport (calcium homeostasis). S100 isoforms that have previously been shown to play important roles in the immune system as alarmins (DAMPs), antimicrobial peptides, pro-inflammation stimulators, chemo-attractants, and metal scavengers during an innate immune response. Currently, during the pandemic, it was found that several members of the S100 family are implicated in the pathophysiology of COVID-19. Further, S100 family protein members were proposed to be used as a prognostic marker for COVID-19 infection identification using a nasal swab. In the present review, we compiled the vast majority of recent studies that focused on the multifunctionality of S100 proteins in the complex immune system and its associated activities. Furthermore, we shed light on the numerous molecular approaches and signaling cascades regulated by S100 proteins during immune response. In addition, we discussed the involvement of S100 protein members in abnormal defense systems during the pathogenesis of COVID-19. Full article
(This article belongs to the Special Issue Exclusive Review Papers in "Cellular Immunology")
Show Figures

Graphical abstract

22 pages, 1985 KiB  
Review
The Involvement of Alarmins in the Pathogenesis of Sjögren’s Syndrome
by Julie Sarrand, Laurie Baglione, Dorian Parisis and Muhammad Soyfoo
Int. J. Mol. Sci. 2022, 23(10), 5671; https://doi.org/10.3390/ijms23105671 - 18 May 2022
Cited by 13 | Viewed by 3331
Abstract
Sjögren’s syndrome (SS) is a chronic autoimmune disease that affects exocrine glands, primarily the salivary and lachrymal glands. It is characterized by lymphoplasmacytic infiltration of the glandular tissues, ultimately leading to their dysfunction and destruction. Besides classic dry eyes and dry mouth defined [...] Read more.
Sjögren’s syndrome (SS) is a chronic autoimmune disease that affects exocrine glands, primarily the salivary and lachrymal glands. It is characterized by lymphoplasmacytic infiltration of the glandular tissues, ultimately leading to their dysfunction and destruction. Besides classic dry eyes and dry mouth defined as sicca syndrome, patients affected by the disease also typically display symptoms such as fatigue, pain and in more than 50% of cases, systemic manifestations such as arthritis, interstitial lung involvement, neurological involvement and an increased risk of lymphoma. The pathophysiological mechanisms underlying SS still remain elusive. The crucial role of innate immunity has been advocated in recent years regarding the pathogenesis of pSS, especially in the initiation and progression toward autoimmunity. Alarmins are endogenous molecules that belong to the large family of damage associated molecular pattern (DAMP). Alarmins are rapidly released, ensuing cell injury and interacting with pattern recognition receptors (PRR) such as toll-like receptors (TLR) to recruit and activate cells of the innate immune system and to promote adaptive immunity responses. This review highlights the current knowledge of various alarmins and their role in the pathogenesis of pSS. Full article
(This article belongs to the Special Issue The Role of Nucleic Acids in Normal and Aberrant Immunity)
Show Figures

Figure 1

18 pages, 1394 KiB  
Review
Low-Grade Inflammation in the Pathogenesis of Osteoarthritis: Cellular and Molecular Mechanisms and Strategies for Future Therapeutic Intervention
by M Alaa Terkawi, Taku Ebata, Shunichi Yokota, Daisuke Takahashi, Tsutomu Endo, Gen Matsumae, Tomohiro Shimizu, Ken Kadoya and Norimasa Iwasaki
Biomedicines 2022, 10(5), 1109; https://doi.org/10.3390/biomedicines10051109 - 10 May 2022
Cited by 54 | Viewed by 8822
Abstract
Osteoarthritis (OA) is a musculoskeletal disease characterized by cartilage degeneration and stiffness, with chronic pain in the affected joint. It has been proposed that OA progression is associated with the development of low-grade inflammation (LGI) in the joint. In support of this principle, [...] Read more.
Osteoarthritis (OA) is a musculoskeletal disease characterized by cartilage degeneration and stiffness, with chronic pain in the affected joint. It has been proposed that OA progression is associated with the development of low-grade inflammation (LGI) in the joint. In support of this principle, LGI is now recognized as the major contributor to the pathogenesis of obesity, aging, and metabolic syndromes, which have been documented as among the most significant risk factors for developing OA. These discoveries have led to a new definition of the disease, and OA has recently been recognized as a low-grade inflammatory disease of the joint. Damage-associated molecular patterns (DAMPs)/alarmin molecules, the major cellular components that facilitate the interplay between cells in the cartilage and synovium, activate various molecular pathways involved in the initiation and maintenance of LGI in the joint, which, in turn, drives OA progression. A better understanding of the pathological mechanisms initiated by LGI in the joint represents a decisive step toward discovering therapeutic strategies for the treatment of OA. Recent findings and discoveries regarding the involvement of LGI mediated by DAMPs in OA pathogenesis are discussed. Modulating communication between cells in the joint to decrease inflammation represents an attractive approach for the treatment of OA. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Bone and Cartilage Diseases)
Show Figures

Figure 1

16 pages, 1340 KiB  
Review
Involvement of Oxidative Stress in Protective Cardiac Functions of Calprotectin
by Luc Rochette, Geoffrey Dogon, Eve Rigal, Marianne Zeller, Yves Cottin and Catherine Vergely
Cells 2022, 11(7), 1226; https://doi.org/10.3390/cells11071226 - 5 Apr 2022
Cited by 8 | Viewed by 3875
Abstract
Calprotectin (CLP) belonging to the S-100 protein family is a heterodimeric complex (S100A8/S100A9) formed by two binding proteins. Upon cell activation, CLP stored in neutrophils is released extracellularly in response to inflammatory stimuli and acts as damage-associated molecular patterns (DAMPs). S100A8 and S100A9 [...] Read more.
Calprotectin (CLP) belonging to the S-100 protein family is a heterodimeric complex (S100A8/S100A9) formed by two binding proteins. Upon cell activation, CLP stored in neutrophils is released extracellularly in response to inflammatory stimuli and acts as damage-associated molecular patterns (DAMPs). S100A8 and S100A9 possess both anti-inflammatory and anti-bacterial properties. The complex is a ligand of the toll-like receptor 4 (TLR4) and receptor for advanced glycation end (RAGE). At sites of infection and inflammation, CLP is a target for oxidation due to its co-localization with neutrophil-derived oxidants. In the heart, oxidative stress (OS) responses and S100 proteins are closely related and intimately linked through pathophysiological processes. Our review summarizes the roles of S100A8, S100A9 and CLP in the inflammation in relationship with vascular OS, and we examine the importance of CLP for the mechanisms driving in the protection of myocardium. Recent evidence interpreting CLP as a critical modulator during the inflammatory response has identified this alarmin as an interesting drug target. Full article
(This article belongs to the Topic Cellular Redox Homeostasis)
Show Figures

Figure 1

10 pages, 1611 KiB  
Review
Role of Damage-Associated Molecular Patterns (DAMPs/Alarmins) in Severe Ocular Allergic Diseases
by Ken Fukuda, Waka Ishida, Tatsuma Kishimoto, Isana Nakajima, Yusaku Miura, Tamaki Sumi and Kenji Yamashiro
Cells 2022, 11(6), 1051; https://doi.org/10.3390/cells11061051 - 20 Mar 2022
Cited by 6 | Viewed by 3604
Abstract
Severe ocular allergic diseases, such as atopic keratoconjunctivitis and vernal keratoconjunctivitis, cause severe allergic inflammation in the conjunctiva and corneal epithelial damage, resulting in visual disturbances. The involvement of damage (danger)-associated molecular patterns (DAMPs/alarmins) in the pathogenesis of these diseases has been recognized. [...] Read more.
Severe ocular allergic diseases, such as atopic keratoconjunctivitis and vernal keratoconjunctivitis, cause severe allergic inflammation in the conjunctiva and corneal epithelial damage, resulting in visual disturbances. The involvement of damage (danger)-associated molecular patterns (DAMPs/alarmins) in the pathogenesis of these diseases has been recognized. Alarmins released from damaged corneal epithelial cells or eosinophils play a critical role in the induction of corneal lesions, vicious loop of corneal injury, and exacerbation of conjunctival allergic inflammation. Alarmins in the conjunctiva also play an essential role in the development of both allergic inflammation, based on the acquired immune system, and type 2 inflammation by innate immune responses in the ocular surface. Therefore, alarmins may be a potentially important therapeutic target in severe refractory ocular allergic diseases. Full article
(This article belongs to the Collection Retina in Health and Disease)
Show Figures

Figure 1

28 pages, 5797 KiB  
Review
High Mobility Group Box 1: Biological Functions and Relevance in Oxidative Stress Related Chronic Diseases
by Simona Taverna, Alessandro Tonacci, Maria Ferraro, Giuseppe Cammarata, Giuseppina Cuttitta, Salvatore Bucchieri, Elisabetta Pace and Sebastiano Gangemi
Cells 2022, 11(5), 849; https://doi.org/10.3390/cells11050849 - 1 Mar 2022
Cited by 41 | Viewed by 5594
Abstract
In the early 1970s, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and named high-mobility group (HMG) proteins. High-mobility group box 1 (HMGB1) is the most studied HMG protein that detects and coordinates cellular stress response. The biological function [...] Read more.
In the early 1970s, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and named high-mobility group (HMG) proteins. High-mobility group box 1 (HMGB1) is the most studied HMG protein that detects and coordinates cellular stress response. The biological function of HMGB1 depends on its subcellular localization and expression. It plays a critical role in the nucleus and cytoplasm as DNA chaperone, chromosome gatekeeper, autophagy maintainer, and protector from apoptotic cell death. HMGB1 also functions as an extracellular alarmin acting as a damage-associated molecular pattern molecule (DAMP). Recent findings describe HMGB1 as a sophisticated signal of danger, with a pleiotropic function, which is useful as a clinical biomarker for several disorders. HMGB1 has emerged as a mediator in acute and chronic inflammation. Furthermore, HMGB1 targeting can induce beneficial effects on oxidative stress related diseases. This review focus on HMGB1 redox status, localization, mechanisms of release, binding with receptors, and its activities in different oxidative stress-related chronic diseases. Since a growing number of reports show the key role of HMGB1 in socially relevant pathological conditions, to our knowledge, for the first time, here we analyze the scientific literature, evaluating the number of publications focusing on HMGB1 in humans and animal models, per year, from 2006 to 2021 and the number of records published, yearly, per disease and category (studies on humans and animal models). Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

20 pages, 2278 KiB  
Review
Pathophysiological Implication of Pattern Recognition Receptors in Fetal Membranes Rupture: RAGE and NLRP Inflammasome
by Helena Choltus, Marilyne Lavergne, Coraline De Sousa Do Outeiro, Karen Coste, Corinne Belville, Loïc Blanchon and Vincent Sapin
Biomedicines 2021, 9(9), 1123; https://doi.org/10.3390/biomedicines9091123 - 31 Aug 2021
Cited by 11 | Viewed by 10388
Abstract
Preterm prelabor ruptures of fetal membranes (pPROM) are a pregnancy complication responsible for 30% of all preterm births. This pathology currently appears more as a consequence of early and uncontrolled process runaway activation, which is usually implicated in the physiologic rupture at term: [...] Read more.
Preterm prelabor ruptures of fetal membranes (pPROM) are a pregnancy complication responsible for 30% of all preterm births. This pathology currently appears more as a consequence of early and uncontrolled process runaway activation, which is usually implicated in the physiologic rupture at term: inflammation. This phenomenon can be septic but also sterile. In this latter case, the inflammation depends on some specific molecules called “alarmins” or “damage-associated molecular patterns” (DAMPs) that are recognized by pattern recognition receptors (PRRs), leading to a microbial-free inflammatory response. Recent data clarify how this activation works and which receptor translates this inflammatory signaling into fetal membranes (FM) to manage a successful rupture after 37 weeks of gestation. In this context, this review focused on two PRRs: the receptor for advanced glycation end-products (RAGE) and the NLRP7 inflammasome. Full article
(This article belongs to the Special Issue Angiogenesis and Inflammation in Biological Barriers 2.0)
Show Figures

Figure 1

Back to TopTop