Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = CuInS2 nanocrystals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 962 KiB  
Article
Possible Realization of Hyperbolic Plasmons in Few-Layered Rhenium Disulfide
by Ravi Kiran, Dimitar Pashov, Mark van Schilfgaarde, Mikhail I. Katsnelson, Arghya Taraphder and Swagata Acharya
Condens. Matter 2025, 10(3), 40; https://doi.org/10.3390/condmat10030040 - 19 Jul 2025
Viewed by 280
Abstract
Hyperbolic plasmons are a highly desired property in optoelectronics and biomolecular sensing. The necessary condition to realize hyperbolic plasmons is a significant anisotropy of the principal components of the dielectric function, such that at a certain frequency range, one component is negative and [...] Read more.
Hyperbolic plasmons are a highly desired property in optoelectronics and biomolecular sensing. The necessary condition to realize hyperbolic plasmons is a significant anisotropy of the principal components of the dielectric function, such that at a certain frequency range, one component is negative and the other is positive, i.e., one component is metallic, and the other one is dielectric. Here, we study the effect of anisotropy in ReS2, and our theory shows that ReS2 can host hyperbolic plasmons in the ultraviolet frequency range. The operating frequency range of the hyperbolic plasmons can be tuned with the number of ReS2 layers. However, we note that the significantly large imaginary part of the macroscopic dielectric response in all layered variants of ReS2 can result in substantial losses for the hyperbolic plasmons, as in the case with other known hyperbolic materials, with the exception of MoOCl2. We also note that ReS2 hosts ultraviolet hyperbolic plasmons while ZrSiSe, WTe2, and CuS nanocrystals host infrared plasmons, providing a novel platform for optoelectronics in the ultraviolet range. Full article
Show Figures

Figure 1

14 pages, 2032 KiB  
Article
Mechanochemically Synthesized Skinnerite Cu3SbS3 and Wittichenite Cu3BiS3 Nanocrystals and Their Promising Thermoelectric Properties
by Erika Dutková, Petr Levinský, Jiří Hejtmánek, Karel Knížek, Lenka Findoráková, Matej Baláž, Martin Fabián, Katarína Gáborová, Viktor Puchý and Peter Baláž
Crystals 2025, 15(6), 511; https://doi.org/10.3390/cryst15060511 - 27 May 2025
Viewed by 414
Abstract
The thermoelectric properties of skinnerite Cu3SbS3 and wittichenite Cu3BiS3 prepared by mechanochemical synthesis in a planetary ball mill from elemental precursors were investigated for the first time. X-ray diffraction (XRD) analysis of skinnerite after heat treatment revealed [...] Read more.
The thermoelectric properties of skinnerite Cu3SbS3 and wittichenite Cu3BiS3 prepared by mechanochemical synthesis in a planetary ball mill from elemental precursors were investigated for the first time. X-ray diffraction (XRD) analysis of skinnerite after heat treatment revealed not only the presence of monoclinic skinnerite phase but also the presence of tetrahedrite phases. XRD analysis of wittichenite after both heat treatment and spark plasma sintering (SPS) revealed the presence of only the prepared orthorhombic wittichenite, whereas, in the case of skinnerite, not only skinnerite but also tetrahedrite is present after SPS treatment. The thermal stability of mechanochemically synthesized Cu3SbS3 and Cu3BiS3 samples was investigated by thermal analysis, which confirmed that Cu3SbS3 is thermally stable up to 604 K and Cu3BiS3 up to 550 K, respectively. Thermoelectric (TE) potential was evaluated by measuring the Seebeck coefficient, electrical and thermal conductivity, and figure of merit ZT. The performed thermoelectric (TE) measurements revealed a figure of merit ZT of 0.69 and 0.09 at 575 K for pristine skinnerite and wittichenite, respectively, sintered by SPS. The combination of mechanosynthesis followed by SPS allows for the preparation of materials that display a promising thermoelectric response. This approach opens up new possibilities for enhancing the thermoelectric properties of materials, which could have significant implications for various applications, such as energy conversion and waste heat recovery. Further research in this area is necessary to fully explore and exploit the potential of these materials for thermoelectric applications. Full article
(This article belongs to the Special Issue Optical and Electrical Properties of Nano- and Microcrystals)
Show Figures

Figure 1

16 pages, 2174 KiB  
Article
Polyvinylpyrrolidone-Capped CuInS2 Colloidal Quantum Dots: Synthesis, Optical and Structural Assessment
by Oleg Korepanov, Olga Aleksandrova, Anna Botnar, Dmitrii Firsov, Zamir Kalazhokov, Demid Kirilenko, Polina Lemeshko, Vasilii Matveev, Dmitriy Mazing, Ivan Moskalenko, Alexander Novikov, Sviatlana Ulasevich and Vyacheslav Moshnikov
Colloids Interfaces 2025, 9(3), 33; https://doi.org/10.3390/colloids9030033 - 20 May 2025
Viewed by 666
Abstract
Ternary metal chalcogenide quantum dots (QDs), such as CuInS2, have attracted significant attention due to their lower toxicity compared to binary counterparts containing cadmium or lead, making them promising candidates for biomedical imaging and solar energy applications. The surfactant choice is [...] Read more.
Ternary metal chalcogenide quantum dots (QDs), such as CuInS2, have attracted significant attention due to their lower toxicity compared to binary counterparts containing cadmium or lead, making them promising candidates for biomedical imaging and solar energy applications. The surfactant choice is critical for controlling nanocrystal nucleation, growth kinetics, and functionalization. This directly affects the toxicity and applications of QDs. In this work, we report a synthesis protocol for PVP-capped CuInS2 QDs in an aqueous solution. Using density functional theory (DFT) calculations, we predicted the coordination patterns of PVP on the CuInS2 QDs surface, providing insights into the stabilization mechanism. The synthesized QDs were characterized using TEM, XRD, XPS, and FTIR to assess their morphology, chemical composition, and surface chemistry. The QDs exhibited dual photoluminescence (PL) maxima at 550 nm and 680 nm, attributed to defect-related emissions, making them suitable for cell imaging applications. Cytotoxicity studies and cell imaging experiments demonstrate the excellent biocompatibility and effective staining capabilities of the PVP-capped CuInS2 QDs, highlighting their potential as fluorescent probes for long-term, multicolor cell imaging including two-photon microscopy. Full article
Show Figures

Figure 1

14 pages, 6074 KiB  
Article
Cu2S Nanocrystals and Their Superlattices
by Samuel Fuentes, Ryan Hart, Juan Ramirez, Aditi Mulgaonkar, Rainie Luo, Brady Killham, Sashi Debnath, Yunfeng Wang, Xiankai Sun, Jiechao Jiang and Yaowu Hao
Crystals 2025, 15(5), 387; https://doi.org/10.3390/cryst15050387 - 23 Apr 2025
Viewed by 558
Abstract
We report the successful synthesis of monodispersed Cu2S nanocrystals and the subsequent formation of highly ordered nanocrystal superlattices. The synthesis is performed under ambient air conditions using simple experimental setups, making the process both accessible and scalable. By systematically tuning the [...] Read more.
We report the successful synthesis of monodispersed Cu2S nanocrystals and the subsequent formation of highly ordered nanocrystal superlattices. The synthesis is performed under ambient air conditions using simple experimental setups, making the process both accessible and scalable. By systematically tuning the reaction temperature and duration, we demonstrate precise control over the nanocrystal size, which is crucial in achieving uniformity and monodispersity. Furthermore, we uncover a previously unidentified nanocrystal growth mechanism that plays a key role in producing highly monodisperse Cu2S nanocrystals. This insight into the growth process enhances our fundamental understanding of nanocrystal formation and could be extended to the synthesis of other semiconductor nanomaterials. The self-assembly of these nanocrystals into superlattices is carefully examined using electron diffraction techniques, revealing the presence of pseudo-crystalline structures. The ordered arrangement of nanocrystals within these superlattices suggests strong interparticle interactions and opens up new possibilities to tailor their collective optical, electronic, and mechanical properties for potential applications in optoelectronics, nanomedicine, and energy storage. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

13 pages, 2516 KiB  
Article
Nanorod Heterodimer-Shaped CuS/ZnxCd1−xS Heteronanocrystals with Z-Scheme Mechanism for Enhanced Photocatalysis
by Lei Yang, Lihui Wang, Han Xiao, Di Luo, Jiangzhi Zi, Guisheng Li and Zichao Lian
Catalysts 2025, 15(3), 266; https://doi.org/10.3390/catal15030266 - 12 Mar 2025
Viewed by 862
Abstract
The efficient separation of photo-generated electrons and holes is significantly importance for enhancing photocatalytic performance. However, there are few reports on precisely constructing interfaces within a single nanocrystal to investigate the mechanism of photoinduced carrier transfer. In this study, nanorod heterodimer-structured CuS/Znx [...] Read more.
The efficient separation of photo-generated electrons and holes is significantly importance for enhancing photocatalytic performance. However, there are few reports on precisely constructing interfaces within a single nanocrystal to investigate the mechanism of photoinduced carrier transfer. In this study, nanorod heterodimer-structured CuS/ZnxCd1−xS heteronanocrystals (CuS/ZnCdS HNCs) were successfully synthesized as a typical model to explore the photoinduced carrier dynamics in the photocatalytic hydrogen evolution reaction (HER). The CuS/ZnCdS HNCs exhibited a photocatalytic hydrogen evolution activity of 146 mmol h⁻1 g⁻1 under visible light irradiation, which is higher than most reported values. Moreover, after 15 h of hydrogen production cycling tests, we found that the material maintained high hydrogen production performance, indicating excellent stability. The CuS/ZnCdS HNCs achieved an apparent quantum yield (AQY) of 69.2% at 380 nm, which is the highest value reported so far for ZnCdS- or CuS-based photocatalysts. The remarkable activity and stability of the CuS/ZnCdS HNCs were attributed to the strong internal electric field (IEF) and Z-scheme mechanism, which facilitate efficient charge separation, as demonstrated by in situ X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) analyses. This discovery provides a new approach for constructing Z-scheme heterogeneous copper-based nanocomposites within nanocrystals and offers guidance for improving photocatalytic activity. Full article
(This article belongs to the Special Issue Photocatalysis: Past, Present, and Future Outlook)
Show Figures

Figure 1

13 pages, 2182 KiB  
Article
Electronically Coupled Heterojunctions Based on Graphene and Cu2−xS Nanocrystals: The Effect of the Surface Ligand
by Ju Y. Shang, Mariangela Giancaspro, Adriana Grandolfo, Rafique A. Lakho, Elisabetta Fanizza, Suraj K. Patel, Giuseppe Valerio Bianco, Marinella Striccoli, Chiara Ingrosso, Oscar Vazquez-Mena and M. Lucia Curri
Molecules 2025, 30(1), 67; https://doi.org/10.3390/molecules30010067 - 27 Dec 2024
Viewed by 1075
Abstract
Optoelectronic devices combining single-layer graphene (SLG) and colloidal semiconducting nanocrystal (NC) heterojunctions have recently gained significant attention as efficient hybrid photodetectors. While most research has concentrated on systems using heavy metal-based semiconductor NCs, there is a need for further exploration of environmentally friendly [...] Read more.
Optoelectronic devices combining single-layer graphene (SLG) and colloidal semiconducting nanocrystal (NC) heterojunctions have recently gained significant attention as efficient hybrid photodetectors. While most research has concentrated on systems using heavy metal-based semiconductor NCs, there is a need for further exploration of environmentally friendly nanomaterials, such as Cu2−xS. Chemical ligands play a crucial role in these hybrid photodetectors, as they enable charge transfer between the NCs and SLG. This study investigates the photoresponse of an SLG/Cu2−xS NCs heterojunction, comparing the effect of two short molecules—tetrabutylammonium iodide (TBAI) and 3,4-dimethylbenzenethiol (DMBT)—as surface ligands on the resulting structures. We have analysed charge transfer at the heterojunctions between SLG and the Cu2−xS NCs before and after modification with TBAI and DMBT using Raman spectroscopy and transconductance measurements under thermal equilibrium. The photoresponse of two hybrid devices based on three layers of Cu2xS NCs, deposited in one case on SLG/Cu2−xS/TBAI (“TBAI-only” device) and in the other on SLG/Cu2−xS/DMBT (“DMBT + TBAI” device), with a TBAI treatment applied, for both, after each layer deposition, has been evaluated under 450 nm laser diode illumination. The results indicate that the TBAI-only device exhibited a significant increase in photocurrent (4 μA), with high responsivity (40 mA/W) and fast response times (<1 s), while the DMBT + TBAI device had lower photocurrent (0.2 μA) and responsivity (2.4 μA), despite similar response speeds. The difference is attributed to DMBT’s π–π interactions with SLG, which enhances electronic coupling but reduces SLG’s mobility and responsivity. Full article
Show Figures

Figure 1

30 pages, 8493 KiB  
Review
Selected I-III-VI2 Semiconductors: Synthesis, Properties and Applications in Photovoltaic Cells
by Shubham Shishodia, Bilel Chouchene, Thomas Gries and Raphaël Schneider
Nanomaterials 2023, 13(21), 2889; https://doi.org/10.3390/nano13212889 - 31 Oct 2023
Cited by 16 | Viewed by 3980
Abstract
I–III–VI2 group quantum dots (QDs) have attracted high attention in photoelectronic conversion applications, especially for QD-sensitized solar cells (QDSSCs). This group of QDs has become the mainstream light-harvesting material in QDSSCs due to the ability to tune their electronic properties through size, [...] Read more.
I–III–VI2 group quantum dots (QDs) have attracted high attention in photoelectronic conversion applications, especially for QD-sensitized solar cells (QDSSCs). This group of QDs has become the mainstream light-harvesting material in QDSSCs due to the ability to tune their electronic properties through size, shape, and composition and the ability to assemble the nanocrystals on the surface of TiO2. Moreover, these nanocrystals can be produced relatively easily via cost-effective solution-based synthetic methods and are composed of low-toxicity elements, which favors their integration into the market. This review describes the methods developed to prepare I-III-VI2 QDs (AgInS2 and CuInS2 were excluded) and control their optoelectronic properties to favor their integration into QDSSCs. Strategies developed to broaden the optoelectronic response and decrease the surface-defect states of QDs in order to promote the fast electron injection from QDs into TiO2 and achieve highly efficient QDSSCs will be described. Results show that heterostructures obtained after the sensitization of TiO2 with I-III-VI2 QDs could outperform those of other QDSSCs. The highest power-conversion efficiency (15.2%) was obtained for quinary Cu-In-Zn-Se-S QDs, along with a short-circuit density (JSC) of 26.30 mA·cm−2, an open-circuit voltage (VOC) of 802 mV and a fill factor (FF) of 71%. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

16 pages, 11095 KiB  
Article
Nanocrystallization of Cu46Zr33.5Hf13.5Al7 Metallic Glass
by Jaskaran S. Saini, Tamara D. Koledin, Tittaya Thaiyanurak, Lei Chen, Melissa K. Santala and Donghua Xu
Crystals 2023, 13(9), 1322; https://doi.org/10.3390/cryst13091322 - 29 Aug 2023
Cited by 2 | Viewed by 2734
Abstract
The recently discovered Cu46Zr33.5Hf13.5Al7 (at.%) bulk metallic glass (BMG) presents the highest glass-forming ability (GFA) among all known copper-based alloys, with a record-breaking critical casting thickness (or diameter) of 28.5 mm. At present, much remains to [...] Read more.
The recently discovered Cu46Zr33.5Hf13.5Al7 (at.%) bulk metallic glass (BMG) presents the highest glass-forming ability (GFA) among all known copper-based alloys, with a record-breaking critical casting thickness (or diameter) of 28.5 mm. At present, much remains to be explored about this new BMG that holds exceptional promise for engineering applications. Here, we report our study on the crystallization behavior of this new BMG, using isochronal and isothermal differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). With the calorimetric data, we determine the apparent activation energy of crystallization, the Avrami exponent, and the lower branch of the isothermal time–temperature–transformation (TTT) diagram. With XRD and TEM, we identify primary and secondary crystal phases utilizing samples crystallized to different degrees within the calorimeter. We also estimate the number density, nucleation rate, and growth rate of the primary crystals through TEM image analysis. Our results reveal that the crystallization in this BMG has a high activation energy of ≈360 kJ/mole and that the primary crystallization of this BMG produces a high number density (≈1021 m−3 at 475 °C) of slowly growing (growth rate < 0.5 nm/s at 475 °C) Cu10(Zr,Hf)7 nanocrystals dispersed in the glassy matrix, while the second crystallization event further produces a new phase, Cu(Zr,Hf)2. The results help us to understand the GFA and thermal stability of this new BMG and provide important guidance for its future engineering applications, including its usage as a precursor to glass–crystal composite or bulk nanocrystalline structures. Full article
(This article belongs to the Special Issue Aggregation, Nucleation and Crystallization)
Show Figures

Figure 1

11 pages, 2937 KiB  
Article
Influence of Thermal and Flash-Lamp Annealing on the Thermoelectrical Properties of Cu2ZnSnS4 Nanocrystals Obtained by “Green” Colloidal Synthesis
by Yevhenii Havryliuk, Volodymyr Dzhagan, Anatolii Karnaukhov, Oleksandr Selyshchev, Julia Hann and Dietrich R. T. Zahn
Nanomaterials 2023, 13(11), 1775; https://doi.org/10.3390/nano13111775 - 31 May 2023
Cited by 1 | Viewed by 1771
Abstract
The problem with waste heat in solar panels has stimulated research on materials suitable for hybrid solar cells, which combine photovoltaic and thermoelectric properties. One such potential material is Cu2ZnSnS4 (CZTS). Here, we investigated thin films formed from CZTS nanocrystals [...] Read more.
The problem with waste heat in solar panels has stimulated research on materials suitable for hybrid solar cells, which combine photovoltaic and thermoelectric properties. One such potential material is Cu2ZnSnS4 (CZTS). Here, we investigated thin films formed from CZTS nanocrystals obtained by “green” colloidal synthesis. The films were subjected to thermal annealing at temperatures up to 350 °C or flash-lamp annealing (FLA) at light-pulse power densities up to 12 J/cm2. The range of 250–300 °C was found to be optimal for obtaining conductive nanocrystalline films, for which the thermoelectric parameters could also be determined reliably. From phonon Raman spectra, we conclude that in this temperature range, a structural transition occurs in CZTS, accompanied by the formation of the minor CuxS phase. The latter is assumed to be a determinant for both the electrical and thermoelectrical properties of CZTS films obtained in this way. For the FLA-treated samples, the film conductivity achieved was too low to measure the thermoelectric parameters reliably, although the partial improvement of the CZTS crystallinity is observed in the Raman spectra. However, the absence of the CuxS phase supports the assumption of its importance with respect to the thermoelectric properties of such CZTS thin films. Full article
(This article belongs to the Special Issue Next-Generation Energy Nanomaterials)
Show Figures

Figure 1

13 pages, 3000 KiB  
Article
Properties of Mechanochemically Synthesized Famatinite Cu3SbS4 Nanocrystals
by Erika Dutková, Jaroslav Kováč, Jaroslav Kováč, Jiří Hejtmánek, Petr Levinský, Adelia Kashimbetova, María Jesús Sayagués, Martin Fabián, Zdenka Lukáčová Bujňáková, Matej Baláž, Katarína Gáborová, Viktor Puchý and Ladislav Čelko
Micro 2023, 3(2), 458-470; https://doi.org/10.3390/micro3020030 - 13 Apr 2023
Cited by 2 | Viewed by 2132
Abstract
In this study, we report the optoelectric and thermoelectric properties of famatinite Cu3SbS4 that was mechanochemically synthesized in a planetary mill from powder elements for 120 min in an inert atmosphere. The tetragonal famatinite Cu3SbS4 was nanocrystalline [...] Read more.
In this study, we report the optoelectric and thermoelectric properties of famatinite Cu3SbS4 that was mechanochemically synthesized in a planetary mill from powder elements for 120 min in an inert atmosphere. The tetragonal famatinite Cu3SbS4 was nanocrystalline with a crystallite size of 14 nm, as endorsed by Rietveld refinement. High-resolution transmission electron microscopy showed several crystallites in the range of 20–50 nm. Raman spectroscopy proved the purity of the synthesized famatinite Cu3SbS4 and chemical-state characterization performed by X-ray photoelectron spectroscopy confirmed that the prepared sample was pure. The Cu1+, Sb5+, and S2− oxidation states in Cu3SbS4 sample were approved. The morphology characterization showed homogeneity of the prepared sample. The photoresponse of Cu3SbS4 was confirmed from I–V measurements in the dark and under illumination. The photocurrent increase reached 20% compared to the current in the dark at a voltage of 5 V. The achieved results confirm that synthesized famatinite Cu3SbS4 can be applied as a suitable absorbent material in solar cells. The performed thermoelectric measurements revealed a figure of merit ZT of 0.05 at 600 K. Full article
Show Figures

Figure 1

12 pages, 2315 KiB  
Article
One-Step Synthesis of a Binder-Free, Stable, and High-Performance Electrode; Cu-O|Cu3P Heterostructure for the Electrocatalytic Methanol Oxidation Reaction (MOR)
by Alina Yarmolenko, Bibhudatta Malik, Efrat Shawat Avraham and Gilbert Daniel Nessim
Nanomaterials 2023, 13(7), 1234; https://doi.org/10.3390/nano13071234 - 30 Mar 2023
Cited by 5 | Viewed by 2173
Abstract
Although direct methanol fuel cells (DMFCs) have been spotlighted in the past decade, their commercialization has been hampered by the poor efficiency of the methanol oxidation reaction (MOR) due to the unsatisfactory performance of currently available electrocatalysts. Herein, we developed a binder-free, copper-based, [...] Read more.
Although direct methanol fuel cells (DMFCs) have been spotlighted in the past decade, their commercialization has been hampered by the poor efficiency of the methanol oxidation reaction (MOR) due to the unsatisfactory performance of currently available electrocatalysts. Herein, we developed a binder-free, copper-based, self-supported electrode consisting of a heterostructure of Cu3P and mixed copper oxides, i.e., cuprous–cupric oxide (Cu-O), as a high-performance catalyst for the electro-oxidation of methanol. We synthesized a self-supported electrode composed of Cu-O|Cu3P using a two-furnace atmospheric pressure–chemical vapor deposition (AP-CVD) process. High-resolution transmission electron microscopy analysis revealed the formation of 3D nanocrystals with defects and pores. Cu-O|Cu3P outperformed the MOR activity of individual Cu3P and Cu-O owing to the synergistic interaction between them. Cu3P|Cu-O exhibited a highest anodic current density of 232.5 mAcm−2 at the low potential of 0.65 V vs. Hg/HgO, which is impressive and superior to the electrocatalytic activity of its individual counterparts. The formation of defects, 3D morphology, and the synergistic effect between Cu3P and Cu-O play a crucial role in facilitating the electron transport between electrode and electrolyte to obtain the optimal MOR activity. Cu-O|Cu3P shows outstanding MOR stability for about 3600 s with 100% retention of the current density, which proves its robustness alongside CO intermediate. Full article
(This article belongs to the Special Issue Nanocatalysts for Methanation Reaction)
Show Figures

Figure 1

11 pages, 3000 KiB  
Article
CuInS2 Nanocrystals Embedded PMMA Composite Films: Adjustment of Polymer Molecule Weights and Application in Remote-Type White LEDs
by Qingchao Zhou and Zhongyi Shang
Nanomaterials 2023, 13(6), 1085; https://doi.org/10.3390/nano13061085 - 17 Mar 2023
Cited by 3 | Viewed by 1918
Abstract
The commercial application of colloidal semiconductor nanocrystals has been realized owing to the development of composite film technology. Here, we demonstrated the fabrication of green and red emissive CuInS2 nanocrystals embedded polymer composite films of equal thickness by using a precise solution [...] Read more.
The commercial application of colloidal semiconductor nanocrystals has been realized owing to the development of composite film technology. Here, we demonstrated the fabrication of green and red emissive CuInS2 nanocrystals embedded polymer composite films of equal thickness by using a precise solution casting method. The impacts of polymer molecular weight on the dispersibility of CuInS2 nanocrystals were then systematically studied through evaluating the decrease in transmittance and red shift of emission wavelength. The composite films made from PMMA of small molecular weights exhibited higher transmittance. Applications of these green and red emissive composite films as color converters in remote-type light-emitting devices were further demonstrated. Full article
(This article belongs to the Special Issue Recent Developments in Luminescent Nanomaterials)
Show Figures

Graphical abstract

13 pages, 3697 KiB  
Article
Mechanochemically Synthesized Chalcogenide Cu3BiS3 Nanocrystals in an Environmentally Friendly Manner for Solar Cell Applications
by Erika Dutková, Matej Baláž, María Jesús Sayagués, Jaroslav Kováč and Jaroslav Kováč
Crystals 2023, 13(3), 487; https://doi.org/10.3390/cryst13030487 - 11 Mar 2023
Cited by 4 | Viewed by 2244
Abstract
Ternary wittichenite Cu3BiS3 nanocrystals were prepared mechanochemically using a planetary ball mill from elemental copper, bismuth and sulfur in a stoichiometric ratio in only 5 min. The orthorhombic wittichenite Cu3BiS3 was nanocrystalline with an approximate crystallite size [...] Read more.
Ternary wittichenite Cu3BiS3 nanocrystals were prepared mechanochemically using a planetary ball mill from elemental copper, bismuth and sulfur in a stoichiometric ratio in only 5 min. The orthorhombic wittichenite Cu3BiS3 was nanocrystalline with an approximate crystallite size of 38 nm ± 9 nm, as confirmed by Rietveld refinement. The nanocrystalline character of orthorhombic Cu3BiS3 was also proven by transmission electron microscopy. The measured Raman spectrum confirmed the formation of pure wittichenite Cu3BiS3. The morphology characterization demonstrated the homogeneity of the sample. The value of the specific surface area for pure mechanochemically prepared Cu3BiS3 after 5 min was 2.7 m2g−1. The optical properties were investigated using UV–Vis absorption and micro-photoluminescence spectroscopy. From the absorption UV–Vis spectrum, the value of the bandgap energy was determined to be 1.52 eV, which creates an assumption for the use of wittichenite Cu3BiS3 in photovoltaic applications. The optoelectrical properties of the prepared Cu3BiS3 nanocrystals were verified by current–voltage measurements in the dark and under white light illumination. The photocurrent increased by 26% compared to the current in the dark at a voltage of 1 V. The achieved results confirmed a very fast and efficient way of synthesizing a ternary wittichenite Cu3BiS3, which can be used for applications in solar cells. Full article
(This article belongs to the Special Issue Optoelectronics of Thin Films and Nanoparticles)
Show Figures

Figure 1

23 pages, 4855 KiB  
Article
Nanocrystalline Apatites: Post-Immersion Acidification and How to Avoid It—Application to Antibacterial Bone Substitutes
by Christophe Drouet, Nicolas Vandecandelaère, Anke Burger-Kentischer, Iris Trick, Christina G. Kohl, Tanja Maucher, Michaela Mueller and Franz E. Weber
Bioengineering 2023, 10(2), 220; https://doi.org/10.3390/bioengineering10020220 - 7 Feb 2023
Cited by 2 | Viewed by 2362
Abstract
Biomimetic nanocrystalline apatites analogous to bone mineral can be prepared using soft chemistry. Due to their high similarity to bone apatite, as opposed to stoichiometric hydroxyapatite for example, they now represent an appealing class of compounds to produce bioactive ceramics for which drug [...] Read more.
Biomimetic nanocrystalline apatites analogous to bone mineral can be prepared using soft chemistry. Due to their high similarity to bone apatite, as opposed to stoichiometric hydroxyapatite for example, they now represent an appealing class of compounds to produce bioactive ceramics for which drug delivery and ion exchange abilities have been described extensively. However, immersion in aqueous media of dried non-carbonated biomimetic apatite crystals may generate an acidification event, which is often disregarded and not been clarified to-date. Yet, this acidification process could limit their further development if it is not understood and overcome if necessary. This may, for example, alter biological test outcomes, during their evaluation as bone repair materials, due to potentially deleterious effects of the acidic environment on cells, especially in in vitro static conditions. In this study, we explore the origins of this acidification phenomenon based on complementary experimental data and we point out the central role of the hydrated ionic layer present on apatite nanocrystals. We then propose a practical strategy to circumvent this acidification effect using an adequate post-precipitation equilibration step that was optimized. Using this enutralization protocol, we then showed the possibility of performing (micro)biological assessments on such compounds and provide an illustration with the examples of post-equilibrated Cu2+- and Ag+-doped nanocrystalline apatites. We demonstrate their non-cytotoxicity to osteoblast cells and their antibacterial features as tested versus five major pathogens involved in bone infections, therefore pointing to their relevance in the field of antibacterial bone substitutes. The preliminary in vivo implantation of a relevant sample in a rat’s calvarial defect confirmed its biocompatibility and the absence of adverse reaction. Understanding and eliminating this technical barrier should help promoting biomimetic apatites as a genuine new class of biomaterial-producing compounds for bone regeneration applications, e.g., with antibacterial features, far from being solely considered as “laboratory curiosities”. Full article
(This article belongs to the Special Issue Biomaterials for Bone Repair and Regeneration)
Show Figures

Graphical abstract

14 pages, 3990 KiB  
Article
Nanocrystalline Skinnerite (Cu3SbS3) Prepared by High-Energy Milling in a Laboratory and an Industrial Mill and Its Optical and Optoelectrical Properties
by Erika Dutková, María Jesús Sayagués, Martin Fabián, Matej Baláž, Jaroslav Kováč, Jaroslav Kováč Junior, Martin Stahorský, Marcela Achimovičová and Zdenka Lukáčová Bujňáková
Molecules 2023, 28(1), 326; https://doi.org/10.3390/molecules28010326 - 31 Dec 2022
Cited by 12 | Viewed by 2040
Abstract
Copper, antimony and sulfur in elemental form were applied for one-pot solid-state mechanochemical synthesis of skinnerite (Cu3SbS3) in a laboratory mill and an industrial mill. This synthesis was completed after 30 min of milling in the laboratory mill and [...] Read more.
Copper, antimony and sulfur in elemental form were applied for one-pot solid-state mechanochemical synthesis of skinnerite (Cu3SbS3) in a laboratory mill and an industrial mill. This synthesis was completed after 30 min of milling in the laboratory mill and 120 min in the industrial mill, as corroborated by X-ray diffraction. XRD analysis confirmed the presence of pure monoclinic skinnerite prepared in the laboratory mill and around 76% monoclinic skinnerite, with the secondary phases famatinite (Cu3SbS4; 15%), and tetrahedrite (Cu11.4Sb4S13; 8%), synthesized in the industrial mill. The nanocrystals were agglomerated into micrometer-sized grains in both cases. Both samples were nanocrystalline, as was confirmed with HRTEM. The optical band gap of the Cu3SbS3 prepared in the laboratory mill was determined to be 1.7 eV with UV–Vis spectroscopy. Photocurrent responses verified with I–V measurements under dark and light illumination and Cu3SbS3 nanocrystals showed ~45% enhancement of the photoresponsive current at a forward voltage of 0.6 V. The optical and optoelectrical properties of the skinnerite (Cu3SbS3) prepared via laboratory milling are interesting for photovoltaic applications. Full article
(This article belongs to the Special Issue Recent Advances in Opto-Electronic Materials)
Show Figures

Figure 1

Back to TopTop