Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = Cu-TiC coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6146 KiB  
Article
Current-Carrying Wear Behavior of Cu–TiC Coatings Obtained Through High-Speed Laser Cladding on Conductive Slip Rings of 7075 Aluminum Alloy
by Shiya Cheng, Yuankai Zhou and Xue Zuo
Metals 2025, 15(7), 688; https://doi.org/10.3390/met15070688 - 20 Jun 2025
Viewed by 204
Abstract
Cu-5wt%TiC coatings were fabricated by high-speed laser cladding on the 7075 aluminum alloy substrate using various scanning speeds to improve its current-carrying wear resistance. The effects of scanning speed on the microstructure, phase, hardness, and current-carrying tribological properties of the coating were investigated [...] Read more.
Cu-5wt%TiC coatings were fabricated by high-speed laser cladding on the 7075 aluminum alloy substrate using various scanning speeds to improve its current-carrying wear resistance. The effects of scanning speed on the microstructure, phase, hardness, and current-carrying tribological properties of the coating were investigated using a scanning electron microscope, an X-ray diffractometer, a hardness tester, and a wear tester, respectively. The results show that the increase in scanning speed accelerates the coating’s solidification rate. Among the samples, the coating comprised of equiaxed crystals prepared at 149.7 mm/s presents the best quality, but solidification speeds that are too rapid lead to elemental segregation. The hardness of the coating also decreases with the increase in scanning speed. The coating prepared at 149.7 mm/s exhibits the best wear resistance and electrical conductivity. The wear rate of the coating prepared at 149.7 mm/s at 25 A was 4 × 10−3 mg·m−1, respectively. During the current-carrying friction process, the presence of thermal effects and arc erosion cause the worn track to be prone to oxidation, adhesion, and plastic deformation, so the current-carrying wear mechanisms of coatings at 25 A include adhesive wear, oxidation wear, and electrical damage. Full article
Show Figures

Figure 1

16 pages, 14115 KiB  
Article
Microstructure and Tensile Properties of Cu-Ti Composites Deposited by Cold Spray Additive Manufacturing
by Jia Cheng, Jibo Huang, Haifan Li, Kejie Zhang, Haiming Lan, Hongmin Xin and Renzhong Huang
Materials 2025, 18(12), 2787; https://doi.org/10.3390/ma18122787 - 13 Jun 2025
Viewed by 360
Abstract
In this study, copper–titanium (Cu-Ti) composite coatings with 6 wt.% titanium content were fabricated via cold spray additive manufacturing (CSAM) using nitrogen as the propellant gas. The synergistic effects of propellant gas temperatures (600 °C, 700 °C, 800 °C) and post-heat treatment temperatures [...] Read more.
In this study, copper–titanium (Cu-Ti) composite coatings with 6 wt.% titanium content were fabricated via cold spray additive manufacturing (CSAM) using nitrogen as the propellant gas. The synergistic effects of propellant gas temperatures (600 °C, 700 °C, 800 °C) and post-heat treatment temperatures (350 °C, 380 °C, 400 °C) on the microstructure and tensile properties were systematically investigated. Tensile testing, microhardness characterization, and fractography analysis revealed that increasing the propellant gas temperature significantly enhanced the plastic deformation of copper particles, leading to simultaneous improvements in deposit density and interfacial bonding strength. The as-sprayed specimen prepared at 800 °C propellant gas temperature exhibited a tensile strength of 338 MPa, representing a 69% increase over the 600 °C specimen. Post-heat treatment effectively eliminated the work-hardening effects induced by cold spraying, with the 400 °C treated material achieving an elongation of 15% while maintaining tensile strength above 270 MPa. Microstructural analysis demonstrated that high propellant gas temperatures (800 °C) promoted the formation of dense lamellar stacking structures in copper particles, which, combined with a recrystallized fine-grained microstructure induced by 400 °C heat treatment, enabled synergistic optimization of strength and ductility. This work provides critical experimental insights for process optimization in CSAM-fabricated Cu-Ti composites. Full article
(This article belongs to the Special Issue Smart Coatings for the Corrosion Protection of Alloys)
Show Figures

Graphical abstract

19 pages, 4579 KiB  
Article
Effect of Heating Rate on the Properties and Mechanism of Nanocomposite Ceramic Coatings Prepared by Slurry Method
by Yuntian Zhang, Yinhui Li, Jiaqi Cao, Songyuchen Ma, Guangsong Chen, Kunquan Duan and Jie Liu
Appl. Sci. 2025, 15(12), 6561; https://doi.org/10.3390/app15126561 - 11 Jun 2025
Viewed by 419
Abstract
Nano-titanium dioxide ceramic coatings exhibit excellent wear resistance, corrosion resistance, and self-cleaning properties, showing great potential as multifunctional protective materials. This study proposes a synergistic reinforcement strategy by encapsulating micron-sized Al2O3 particles with nano-TiO2. A core-shell structured nanocomposite [...] Read more.
Nano-titanium dioxide ceramic coatings exhibit excellent wear resistance, corrosion resistance, and self-cleaning properties, showing great potential as multifunctional protective materials. This study proposes a synergistic reinforcement strategy by encapsulating micron-sized Al2O3 particles with nano-TiO2. A core-shell structured nanocomposite coating composed of 65 wt% nano-TiO2 encapsulating 30 wt% micron-Al2O3 was precisely designed and fabricated via a slurry dip-coating method on Q235 steel substrates. The microstructure and surface morphology of the coatings were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Comprehensive performance evaluations including densification, adhesion strength, wear resistance, and thermal shock resistance were conducted. Optimal coating properties were achieved under the conditions of a binder-to-solvent ratio of 1:15 (g/mL), a heating rate of 2 °C/min, and a sintering temperature of 400 °C. XRD analysis confirmed the formation of multiple crystalline phases during the 400 °C curing process, including titanium pyrophosphate (TiP2O7), aluminum phosphate (AlPO4), copper aluminate (Cu(AlO2)2), and a unique titanium phosphate phase (Ti3(PO4)4) exclusive to the 2 °C/min heating rate. Adhesion strength tests revealed that the coating sintered at 2 °C/min exhibited superior interfacial bonding strength and outstanding performance in wear resistance, hardness, and thermal shock resistance. The incorporation of nano-TiO2 into the 30 wt% Al2O3 matrix significantly enhanced the mechanical properties of the composite coating. Mechanistic studies indicated that the bonding between the nanocomposite coating and the metal substrate is primarily achieved through mechanical interlocking, forming a robust physical interface. These findings provide theoretical guidance for optimizing the fabrication process of metal-based ceramic coatings and expanding their engineering applications in various industries. Full article
Show Figures

Figure 1

16 pages, 4539 KiB  
Article
Effect of Scanning Speed on Wear and Corrosion Behaviors of High-Speed Laser-Cladded Cu-TiC Coating
by Shiya Cheng, Yuankai Zhou and Xue Zuo
Metals 2025, 15(6), 641; https://doi.org/10.3390/met15060641 - 9 Jun 2025
Cited by 1 | Viewed by 783
Abstract
In response to the performance requirements of ship conductive rings in the coupled environment of high salt spray, high humidity, and mechanical wear in the ocean, a Cu-TiC composite coating was prepared on the surface of 7075 aluminum alloy by using the high-speed [...] Read more.
In response to the performance requirements of ship conductive rings in the coupled environment of high salt spray, high humidity, and mechanical wear in the ocean, a Cu-TiC composite coating was prepared on the surface of 7075 aluminum alloy by using the high-speed laser cladding (HLC) technology. The influence laws of the scanning speed (86.4–149.7 mm/s) on the microstructure, tribological properties, and corrosion resistance of the coating were explored. The results show that the scanning speed significantly changes the phase composition and grain morphology of the coating by regulating the thermodynamic behavior of the molten pool. At a low scanning speed (86.4 mm/s), the CuAl2 phase is dominant, and the grains are mainly columnar crystals. As the scanning speed increases to 149.7 mm/s, the accelerated cooling rate promotes an increase in the proportion of Cu2Al3 phase, refines the grains to a coexisting structure of equiaxed crystals and cellular crystals, and improves the uniformity of TiC particle distribution. Tribological property analysis shows that the high scanning speed (149.7 mm/s) coating has a 17.9% lower wear rate than the substrate due to grain refinement and TiC interface strengthening. The wear mechanism is mainly abrasive wear and adhesive wear, accompanied by slight oxidative wear. Electrochemical tests show that the corrosion current density of the high-speed cladding coating is as low as 7.36 × 10−7 A·cm−2, and the polarization resistance reaches 23,813 Ω·cm2. The improvement in corrosion resistance is attributed to the formation of a dense passivation film and the blocking of the Cl diffusion path. The coating with a scanning speed of 149.7 mm/s exhibits optimal wear-resistant and corrosion-resistant synergistic performance and is suitable for the surface strengthening of conductive rings in extreme marine environments. This research provides theoretical support for the process performance regulation and engineering application of copper-based composite coatings. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

15 pages, 8131 KiB  
Article
Utilizing Fly Ash from Coal-Fired Power Plants to Join ZrO2 and Crofer by Reactive Air Brazing
by Shu-Wei Chang, Ren-Kae Shiue and Liang-Wei Huang
Materials 2025, 18(9), 1956; https://doi.org/10.3390/ma18091956 - 25 Apr 2025
Viewed by 434
Abstract
This study attempts to use fly ash as the brazing filler additive to increase the sustainable use of coal-fired power plant by-product materials. The experimental results show that adding 5 wt% fly ash into the Ag paste filler contributes to the interfacial reactions [...] Read more.
This study attempts to use fly ash as the brazing filler additive to increase the sustainable use of coal-fired power plant by-product materials. The experimental results show that adding 5 wt% fly ash into the Ag paste filler contributes to the interfacial reactions in heterogeneous reactive air brazing (RAB) of the ZrO2 and Crofer alloy. The Ag-rich phase dominates the brazed zone. The interfacial reaction layers contain oxidation of the Cu-Ti coating layer, Crofer alloy, and the Si/Al-rich oxides from the fly ash particles. The 5% fly ash RAB joint maintained airtightness for 280 h under 2 psig helium at room temperature. When the test temperature was raised to 600 °C for 24 h, the pressure of the joint assembly still did not drop. When the fly ash addition was increased to 10 wt%, the joint assembly was no longer leak-free at room temperature. Many visible voids and cracks exist in the brazed zone and at the ZrO2/braze and braze/Crofer interfaces. A high volume fraction of the fly ash particles results in many brittle Si/Al-rich oxides in the joint after RAB, and the fracture of these oxides significantly deteriorates the airtightness of the joint. This study shows the feasibility and potential of introducing 5 wt% fly ash particles to the Ag-rich paste filler during the RAB of ZrO2 and Crofer for airtight applications. Full article
Show Figures

Figure 1

18 pages, 23143 KiB  
Article
Effect of Al/Cu Ratio on Microstructure and High-Temperature Oxidation Resistance of AlxCoCrCuyFeNi High-Entropy Alloy Coatings
by Ling Zhou, Hongxi Liu, Qinghua Zhang, Jiazhu Liang, Yuanrun Peng, Xuanhong Hao, Chen Yang, Yaxia Liu and Yueyi Wang
J. Manuf. Mater. Process. 2025, 9(1), 13; https://doi.org/10.3390/jmmp9010013 - 5 Jan 2025
Cited by 3 | Viewed by 1510
Abstract
To improve high-temperature oxidation resistance for Ti6Al4V alloy, AlxCoCrCuyFeNi (x = 0, 0.3, 0.5, 0.7, 1.0; y = 1.0, 0.7, 0.5, 0.3, 0, x + y = 1.0) high-entropy alloy (HEA) coatings were prepared on the Ti6Al4V alloy substrate [...] Read more.
To improve high-temperature oxidation resistance for Ti6Al4V alloy, AlxCoCrCuyFeNi (x = 0, 0.3, 0.5, 0.7, 1.0; y = 1.0, 0.7, 0.5, 0.3, 0, x + y = 1.0) high-entropy alloy (HEA) coatings were prepared on the Ti6Al4V alloy substrate by a laser cladding technique. The results show that the coatings were mainly composed of FCC, BCC, and Ti-rich phases. Severe segregation of the Cu element occurred in the CoCrCuFeNi HEA coatings as a Cu-rich phase (FCC2). The Cu-rich phases decreased with a decreasing Cu content and completely disappeared until the Al content reached 1.0. The microhardnesses of the Cu1.0, Cu0.7Al0.3, Cu0.5Al0.5, Cu0.3Al0.7, and Al1.0 HEA coatings were 2.01, 2.06, 2.08, 2.09, and 2.11 times that of the substrate, and compared with those of a Ti6Al4V alloy substrate, the oxidation rates of the HEA coatings decreased by 55%, 51%, 47%, 42%, and 35%, respectively. The surface oxides of the five coatings were mainly composed of CuO, TiO2, Fe3O4, Cr2O3, and Al2O3. The increase in the Al content promoted the generation of Al2O3 film and Cr2O3 on the surfaces of the coatings, which significantly improved the high-temperature antioxidant performance of the high-entropy alloy coatings for 50 h at 800 °C. When x = 1.0, the coating showed the best high-temperature antioxidant performance. Full article
(This article belongs to the Topic Advanced Manufacturing and Surface Technology)
Show Figures

Figure 1

21 pages, 6499 KiB  
Article
Influence of Cu Content Variation on the Tribological Properties of Ni60CuMo with Sandwich-Structured Composite Coatings by Laser Cladding
by Fengqin Ji, Xincheng Li, Songyang Zhang and Ming Pang
Micromachines 2024, 15(12), 1429; https://doi.org/10.3390/mi15121429 - 27 Nov 2024
Cited by 1 | Viewed by 968
Abstract
To enhance the tribological properties of the coatings and to inhibit cracking, sandwich-structured composite coatings were fabricated, consisting of a Ni60CuMo/IN718 transition layer and a Ni60CuMo/Ni-coated Cu wear-resistant layer with four different Ni-coated Cu contents. The results indicate that the transition layer inhibits [...] Read more.
To enhance the tribological properties of the coatings and to inhibit cracking, sandwich-structured composite coatings were fabricated, consisting of a Ni60CuMo/IN718 transition layer and a Ni60CuMo/Ni-coated Cu wear-resistant layer with four different Ni-coated Cu contents. The results indicate that the transition layer inhibits the crack formation in the coating, and the refined grain structure stabilizes its average hardness at approximately 485 HV0.5. Increasing the Cu content in the wear-resistant layer exacerbates the segregation of the Cu-rich solid solution phases and refines the in situ-generated Cr7C3, TiC, and NbC phases. The average hardness of the wear-resistant layer decreases from 474 HV0.5 to 408 HV0.5 as the Ni-coated Cu content increases from zero to 75%. The coating with 50% Ni-coated Cu has the best Cu self-lubricating properties and exhibits the best wear resistance at both room and high temperatures. At room temperature, abrasive wear is the primary wear mechanism in the coatings. Although the ductility of the coatings is improved with increasing Cu content, excessive Cu reduces the hardness and load-bearing capacity. At 300 °C, oxidation wear becomes the dominant wear mechanism, accompanied by plastic deformation and three-body wear as the Cu content increases. At 500 °C, severe oxidation wear is the dominant mechanism, with excessive Cu leading to oxidation film failure. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

14 pages, 3720 KiB  
Article
Study on the Properties of TiC Coating Deposited by Spark Discharge on the Surface of AlFeCoCrNiCu High-Entropy Alloy
by Ying Wang, Cheng Nie, Shengding Wang, Pan Gong, Mao Zhang, Zhigang Hu and Bin Li
Materials 2024, 17(16), 4110; https://doi.org/10.3390/ma17164110 - 20 Aug 2024
Cited by 1 | Viewed by 1434
Abstract
Titanium carbide (TiC) coatings were prepared on the surface of AlFeCoCrNiCu high-entropy alloy blocks using electro-spark deposition (ESD). The microhardness and corrosion resistance of the TiC coatings prepared under different voltage and capacitance process parameters were studied. The research shows that the maximum [...] Read more.
Titanium carbide (TiC) coatings were prepared on the surface of AlFeCoCrNiCu high-entropy alloy blocks using electro-spark deposition (ESD). The microhardness and corrosion resistance of the TiC coatings prepared under different voltage and capacitance process parameters were studied. The research shows that the maximum microhardness of the TiC coating on sample 4 (working voltage of 20 V, working capacitance of 1000 μF) is 844.98 HV, which is 81.5% higher than the microhardness of the substrate. This is because the deposition energy increases with the increase in voltage, and the adhesion and aggregation between the coating and the substrate are enhanced, increasing the hardness of the coating. It is worth noting that excessive deposition energy can increase surface defects and reduce the microhardness of the coating surface. Electrochemical testing analysis shows that the corrosion current density of the TiC coating is the lowest (9.475 × 10−7 ± 0.06 × 10−7), and the coating impedance is the highest (2.502 × 103 Ω·com2). The absolute phase angle value is the highest (about 72°). The above indicates that the TiC coating prepared with a working voltage of 20 V and a working capacitance of 1000 μF has better microhardness and corrosion resistance. Full article
(This article belongs to the Special Issue Future Trends in High-Entropy Alloys (2nd Edition))
Show Figures

Figure 1

15 pages, 8394 KiB  
Article
The Influence of Adding B4C and CeO2 on the Mechanical Properties of Laser Cladding Nickel-Based Coatings on the Surface of TC4 Titanium Alloy
by Shanna Xu, Keqi Han, Haili Wang, Yuntao Xi, Lei Wang and Xikai Dong
Materials 2024, 17(15), 3823; https://doi.org/10.3390/ma17153823 - 2 Aug 2024
Cited by 3 | Viewed by 1179
Abstract
The development of titanium alloys is limited by issues such as low hardness, poor wear resistance, and sensitivity to adhesive wear. Using laser cladding technology to create high-hardness wear-resistant coatings on the surface of titanium alloys is an economical and efficient method that [...] Read more.
The development of titanium alloys is limited by issues such as low hardness, poor wear resistance, and sensitivity to adhesive wear. Using laser cladding technology to create high-hardness wear-resistant coatings on the surface of titanium alloys is an economical and efficient method that can enhance their surface hardness and wear resistance. This paper presents the preparation of two types of nickel-based composite coatings, Ni60-Ti-Cu-xB4C and Ni60-Ti-Cu-B4C-xCeO2, on the surface of TC4 titanium alloy using laser cladding. When the B4C addition was 8 wt.%, the hardness of the cladding layer was the highest, with an average microhardness of 1078 HV, which was 3.37 times that of the TC4 substrate. The friction coefficient was reduced by 24.7% compared to the TC4 substrate, and the wear volume was only 2.7% of that of the substrate material. When the CeO2 content was 3 wt.%, the hardness of the cladding layer was the highest, with an average microhardness of 1105 HV, which was 3.45 times that of the TC4 substrate. The friction coefficient was reduced by 33.7% compared to the substrate material, and the wear volume was only 1.8% of that of the substrate material. Full article
Show Figures

Figure 1

13 pages, 17643 KiB  
Article
Zirconia and Crofer Joint Made by Reactive Air Brazing Using the Silver Base Paste and Cu-Ti Coating Layer
by Shu-Wei Chang, Ren-Kae Shiue and Liang-Wei Huang
Materials 2024, 17(15), 3822; https://doi.org/10.3390/ma17153822 - 2 Aug 2024
Cited by 1 | Viewed by 991
Abstract
This study proposes a method to enhance the airtightness of the joint between the ZrO2 and Crofer alloy using coating technology. With the aid of vacuum sputtering technology, a titanium–copper alloy layer with a thickness between 1.5 μm and 6 μm was [...] Read more.
This study proposes a method to enhance the airtightness of the joint between the ZrO2 and Crofer alloy using coating technology. With the aid of vacuum sputtering technology, a titanium–copper alloy layer with a thickness between 1.5 μm and 6 μm was first deposited on the surface of ZrO2 and Crofer, respectively. The chemical composition of the deposited reaction layer was 70.2 Cu and 29.8 Ti in at%. Then, using silver as the base material in the reactive air brazing (RAB) process, we explore the use of this material design to improve the microstructure and reaction mechanism of the joint surface between ceramics and metal, compare the effects of different pretreatment thicknesses on the microstructure, and evaluate its effectiveness through air tightness tests. The results show that a coating of Cu-Ti alloy on the ZrO2 substrate can significantly improve bonding between the Ag filler and ZrO2. The Cu-Ti metallization layer on the ZrO2 substrate is beneficial to the RAB. After the brazing process, the coated Cu-Ti layers form suitable reaction interfaces between the filler, the metal, the filler, and the ceramic. In terms of coating layer thickness, the optimized 3 μm coated Cu-Ti alloy layer is achieved from the experiment. Melting and dissolving the Cu-Ti coated layer into the ZrO2 substrate results in a defect-free interface between the Ag-rich braze and the ZrO2. The air tightness test result shows no leakage under 2 psig at room temperature for 28 h. The pressure condition can still be maintained even under high-temperature conditions of 600 °C for 24 h. Full article
Show Figures

Figure 1

13 pages, 4748 KiB  
Article
Influence of Thickness on the Structure and Biological Response of Cu-O Coatings Deposited on cpTi
by Ivana Ilievska, Veronika Ivanova, Dimitar Dechev, Nikolay Ivanov, Maria Ormanova, Maria P. Nikolova, Yordan Handzhiyski, Andreana Andreeva, Stefan Valkov and Margarita D. Apostolova
Coatings 2024, 14(4), 455; https://doi.org/10.3390/coatings14040455 - 10 Apr 2024
Cited by 5 | Viewed by 1451
Abstract
This work presents results on the influence of thickness on the structure and biological response of Cu-O coatings deposited on commercially pure titanium (cpTi) substrates using direct current (DC) magnetron sputtering. The deposition times were 5, 10, and 15 min to obtain coatings [...] Read more.
This work presents results on the influence of thickness on the structure and biological response of Cu-O coatings deposited on commercially pure titanium (cpTi) substrates using direct current (DC) magnetron sputtering. The deposition times were 5, 10, and 15 min to obtain coatings with different thicknesses. The results show that the films deposited for 5, 10, and 15 min correspond to thicknesses of 41, 74, and 125 nm, respectively. The phase composition of the coatings is in the form of a double-phase structure of CuO and Cu2O in all considered cases. The roughness is on the nanometric scale and no obvious trend as a function of the thickness can be observed for the deposited films. Also, it was found that, with an increase in the thickness of the films, the distribution of the heights becomes closer to symmetrical. The antimicrobial efficacy of different Cu-O-coated cpTi substrates was examined using a direct contact experiment. A possible bactericidal effect was investigated by inoculating a 200 μL bacterial suspension on CuO-coated cpTi and cpTi (control) for 24 h at 37 °C. The results showed that Cu-O-coated cpTi substrates have a 50%–60% higher antimicrobial activity than the substrate. At the same time, human osteosarcoma (MG-63) cells growing on Cu-O-coated cpTi substrates showed 80% viability following 24 h incubation. Depending on magnetron sputtering process parameters, a different coating thickness, various crystallite phase compositions, and diverse biocompatibility were obtained. Full article
Show Figures

Figure 1

15 pages, 6947 KiB  
Article
Numerical Modelling and Simulation for Sliding Wear Effect with Microstructural Evolution of Sputtered Titanium Carbide Thin Film on Metallic Materials
by Musibau Olalekan Ogunlana, Mammo Muchie, Jan Swanepoel, Olukorede Tijani Adenuga and Oluseyi Philip Oladijo
Coatings 2024, 14(3), 298; https://doi.org/10.3390/coatings14030298 - 29 Feb 2024
Cited by 1 | Viewed by 1942
Abstract
Titanium carbide materials are introduced into manufacturing industries for the reinforcement and surface protection of base materials due to their substantial ability to withstand severe environments, which include sliding wear, corrosion, and mechanical failures. A thin film of titanium carbide (TiC) is coated [...] Read more.
Titanium carbide materials are introduced into manufacturing industries for the reinforcement and surface protection of base materials due to their substantial ability to withstand severe environments, which include sliding wear, corrosion, and mechanical failures. A thin film of titanium carbide (TiC) is coated onto brass and copper substrates using the radio frequency magnetron sputtering (RFMS) deposition method. The coating process is carried out at constant processing parameters, which include a sputtering power of 200 W, a temperature of 80 °C, a deposition time of 180 min, and an argon (Ar) gas flow rate at 10 standard cubic centimetres per minute (SCCM). The coating, together with the base materials, is modelled and its behaviours are simulated using ANSYS Workbench R19.2 Academic, supported by Mechanical APDL solver for nonlinear finite element analysis (FEA). The deformation, equivalent stress–strain characteristics, and elastic–plastic properties of the coating are determined at applied loads of 60 N and 25 N and coefficients of friction (CoF) of 0.25 and 0.38 for the thin film deposition on brass and copper substrates. The sliding distance and the speed of the alloy steel ball used during the sliding wear operation are found to be 3 mm and 4 mm/s, respectively. The sliding wear modelling and simulation process are, however, designed for the ball-on-flat (BoF) wear technique with a dry sliding approach. Therefore, BoF wear simulations are also performed on titanium carbide–brass (TiC-Br) and titanium carbide–copper (TiC-Cu) conjugates for the evaluation of surface engineering applications such as cutting tools and in automotive, aerospace, thermomechanical, and biomedical fields. The ball used for the FEA wear simulation is made from alloy steel material (AISI 52100) with a radius of 3.175 mm. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

12 pages, 28167 KiB  
Article
Mechanical Properties of Ti3AlC2/Cu Composites Reinforced by MAX Phase Chemical Copper Plating
by Cong Chen, Zhenjie Zhai, Changfei Sun, Zhe Wang and Denghui Li
Nanomaterials 2024, 14(5), 418; https://doi.org/10.3390/nano14050418 - 24 Feb 2024
Cited by 2 | Viewed by 1860
Abstract
Among the various reinforcement phases available in Cu-based composites, the unique layered structure and easy diffusion of A-layer atoms make MAX phases more suitable for reinforcing a copper matrix than others. In this study, Cu-coated Ti3AlC2 particles (Cu@Ti3AlC [...] Read more.
Among the various reinforcement phases available in Cu-based composites, the unique layered structure and easy diffusion of A-layer atoms make MAX phases more suitable for reinforcing a copper matrix than others. In this study, Cu-coated Ti3AlC2 particles (Cu@Ti3AlC2) were prepared through electroless plating, and Cu@Ti3AlC2/Cu composites were fabricated via vacuum hot-press sintering. The phase composition and microstructure of both Cu@Ti3AlC2 powder and composites were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results demonstrate the creation of successful electroless copper plating to obtain a Cu coating on Ti3AlC2 particles. At 850 °C, a small amount of Ti3AlC2 particles decompose to form TiCx, while Al atoms from the A layer of MAX phase diffuse into the Cu matrix to form a solid solution with Cu(Al). The test results reveal that the density of the Cu@Ti3AlC2/Cu composite reaches 98.5%, with a maximum compressive strength of 705 MPa, which is 8.29% higher than that of the Ti3AlC2/Cu composite. Additionally, the compressive strain reaches 37.6%, representing an increase of 12.24% compared to that exhibited by the Ti3AlC2/Cu composite. Full article
Show Figures

Figure 1

12 pages, 4377 KiB  
Article
L-Glutamine Coating on Antibacterial Cu Surface by Density Functional Theory
by Maria Bouri and Christina Lekka
Crystals 2023, 13(12), 1698; https://doi.org/10.3390/cryst13121698 - 18 Dec 2023
Cited by 2 | Viewed by 1554
Abstract
The protection of implant surfaces from biofilm and corrosion is crucial for osteogenesis and tissue engineering. To this end, an L-glutamine-based green corrosion inhibitor with recently established anticancer properties has been applied onto antibacterial Cu(111) surfaces that usually cover the Ti-based implants. Among [...] Read more.
The protection of implant surfaces from biofilm and corrosion is crucial for osteogenesis and tissue engineering. To this end, an L-glutamine-based green corrosion inhibitor with recently established anticancer properties has been applied onto antibacterial Cu(111) surfaces that usually cover the Ti-based implants. Among several configurations, L-glutamine prefers the parallel to the surface orientation with the carbon chain along the [110] direction having the heteroatoms N and O atoms on top of Cu surface atoms, which is important for the creation of a planar two-dimensioned (2d) stable coating. L-glutamine forms well-localized, directional covalent-like bonded states (below −3 eV) with the Cu surface atoms, using mainly its backbone’s N1 atom that interestingly also shows electron charge occupation in the single-molecule highest occupied state, denoting its ability as an active center. The Mulliken analysis shows charge transfer from the molecule’s N, C and Cu neighboring atoms towards the O atoms revealing the strong bond tendency of L-glutamine and therefore its ability to act as a corrosion inhibitor on the Cu surface. Additional L-glutamine adsorption results in intermolecular covalent bonding between the molecules, proving the ability of this amino acid to form a stable protective 2d organic coating on Cu(111). These results could be used for the design of a multifunctional hybrid (organic–metallic) coating with anticorrosion, anticancer and antibacterial properties suitable for many technological applications. Full article
(This article belongs to the Special Issue Density Functional Theory (DFT) of Two-Dimensional Materials)
Show Figures

Figure 1

15 pages, 8653 KiB  
Article
Microstructure and Mechanical Properties of AlTiVCuN Coatings Prepared by Ion Source-Assisted Magnetron Sputtering
by Haijuan Mei, Kai Yan, Rui Wang, Lixia Cheng, Qiuguo Li, Zhenting Zhao, Ji Cheng Ding and Weiping Gong
Nanomaterials 2023, 13(24), 3146; https://doi.org/10.3390/nano13243146 - 15 Dec 2023
Cited by 4 | Viewed by 1367
Abstract
The AlTiVCuN coatings were deposited by magnetron sputtering with anode layer ion source (ALIS) assistance, and the microstructure and mechanical properties were significantly affected by the ion source power. With increasing the ion source power from 0 to 1.0 kW, the deposition rate [...] Read more.
The AlTiVCuN coatings were deposited by magnetron sputtering with anode layer ion source (ALIS) assistance, and the microstructure and mechanical properties were significantly affected by the ion source power. With increasing the ion source power from 0 to 1.0 kW, the deposition rate decreased from 2.6 to 2.1 nm/min, and then gradually increased to 4.0 nm/min at 3.0 kW, and the surface roughness gradually decreased from 28.7 nm at 0 kW to 9.0 nm at 3.0 kW. Due to the enhanced ion bombardment effect, the microstructure of the coatings changed from a coarse into a dense columnar structure at 1.0 kW, and the grain size increased at higher ion source powers. All the coatings exhibited c-TiAlVN phase, and the preferred orientation changed from the (220) to the (111) plane at 3.0 kW. Due to the low Cu contents (1.0~3.1 at.%), the Cu atoms existed as an amorphous phase in the coatings. Due to the microstructure densification and high residual stress, the highest hardness of 32.4 GPa was achieved for the coating deposited at 1.0 kW. Full article
(This article belongs to the Special Issue Advances in Multifunctional Nanomaterials for Coatings)
Show Figures

Figure 1

Back to TopTop