Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (159)

Search Parameters:
Keywords = Cryo-TEM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6387 KiB  
Article
Carbon Dot-Enhanced Doxorubicin Liposomes: A Dual-Functional Nanoplatform for Cancer Therapy
by Corina-Lenuta Logigan, Cristian Peptu, Corneliu S. Stan, Gabriel Luta, Crina Elena Tiron, Mariana Pinteala, Aleksander Foryś, Bogdan Simionescu, Constanta Ibanescu, Adrian Tiron and Catalina A. Peptu
Int. J. Mol. Sci. 2025, 26(15), 7535; https://doi.org/10.3390/ijms26157535 - 4 Aug 2025
Abstract
Liposomes (LPs) represent one of the most effective nanoscale platforms for drug delivery in cancer therapy due to their favorable pharmacokinetic and various body tissue compatibility profiles. Building on recent findings showing that carbon dots derived from N-hydroxyphthalimide (CDs-NHF) possess intrinsic antitumor activity, [...] Read more.
Liposomes (LPs) represent one of the most effective nanoscale platforms for drug delivery in cancer therapy due to their favorable pharmacokinetic and various body tissue compatibility profiles. Building on recent findings showing that carbon dots derived from N-hydroxyphthalimide (CDs-NHF) possess intrinsic antitumor activity, herein, we investigate the possibility of preparing complex nano-platforms composed of LPs encapsulating CDs-NHF and/or doxorubicin (DOX) for breast and lung cancer. Various LP formulations were prepared and characterized using Cryo-TEM and Cryo-SEM for morphological analysis, while zeta potential and fluorescence assessments confirmed their stability and optical properties. Cellular effects were evaluated through immunofluorescence microscopy and proliferation assays. LPs-CDs-NHF significantly reduced cancer cell viability at lower concentrations compared to free CDs-NHF, and this effect was further amplified when combined with doxorubicin. Mechanistically, the liposomal formulations downregulated key signaling molecules including pAKT, pmTOR, and pERK, indicating the disruption of cancer-related pathways. These findings suggest that LPs containing CDs-NHF, either alone or in combination with DOX, exhibit synergistic antitumor activity and hold strong promise as multifunctional nanocarriers for future oncological applications. Full article
Show Figures

Graphical abstract

21 pages, 4789 KiB  
Article
Zika Virus Infection Modulates Extracellular Vesicle Biogenesis and Morphology in Human Umbilical Cord Endothelial Cells: A Proteomic and Microscopic Analysis
by Manuel Adrián Velázquez-Cervantes, Arturo Flores-Pliego, Yazmín Rocío Benitez-Zeferino, Victor Javier Cruz-Holguín, Luis Herrera Moro-Huitron, Addy Cecilia Helguera-Repetto, David Eduardo Meza-Sánchez, José Luis Maravillas-Montero, Nicolás Cayetano-Castro, Javier Mancilla-Ramírez, Aurora Casarrubias-Betancourt, Guadalupe León-Reyes, Macario Martínez-Castillo, Isabel Wong-Baeza, Luis Adrián De Jesús-González, María Isabel Baeza-Ramírez and Moisés León-Juárez
Microorganisms 2025, 13(6), 1402; https://doi.org/10.3390/microorganisms13061402 - 16 Jun 2025
Viewed by 668
Abstract
Infection with Zika virus (ZIKV) is a perinatal health problem and a vertical infection that promotes neurological fetal damage. ZIKV infects different cellular components at the maternal–fetal interface, including umbilical cord endothelial cells (HUVECs). Extracellular vesicles (EVs) are cellular components that mediate extracellular [...] Read more.
Infection with Zika virus (ZIKV) is a perinatal health problem and a vertical infection that promotes neurological fetal damage. ZIKV infects different cellular components at the maternal–fetal interface, including umbilical cord endothelial cells (HUVECs). Extracellular vesicles (EVs) are cellular components that mediate extracellular communication. Viruses have the capacity to hijack and modify the biogenesis machinery of EVs for their own benefit. The present work provides proteomic results (2D electrophoresis) that show the regulation of the expression of proteins involved in autophagy, oxidative stress, and exosome biogenesis in HUVECs infected with ZIKV. We confirmed that Alix and CD9 proteins were downregulated following the infection. Additionally, EVs isolated from infected cells showed the expression of Alix, and CD9 was increased in contrast to the mock condition. Interestingly, nanoparticle tracking and cryo-microscopy assays revealed that these EVs showed an increase in the quantity and size of ZIKV infection to differences in mock conditions. Furthermore, EVs isolated from infected cells showed infectivity, and both RNA and viral proteins were detected. Finally, our cryo-microscopy analysis revealed that the viral infection promoted morphological changes in these extracellular vesicles to identify vesicles with double and triple vesicles and electrodense and double membranes. In conclusion, our data suggest that ZIKV infection can modulate cellular factors involved in the formation and morphology of EVs in HUVECs. Furthermore, these EVs carry viral elements that may contribute to the dissemination of infection. Future studies aimed at the proteomic and lipidomic composition analyses of these EVs are needed to understand the biological implications in vertical infection. Full article
(This article belongs to the Special Issue Genomics and Epidemiology of Clinical Microorganisms)
Show Figures

Figure 1

16 pages, 2875 KiB  
Article
Extraction and Characterization of TiO2 Pigments from Commercial Paints for Environmental Studies
by Allan Philippe, Sylvester Ndoli-Kessie, Christian Fricke, Jean-Michel Guigner, Benjamin Heider and Eliana Di Lodovico
Separations 2025, 12(4), 91; https://doi.org/10.3390/separations12040091 - 8 Apr 2025
Viewed by 848
Abstract
TiO2 nanoparticles are found as pigments in coatings and paints and are, therefore, released into the environment through runoff. To assess their environmental impact, comprehensive fate and ecotoxicity studies necessitate particles closely resembling those released into the environment. In response, we developed [...] Read more.
TiO2 nanoparticles are found as pigments in coatings and paints and are, therefore, released into the environment through runoff. To assess their environmental impact, comprehensive fate and ecotoxicity studies necessitate particles closely resembling those released into the environment. In response, we developed a method designed to isolate TiO2 particles from commercial paints. Using six contrasting paints alongside a pure TiO2 pigment, we evaluated two extraction methods in terms of recovery, purification rate, and preservation of both inorganic and organic particle coatings. The paints and extracts were characterized using cryogenic-TEM, ICP-OES, thermogravimetry, and infrared spectroscopy. In contrast to the alkaline-based extraction method, the extraction with acetic acid facilitated the retention of both inorganic and organic coatings and ensured good removal of organic polymers. Recovery rates exceeded 70% for all paints and extraction methods, yet the complete removal of SiO2, when present, was not achieved. CaCO3 removal was effective with both extraction methods. Our developed extraction method enables the isolation of TiO2-particles similar to those aged within paints. However, we recommend using silicate-free paints when SiO2 interference is of concern for the study design. Furthermore, this method could be interesting for pigment recycling, offering a gentler alternative to existing techniques which compromise particle coatings. Full article
Show Figures

Figure 1

17 pages, 3034 KiB  
Article
Topical miRNA Delivery via Elastic Liposomal Formulation: A Promising Genetic Therapy for Cutaneous Lupus Erythematosus (CLE)
by Blanca Joseph-Mullol, Maria Royo, Veronique Preat, Teresa Moliné, Berta Ferrer, Gloria Aparicio, Josefina Cortés-Hernández and Cristina Solé
Int. J. Mol. Sci. 2025, 26(6), 2641; https://doi.org/10.3390/ijms26062641 - 14 Mar 2025
Cited by 1 | Viewed by 870
Abstract
Cutaneous lupus erythematosus (CLE) is a chronic autoimmune skin disorder with limited therapeutic options, particularly for refractory discoid lupus (DLE), which often results in scarring and atrophy. Recent studies have identified miR-31, miR-485-3p, and miR-885-5p as key regulators of inflammation, apoptosis, and fibrosis [...] Read more.
Cutaneous lupus erythematosus (CLE) is a chronic autoimmune skin disorder with limited therapeutic options, particularly for refractory discoid lupus (DLE), which often results in scarring and atrophy. Recent studies have identified miR-31, miR-485-3p, and miR-885-5p as key regulators of inflammation, apoptosis, and fibrosis in CLE skin lesions. This research investigates a novel topical miRNA therapy using DDC642 elastic liposomes to target these pathways in CLE. DDC642 liposomes were complexed with miRNAs (anti-miR-31, anti-miR-485-3p, pre-miR-885-5p) and characterized through dynamic light scattering and Cryo-TEM. Cytotoxicity, cellular penetration, and therapeutic efficacy were evaluated in primary keratinocytes, PBMCs, and immune 3D-skin organoids. miRNA lipoplexes were successfully synthesized with optimized particle size, surface charge, and encapsulation efficiency. These lipoplexes exhibited effective cellular penetration and low cytotoxicity. Anti-miR-31 lipoplexes reduced miR-31 and NF-κB levels while increasing STK40 and PPP6C expression. Pre-miR-885-5p lipoplexes elevated miR-885-5p levels and downregulated PSMB5 and NF-κB in keratinocytes. While anti-miR-485-3p lipoplexes reduced T-cell activation markers. Anti-miR-31 and pre-miR-885-5p lipoplexes successfully modulated inflammatory pathways in 3D-skin CLE models. miRNA lipoplexes represent promising candidates for pioneering topical genetic therapies for CLE. Further studies, including animal models, are necessary to validate and optimize these findings. Full article
(This article belongs to the Special Issue Molecular Perspective in Autoimmune Diseases)
Show Figures

Figure 1

13 pages, 2042 KiB  
Article
Optimization of Encapsulation Core–Shell Structure to Preserve Polyphenols in Soy Protein—Polysaccharide Co-Dried Complexes
by Xinyue Zheng, Xiaofang Chu and Hongyang Pan
Molecules 2025, 30(5), 978; https://doi.org/10.3390/molecules30050978 - 20 Feb 2025
Viewed by 660
Abstract
Polyphenols from extra virgin olive oil (EVOO) are bioactive compounds with significant antioxidant properties, but their instability necessitates effective encapsulation for enhanced stability and controlled release. This study prepared water-in-oil-in-water (W1/O/W2) emulsions to encapsulate EVOO using a two-step emulsification technique with varying concentrations [...] Read more.
Polyphenols from extra virgin olive oil (EVOO) are bioactive compounds with significant antioxidant properties, but their instability necessitates effective encapsulation for enhanced stability and controlled release. This study prepared water-in-oil-in-water (W1/O/W2) emulsions to encapsulate EVOO using a two-step emulsification technique with varying concentrations of soy protein isolate (SPI) (0–10% w/w), maltodextrin (MD) (0–20% w/w), and propylene glycol alginate (PGA) (0–0.5% w/w). A three-factor central composite design (CCD) combined with response surface methodology (RSM) was employed to establish 20 W1/O/W2 emulsions to analyze the effects of the formulation on emulsion properties. Additionally, the effects of different pH levels on emulsion stability were investigated. The results showed that the ratios of SPI, MD, and PGA significantly influenced particle size distribution, stability, and encapsulation efficiency. PGA enhanced the rigidity of the interfacial membrane, forming stable core–shell structures and reducing EVOO release. The optimal formulation (7.887% SPI, 15.774% MD, 0.395% PGA) achieved superior encapsulation efficiency (97.66%), long-term stability, and viscosity below 300 mPa·s. Cryo-TEM analysis confirmed the formation of core–shell structures, while Zeta potential measurements indicated smaller particle sizes and enhanced stability at pH 11. This optimized W1/O/W2 emulsion system offers a promising food-grade delivery platform for hydrophobic bioactive compounds, enabling enhanced stability and controlled release of EVOO polyphenols for applications in functional foods, nutraceuticals, and other industries. Full article
(This article belongs to the Special Issue New Achievements and Challenges in Food Chemistry)
Show Figures

Figure 1

15 pages, 3049 KiB  
Article
Characterization of Endogenous Retroviral-like Particles Expressed from the Spodoptera frugiperda Sf9 Cell Line
by Hailun Ma, Eunhae H. Bae, Pei-Ju Chin and Arifa S. Khan
Viruses 2025, 17(2), 136; https://doi.org/10.3390/v17020136 - 21 Jan 2025
Viewed by 1999
Abstract
The Spodoptera frugiperda Sf9 insect cell line is used in the baculovirus expression vector system for the development of various viral vaccines and some gene therapy products. Early studies indicated that Sf9 cells produced a reverse transcriptase (RT) activity that was detected using [...] Read more.
The Spodoptera frugiperda Sf9 insect cell line is used in the baculovirus expression vector system for the development of various viral vaccines and some gene therapy products. Early studies indicated that Sf9 cells produced a reverse transcriptase (RT) activity that was detected using a sensitive PCR-enhanced reverse transcriptase (PERT) assay. Since RT is generally associated with retrovirus particles, we undertook the investigation of the physical properties and infectious nature of the extracellular RT activity that was constitutively expressed from Sf9 cells or induced after the chemical treatment of the cells with drugs known to activate endogenous retroviruses. A density gradient analysis indicated that the peak RT activity corresponded to a low buoyant density of about 1.08 g/mL. Ultracentrifugation and size filtration of cell-free Sf9 supernatant indicated that different particle sizes were associated with the RT activity. This was confirmed by transmission electron microscopy and cryoEM, which revealed a diversity in particle size and type, including viral-like and extracellular vesicles. The treatment of Sf9 cells with 5-iodo-2′-deoxyuridine (IUdR) induced a 33-fold higher RT activity with a similar low buoyant density compared to untreated cells. Infectivity studies using various target cells (human A204, A549, MRC-5, and Raji, and African green monkey Vero cells) inoculated with cell-free supernatant from untreated and IUdR-treated Sf9 cells showed the absence of a replicating retrovirus by PERT-testing of cell-free supernatant during the 30 day-culturing period. Additionally, there was no evidence of virus entry by whole genome analysis of inoculated MRC-5 cells using high-throughput sequencing. This is the first study to identify extracellular retroviral-like particles in Spodoptera. Full article
(This article belongs to the Special Issue The Diverse Regulation of Transcription in Endogenous Retroviruses)
Show Figures

Figure 1

21 pages, 4144 KiB  
Article
Development of a Cationic Polymeric Micellar Structure with Endosomal Escape Capability Enables Enhanced Intramuscular Transfection of mRNA-LNPs
by Siyuan Deng, Han Shao, Hongtao Shang, Lingjin Pang, Xiaomeng Chen, Jingyi Cao, Yi Wang and Zhao Zhao
Vaccines 2025, 13(1), 25; https://doi.org/10.3390/vaccines13010025 - 30 Dec 2024
Cited by 1 | Viewed by 1907
Abstract
Background/Objectives: The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. Methods: We synthesized a cationic and ampholytic di-block copolymer, [...] Read more.
Background/Objectives: The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. Methods: We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol)4-5 methacrylatea-co-hexyl methacrylateb)X-b-poly(butyl methacrylatec-co-dimethylaminoethyl methacrylated-co-propyl acrylatee)Y (p(PEG4-5MAa-co-HMAb)X-b-p(BMAc-co-DMAEMAd-co-PAAe)Y), via reversible addition–fragmentation chain transfer polymerization. The cPMs were then formulated using the synthesized polymer by the dispersion–diffusion method and characterized by dynamic light scattering (DLS) and cryo-transmission electron microscopy (CryoTEM). The membrane-destabilization activity of the cPMs was evaluated by a hemolysis assay. We performed an in vivo functional assay of firefly luciferase (Fluc) mRNA using two of the most commonly studied LNPs, SM102 LNP and Dlin-MC3-DMA LNPs. Results: With a particle size of 61.31 ± 0.68 nm and a zeta potential of 37.76 ± 2.18 mV, the cPMs exhibited a 2–3 times higher firefly luciferase signal at the injection site compared to the control groups without cPMs following intramuscular injection in mice, indicating the high potential of cPMs to enhance the endosomal escape efficiency of mRNA-LNPs. Conclusions: The developed cPM, with enhanced endosomal escape capabilities, presents a promising strategy to improve the expression efficiency of delivered mRNAs. This approach offers a novel alternative strategy with no modifications to the inherent properties of mRNA-LNPs, preventing any unforeseeable changes in formulation characteristics. Consequently, this polymer-based nanomaterial holds immense potential for clinical applications in mRNA-based vaccines. Full article
(This article belongs to the Special Issue Biotechnologies Applied in Vaccine Research)
Show Figures

Figure 1

26 pages, 12100 KiB  
Article
Molecular Profiling of A549 Cell-Derived Exosomes: Proteomic, miRNA, and Interactome Analysis for Identifying Potential Key Regulators in Lung Cancer
by Alexandros Giannopoulos-Dimitriou, Aikaterini Saiti, Andigoni Malousi, Athanasios K. Anagnostopoulos, Giannis Vatsellas, Passant M. Al-Maghrabi, Anette Müllertz, Dimitrios G. Fatouros and Ioannis S. Vizirianakis
Cancers 2024, 16(24), 4123; https://doi.org/10.3390/cancers16244123 - 10 Dec 2024
Cited by 1 | Viewed by 2338
Abstract
Background/Objectives: Exosomes, nano-sized extracellular vesicles released by all cells, play a key role in intercellular communication and carry tumorigenic properties that impact surrounding or distant cells. The complexity of the exosomal molecular interactome and its effects on recipient cells still remain unclear. This [...] Read more.
Background/Objectives: Exosomes, nano-sized extracellular vesicles released by all cells, play a key role in intercellular communication and carry tumorigenic properties that impact surrounding or distant cells. The complexity of the exosomal molecular interactome and its effects on recipient cells still remain unclear. This study aims to decipher the molecular profile and interactome of lung adenocarcinoma A549 cell-derived exosomes using multi-omics and bioinformatics approaches. Methods: We performed comprehensive morphological and physicochemical characterization of exosomes isolated from cell culture supernatant of A549 cells in vitro, using DLS, cryo-TEM, Western blot, and flow cytometry. Proteomic and miRNA high-throughput profiling, coupled with bioinformatics network analysis, were applied to elucidate the exosome molecular cargo. A comparative miRNA analysis was also conducted with exosomes derived from normal lung fibroblast MRC-5 cells. Results: Exosomes exhibited an average size of ~40 nm and disk-shaped lipid bilayer structures, with tetraspanins CD9 and CD63 validated as exosomal markers. Proteomic analysis identified 68 proteins, primarily linked to the extracellular matrix organization and metabolic processes. miRNA sequencing revealed 72 miRNAs, notably hsa-miR-619-5p, hsa-miR-122-5p, hsa-miR-9901, hsa-miR-7704, and hsa-miR-151a-3p, which are involved in regulating metabolic processes, gene expression, and tumorigenic pathways. Th integration of proteomic and miRNA data through a proteogenomics approach identified dually affected genes including ERBB2, CD44, and APOE, impacted by both exosomal miRNA targeting and protein interactions through synergistic or antagonistic interactions. Differential analysis revealed a distinct miRNA profile in A549 exosomes, associated with cancer-related biological processes, compared to MRC-5 exosomes; notably, hsa-miR-619-5p emerged as a promising candidate for future clinical biomarker studies. The network analysis also revealed genes targeted by multiple upregulated tumor-associated miRNAs in potential exosome-recipient cells. Conclusions: This integrative study provides insights into the molecular interactome of lung adenocarcinoma A549 cell-derived exosomes, providing a foundation for future research on exosomal cargo and its role in tumor cell communication, growth, and progression. Full article
(This article belongs to the Special Issue Lung Cancer Proteogenomics: New Era, New Insights)
Show Figures

Figure 1

31 pages, 5017 KiB  
Review
Structures of Oligomeric States of Tau Protein, Amyloid-β, α-Synuclein and Prion Protein Implicated in Alzheimer’s Disease, Parkinson’s Disease and Prionopathies
by Ondrej Cehlar, Stefana Njemoga, Marian Horvath, Erik Cizmazia, Zuzana Bednarikova and Exequiel E. Barrera
Int. J. Mol. Sci. 2024, 25(23), 13049; https://doi.org/10.3390/ijms252313049 - 4 Dec 2024
Cited by 2 | Viewed by 3227
Abstract
In this review, we focus on the biophysical and structural aspects of the oligomeric states of physiologically intrinsically disordered proteins and peptides tau, amyloid-β and α-synuclein and partly disordered prion protein and their isolations from animal models and human brains. These protein states [...] Read more.
In this review, we focus on the biophysical and structural aspects of the oligomeric states of physiologically intrinsically disordered proteins and peptides tau, amyloid-β and α-synuclein and partly disordered prion protein and their isolations from animal models and human brains. These protein states may be the most toxic agents in the pathogenesis of Alzheimer’s and Parkinson’s disease. It was shown that oligomers are important players in the aggregation cascade of these proteins. The structural information about these structural states has been provided by methods such as solution and solid-state NMR, cryo-EM, crosslinking mass spectrometry, AFM, TEM, etc., as well as from hybrid structural biology approaches combining experiments with computational modelling and simulations. The reliable structural models of these protein states may provide valuable information for future drug design and therapies. Full article
(This article belongs to the Special Issue Protein Folding: 2nd Edition)
Show Figures

Figure 1

14 pages, 6320 KiB  
Article
Interactions Between Cationic Micellar Solution and Aromatic Hydrotropes with Subtle Structural Variations
by Bin Liu, Shuo Yin, Xia Wu, Xilian Wei, Huifang Xu, Jing Li and Dongmei Lv
Molecules 2024, 29(22), 5482; https://doi.org/10.3390/molecules29225482 - 20 Nov 2024
Viewed by 916
Abstract
Wormlike micelles (WLMs) with tunable viscoelastic characteristics have emerged as indispensable smart materials with a wide range of applications, which have garnered intense interest over the past few decades. However, quantitatively predicting the effect of various hydrotropes on the rheological behaviors of WLMs [...] Read more.
Wormlike micelles (WLMs) with tunable viscoelastic characteristics have emerged as indispensable smart materials with a wide range of applications, which have garnered intense interest over the past few decades. However, quantitatively predicting the effect of various hydrotropes on the rheological behaviors of WLMs remains a challenge. In this article, micelles were formed in a mixture of 3-hexadecyloxy-2-hydroxypropyltrimethylammonium bromide (R16HTAB) and aromatic hydrotropes (e.g., sodium benzoate, sodium cinnamate and their derivatives, respectively) in an aqueous solution. The phase behavior, viscoelasticity and thickening mechanism were systematically studied by macroscopic observation, rheological measurements, electrostatic potential analysis and cryogenic transmission electron microscopy (Cryo-TEM). Rheological measurements were used to probe the remarkable viscoelastic properties of micelles stemming from their lengthening and entanglement under the interaction between R16HTAB and hydrotropes with structural variations. For an equimolar system of R16HTAB and cosolute (40 mM), the relaxation time decreases in the following order: SpMB > SoHB > S4MS > SmMB > S5MS > SB > SmHB > SoMB > SpHB. These results allow us to predict the possible rules for the self-assembly of R16HTAB and aromatic hydrotropes, which is conductive to directionally designing and synthesizing smart wormlike micelles. Full article
Show Figures

Figure 1

22 pages, 3597 KiB  
Article
Enhanced Antitumor Efficacy of Cytarabine and Idarubicin in Acute Myeloid Leukemia Using Liposomal Formulation: In Vitro and In Vivo Studies
by Chunxia Zhu, Yang Liu, Xiaojun Ji, Yaxuan Si, Xianhao Tao, Xiaohua Zhang and Lifang Yin
Pharmaceutics 2024, 16(9), 1220; https://doi.org/10.3390/pharmaceutics16091220 - 19 Sep 2024
Cited by 1 | Viewed by 1693
Abstract
Background: Acute myeloid leukemia (AML) is the most common type of acute leukemia among adults with the recommend therapy of combination of cytarabine and idarubicin in the induction phase. The uncoordinated pharmacokinetics prevent adequate control of drug ratio following systemic administration. Therefore, the [...] Read more.
Background: Acute myeloid leukemia (AML) is the most common type of acute leukemia among adults with the recommend therapy of combination of cytarabine and idarubicin in the induction phase. The uncoordinated pharmacokinetics prevent adequate control of drug ratio following systemic administration. Therefore, the dual-loaded liposomes containing cytarabine and idarubicin for synergistic effects were proposed and investigated. Methods: The molar ratio of cytarabine and idarubicin for synergistic effects was investigated. The dual-loaded liposomes were prepared and characterized by particle size, zeta potential, encapsulation efficiency, cryo-Transmission electron microscopy (cryo-TEM), and in vitro stability. The in vitro cytotoxicity and cell uptake of liposomes were determined within CCRF-CEM cells. The PK experiments was carried out in male SD rats. The in vivo antitumor effect was carried out within CD-1 nude female mice. The antitumor mechanism of liposomes was investigated. Results: The synergistic molar ratios were found to be in the range of 20:1~40:1. The size distribution of the dual-loaded liposomes was approximately 100 nm with PDI ≤ 0.1, a zeta potential of approximately −30 mV, an entrapment efficiency of cytarabine and idarubicin of >95% with spherical structure and uniform distribution, and in vitro stability for 21 d. The drugs in the liposomes can be quickly uptaken by the leukemia cells. The PK experiments showed that the molar ratio of cytarabine to idarubicin in plasma was maintained at 30:1 within 4 h. The efficacy of liposomes was significantly enhanced. Conclusions: The dual-loaded liposomes containing cytarabine and idarubicin showed enhanced antitumor efficacy. Full article
Show Figures

Figure 1

30 pages, 8586 KiB  
Review
Unraveling the Dynamic Properties of New-Age Energy Materials Chemistry Using Advanced In Situ Transmission Electron Microscopy
by Subramaniyan Ramasundaram, Sampathkumar Jeevanandham, Natarajan Vijay, Sivasubramani Divya, Peter Jerome and Tae Hwan Oh
Molecules 2024, 29(18), 4411; https://doi.org/10.3390/molecules29184411 - 17 Sep 2024
Cited by 1 | Viewed by 5625
Abstract
The field of energy storage and conversion materials has witnessed transformative advancements owing to the integration of advanced in situ characterization techniques. Among them, numerous real-time characterization techniques, especially in situ transmission electron microscopy (TEM)/scanning TEM (STEM) have tremendously increased the atomic-level understanding [...] Read more.
The field of energy storage and conversion materials has witnessed transformative advancements owing to the integration of advanced in situ characterization techniques. Among them, numerous real-time characterization techniques, especially in situ transmission electron microscopy (TEM)/scanning TEM (STEM) have tremendously increased the atomic-level understanding of the minute transition states in energy materials during electrochemical processes. Advanced forms of in situ/operando TEM and STEM microscopic techniques also provide incredible insights into material phenomena at the finest scale and aid to monitor phase transformations and degradation mechanisms in lithium-ion batteries. Notably, the solid–electrolyte interface (SEI) is one the most significant factors that associated with the performance of rechargeable batteries. The SEI critically controls the electrochemical reactions occur at the electrode–electrolyte interface. Intricate chemical reactions in energy materials interfaces can be effectively monitored using temperature-sensitive in situ STEM techniques, deciphering the reaction mechanisms prevailing in the degradation pathways of energy materials with nano- to micrometer-scale spatial resolution. Further, the advent of cryogenic (Cryo)-TEM has enhanced these studies by preserving the native state of sensitive materials. Cryo-TEM also allows the observation of metastable phases and reaction intermediates that are otherwise challenging to capture. Along with these sophisticated techniques, Focused ion beam (FIB) induction has also been instrumental in preparing site-specific cross-sectional samples, facilitating the high-resolution analysis of interfaces and layers within energy devices. The holistic integration of these advanced characterization techniques provides a comprehensive understanding of the dynamic changes in energy materials. This review highlights the recent progress in employing state-of-the-art characterization techniques such as in situ TEM, STEM, Cryo-TEM, and FIB for detailed investigation into the structural and chemical dynamics of energy storage and conversion materials. Full article
Show Figures

Figure 1

26 pages, 3627 KiB  
Article
Unveiling the Performance of Co-Assembled Hybrid Nanocarriers: Moving towards the Formation of a Multifunctional Lipid/Random Copolymer Nanoplatform
by Efstathia Triantafyllopoulou, Diego Romano Perinelli, Aleksander Forys, Pavlos Pantelis, Vassilis G. Gorgoulis, Nefeli Lagopati, Barbara Trzebicka, Giulia Bonacucina, Georgia Valsami, Natassa Pippa and Stergios Pispas
Pharmaceutics 2024, 16(9), 1204; https://doi.org/10.3390/pharmaceutics16091204 - 13 Sep 2024
Cited by 2 | Viewed by 1478
Abstract
Despite the appealing properties of random copolymers, the use of these biomaterials in association with phospholipids is still limited, as several aspects of their performance have not been investigated. The aim of this work is the formulation of lipid/random copolymer platforms and the [...] Read more.
Despite the appealing properties of random copolymers, the use of these biomaterials in association with phospholipids is still limited, as several aspects of their performance have not been investigated. The aim of this work is the formulation of lipid/random copolymer platforms and the comprehensive study of their features by multiple advanced characterization techniques. Both biomaterials are amphiphilic, including two phospholipids (1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) and a statistical copolymer of oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(diisopropylamino) ethyl methacrylate (DIPAEMA). We examined the design parameters, including the lipid composition, the % comonomer ratio, and the lipid-to-polymer ratio that could be critical for their behavior. The structures were also probed in different conditions. To the best of the authors’ knowledge, this is the first time that P(OEGMA-co-DIPAEMA)/lipid hybrid colloidal dispersions have been investigated from a membrane mechanics, biophysical, and morphological perspective. Among other parameters, the copolymer architecture and the hydrophilic to hydrophobic balance are deemed fundamental parameters for the biomaterial co-assembly, having an impact on the membrane’s fluidity, morphology, and thermodynamics. Exploiting their unique characteristics, the most promising candidates were utilized for methotrexate (MTX) loading to explore their encapsulation capability and potential antitumor efficacy in vitro in various cell lines. Full article
(This article belongs to the Special Issue Polymer-Based Delivery System)
Show Figures

Figure 1

19 pages, 2667 KiB  
Article
Bioavailability of Liposomal Vitamin C in Powder Form: A Randomized, Double-Blind, Cross-Over Trial
by Przemysław Żmuda, Barbara Khaidakov, Maria Krasowska, Katarzyna Czapska, Michał Dobkowski, Julian Guzowski, Paulina Kowalczyk, Krzysztof Lemke, Marcin Folwarski, Aleksander Foryś, Ewa Domian and Marek Postuła
Appl. Sci. 2024, 14(17), 7718; https://doi.org/10.3390/app14177718 - 1 Sep 2024
Cited by 2 | Viewed by 15828
Abstract
The purpose of this study was to evaluate the properties and pharmacokinetics of liposomal vitamin C in powder form obtained by a method devoid of organic solvents. The powder and liposome morphology were analyzed using scanning electron microscopy (SEM) and cryogenic transmission electron [...] Read more.
The purpose of this study was to evaluate the properties and pharmacokinetics of liposomal vitamin C in powder form obtained by a method devoid of organic solvents. The powder and liposome morphology were analyzed using scanning electron microscopy (SEM) and cryogenic transmission electron microscopy (cryo-TEM), respectively. Additionally, the carrier particle size, size distribution (STEP-Technology®; L.U.M. GmbH, Berlin, Germany), and zeta potential value were determined. The pharmacokinetic parameters of liposomal and non-liposomal vitamin C (AUC, Cmax, C10h, and C24h) were compared in a randomized, single-dose, double-blind, cross-over trial (ClinicalTrials.gov ID: NCT05843617) involving healthy adult volunteers (n = 10, 1000 mg dose). The process of spray drying used to transform liquid suspensions of the liposomes into powder form did not adversely affect the quality of the carrier particles obtained. Compared to non-encapsulated vitamin C, oral administration of the liposomal formulation resulted in significantly better absorption of ascorbic acid into the bloodstream, which equated to a higher bioavailability of the liposomal product (30% increase in AUC, p < 0.05). The duration of elevated vitamin C blood levels was also longer (C24h increase of 30%, p < 0.05). Although the results obtained are promising and suggest higher bioavailability for the liposomal form of vitamin C, the limited sample size necessitates further research with a larger cohort to confirm these findings. Full article
Show Figures

Figure 1

37 pages, 40998 KiB  
Article
Development and Evaluation of Docetaxel-Loaded Nanostructured Lipid Carriers for Skin Cancer Therapy
by Florentina-Iuliana Cocoș, Valentina Anuța, Lăcrămioara Popa, Mihaela Violeta Ghica, Mihaela-Alexandra Nica, Mirela Mihăilă, Radu Claudiu Fierăscu, Bogdan Trică, Cristian Andi Nicolae and Cristina-Elena Dinu-Pîrvu
Pharmaceutics 2024, 16(7), 960; https://doi.org/10.3390/pharmaceutics16070960 - 19 Jul 2024
Cited by 6 | Viewed by 2409
Abstract
This study focuses on the design, characterization, and optimization of nanostructured lipid carriers (NLCs) loaded with docetaxel for the treatment of skin cancer. Employing a systematic formulation development process guided by Design of Experiments (DoE) principles, key parameters such as particle size, polydispersity [...] Read more.
This study focuses on the design, characterization, and optimization of nanostructured lipid carriers (NLCs) loaded with docetaxel for the treatment of skin cancer. Employing a systematic formulation development process guided by Design of Experiments (DoE) principles, key parameters such as particle size, polydispersity index (PDI), zeta potential, and entrapment efficiency were optimized to ensure the stability and drug-loading efficacy of the NLCs. Combined XRD and cryo-TEM analysis were employed for NLC nanostructure evaluation, confirming the formation of well-defined nanostructures. In vitro kinetics studies demonstrated controlled and sustained docetaxel release over 48 h, emphasizing the potential for prolonged therapeutic effects. Cytotoxicity assays on human umbilical vein endothelial cells (HUVEC) and SK-MEL-24 melanoma cell line revealed enhanced efficacy against cancer cells, with significant selective cytotoxicity and minimal impact on normal cells. This multidimensional approach, encompassing formulation optimization and comprehensive characterization, positions the docetaxel-loaded NLCs as promising candidates for advanced skin cancer therapy. The findings underscore the potential translational impact of these nanocarriers, paving the way for future preclinical investigations and clinical applications in skin cancer treatment. Full article
Show Figures

Figure 1

Back to TopTop