Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Clausena harmandiana

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2618 KiB  
Article
New Phenolic Lipids from the Leaves of Clausena harmandiana Inhibit SARS-CoV-2 Entry into Host Cells
by Marion Chambon, Charline Herrscher, Dana Al Halabi, Nathan François, Sandrine Belouzard, Stéphanie Boutet, Van Cuong Pham, Thi Mai Huong Doan, Karin Séron, Patrick Mavingui, Marc Litaudon, Chaker El Kalamouni and Cécile Apel
Molecules 2023, 28(14), 5414; https://doi.org/10.3390/molecules28145414 - 14 Jul 2023
Cited by 4 | Viewed by 2027
Abstract
Induced by the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the COVID-19 pandemic underlined the clear need for antivirals against coronaviruses. In an effort to identify new inhibitors of SARS-CoV-2, a screening of 824 extracts prepared from various parts of 400 [...] Read more.
Induced by the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the COVID-19 pandemic underlined the clear need for antivirals against coronaviruses. In an effort to identify new inhibitors of SARS-CoV-2, a screening of 824 extracts prepared from various parts of 400 plant species belonging to the Rutaceae and Annonaceae families was conducted using a cell-based HCoV-229E inhibition assay. Due to its significant activity, the ethyl acetate extract of the leaves of Clausena harmandiana was selected for further chemical and biological investigations. Mass spectrometry-guided fractionation afforded three undescribed phenolic lipids (13), whose structures were determined via spectroscopic analysis. The absolute configurations of 1 and 2 were determined by analyzing Mosher ester derivatives. The antiviral activity against SARS-CoV-2 was subsequently shown, with IC50 values of 0.20 and 0.05 µM for 2 and 3, respectively. The mechanism of action was further assessed, showing that both 2 and 3 are inhibitors of coronavirus entry by acting directly on the viral particle. Phenolic lipids from Clausena harmandiana might be a source of new antiviral agents against human coronaviruses. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
Show Figures

Figure 1

14 pages, 2760 KiB  
Article
Multifunctionality of Clausena harmandiana Extract and Its Active Constituents against Alzheimer’s Disease
by Chantana Boonyarat, Chavi Yenjai, Orawan Monthakantirat, Rawiwun Kaewamatawong, Pattaporn Poonsawas, Jinda Wangboonskul, Suchada Chaiwiwatrakul and Pornthip Waiwut
Curr. Issues Mol. Biol. 2022, 44(8), 3681-3694; https://doi.org/10.3390/cimb44080252 - 15 Aug 2022
Cited by 9 | Viewed by 2756
Abstract
This study was designed to investigate the effects of the root-bark extract of Clausena harmandiana (CH) and its active constituents (nordentatin and 7-methoxyheptaphylline) on pharmacological activities regarding selected targets associated with AD, namely, its antioxidant activity, inhibition of Aβ aggregation, acetylcholinesterase (AChE) activity, [...] Read more.
This study was designed to investigate the effects of the root-bark extract of Clausena harmandiana (CH) and its active constituents (nordentatin and 7-methoxyheptaphylline) on pharmacological activities regarding selected targets associated with AD, namely, its antioxidant activity, inhibition of Aβ aggregation, acetylcholinesterase (AChE) activity, and neuroprotective effects. The effect of the CH extract on the cognitive impairment induced by scopolamine was also evaluated in mice. The effects of the CH extract and its active constituents on radical scavenging, Aβ aggregation, and AChE activity were investigated with a 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assay, a thioflavin-T assay, and Ellman’s method. The neuroprotective effects of the extract against hydrogen-peroxide and Aβ toxicity were evaluated with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. In addition, the effects on cognitive impairment induced by scopolamine in mice were evaluated using Morris-water-maze and modified-Y-maze test models. The results of the present study demonstrate that the root-bark extract of CH shows multimodal actions relevant to the AD pathological cascade, including antioxidant effects, the inhibition of Aβ aggregation, the inhibition of AChE function, and neuroprotection against oxidative stress and Aβ toxicity. The extracts could improve both the short- and long-term memory deficits induced by scopolamine in mice. Full article
Show Figures

Figure 1

13 pages, 37866 KiB  
Article
Nordentatin Inhibits Neuroblastoma Cell Proliferation and Migration through Regulation of GSK-3 Pathway
by Chantana Boonyarat, Panatchakorn Boonput, Nantakorn Tongloh, Rawiwun Kaewamatawong, Suchada Chaiwiwatrakul, Chavi Yenjai and Pornthip Waiwut
Curr. Issues Mol. Biol. 2022, 44(3), 1062-1074; https://doi.org/10.3390/cimb44030070 - 24 Feb 2022
Cited by 8 | Viewed by 3452
Abstract
Cancer is caused by abnormal cell changes leading to uncontrolled cell growth. The specific characteristics of cancer cells, including the loss of apoptotic control and the ability to migrate into and invade the surrounding tissue, result in cancer cell metastasis to other parts [...] Read more.
Cancer is caused by abnormal cell changes leading to uncontrolled cell growth. The specific characteristics of cancer cells, including the loss of apoptotic control and the ability to migrate into and invade the surrounding tissue, result in cancer cell metastasis to other parts of the body. Therefore, the inhibition of the proliferation, migration, and invasion of cancer cells are the principal goals in the treatment of cancer. This study aimed to investigate the inhibitory activity of nordentatin, a coumarin derivative isolated from Clausena harmandiana, regarding the proliferation and migration of human neuroblastoma cells (SH-SY5Y). Nordentatin at a concentration of 100 µM showed cell cytotoxicity toward SH-SY5Y that was significantly different from that of the control group (p < 0.01) at 24, 48, and 72 h. Moreover, nordentatin inhibited SH-SY5Y proliferation by inhibiting the antiapoptotic protein Mcl-1, leading to the cleavage of caspase-3 and resulting in the inhibition of a migratory protein, MMP-9, through the GSK-3 pathway (compared with cells treated with a GSK inhibitor). These results suggest that nordentatin inhibited the proliferation and migration of neuroblastoma cells through the GSK-3 pathway. Full article
(This article belongs to the Topic Cancer Biology and Therapy)
Show Figures

Graphical abstract

15 pages, 3073 KiB  
Article
Semi-Synthesis of Small Molecules of Aminocarbazoles: Tumor Growth Inhibition and Potential Impact on p53
by Solida Long, Joana B. Loureiro, Carla Carvalho, Luís Gales, Lucília Saraiva, Madalena M. M. Pinto, Ploenthip Puthongking and Emília Sousa
Molecules 2021, 26(6), 1637; https://doi.org/10.3390/molecules26061637 - 15 Mar 2021
Cited by 4 | Viewed by 2966
Abstract
The tumor suppressor p53 is inactivated by mutation in approximately 50% of human cancers. Small molecules that bind and stabilize those mutants may represent effective anticancer drugs. Herein, we report the tumor cell growth inhibitory activity of carbazole alkaloids and amino derivatives, as [...] Read more.
The tumor suppressor p53 is inactivated by mutation in approximately 50% of human cancers. Small molecules that bind and stabilize those mutants may represent effective anticancer drugs. Herein, we report the tumor cell growth inhibitory activity of carbazole alkaloids and amino derivatives, as well as their potential activation of p53. Twelve aminocarbazole alkaloids were semi-synthesized from heptaphylline (1), 7-methoxy heptaphylline (2), and 7-methoxymukonal (3), isolated from Clausena harmandiana, using a reductive amination protocol. Naturally-occurring carbazoles 1–3 and their amino derivatives were evaluated for their potential effect on wild-type and mutant p53 activity using a yeast screening assay and on human tumor cell lines. Naturally-occurring carbazoles 1–3 showed the most potent growth inhibitory effects on wild-type p53-expressing cells, being heptaphylline (1) the most promising in all the investigated cell lines. However, compound 1 also showed growth inhibition against non-tumor cells. Conversely, semi-synthetic aminocarbazole 1d showed an interesting growth inhibitory activity in tumor cells expressing both wild-type and mutant p53, exhibiting low growth inhibition on non-tumor cells. The yeast assay showed a potential reactivation of mutant p53 by heptaphylline derivatives, including compound 1d. The results obtained indicate that carbazole alkaloids may represent a promising starting point to search for new mutp53-reactivating agents with promising applications in cancer therapy. Full article
(This article belongs to the Special Issue Nature-Inspired Antitumor Agents)
Show Figures

Graphical abstract

18 pages, 2660 KiB  
Article
Phytochemical Analysis and Evaluation of Antioxidant and Biological Activities of Extracts from Three Clauseneae Plants in Northern Thailand
by Keerati Tanruean, Pisit Poolprasert, Nakarin Suwannarach, Jaturong Kumla and Saisamorn Lumyong
Plants 2021, 10(1), 117; https://doi.org/10.3390/plants10010117 - 8 Jan 2021
Cited by 15 | Viewed by 7424
Abstract
This study established the DNA barcoding sequences (matK and rbcL) of three plant species identified in the tribe Clauseneae, namely Clausena excavata, C. harmandiana and Murraya koenigii. The total phenolic and total flavonoid contents, together with the biological [...] Read more.
This study established the DNA barcoding sequences (matK and rbcL) of three plant species identified in the tribe Clauseneae, namely Clausena excavata, C. harmandiana and Murraya koenigii. The total phenolic and total flavonoid contents, together with the biological activities of the derived essential oils and methanol extracts, were also investigated. Herein, the success of obtaining sequences of these plant using two different barcode genes matK and rbcL were 62.5% and 100%, respectively. Both regions were discriminated by around 700 base pairs and these had resemblance with those of the Clausenae materials earlier deposited in Genbank at a 99–100% degree of identity. Additionally, the use of matK DNA sequences could positively confirm the identity as monophyletic. The highest total phenolic and total flavonoid content values (p < 0.05) were observed in the methanol extract of M. koenigii at 43.50 mg GAE/g extract and 66.13 mg QE/g extract, respectively. Furthermore, anethole was detected as the dominant compound in C. excavata (86.72%) and C. harmandiana (46.09%). Moreover, anethole (26.02%) and caryophyllene (21.15%) were identified as the major phytochemical compounds of M. koenigii. In terms of the biological properties, the M. koenigii methanol extract was found to display the greatest amount of antioxidant activity (DPPH; IC50 95.54 µg/mL, ABTS value 118.12 mg GAE/g extract, FRAP value 48.15 mg GAE/g extract), and also revealed the highest α-glucosidase and antihypertensive inhibitory activities with percent inhibition values of 84.55 and 84.95. Notably, no adverse effects on human peripheral blood mononuclear cells were observed with regard to all of the plant extracts. Furthermore, M. koenigii methanol extract exhibited promise against human lung cancer cells almost at 80% after 24 h and 90% over 48 h. Full article
Show Figures

Graphical abstract

14 pages, 3544 KiB  
Article
Cytotoxicity and Apoptosis Induction of Coumarins and Carbazole Alkaloids from Clausena harmandiana
by Porntip Jantamat, Natthida Weerapreeyakul and Ploenthip Puthongking
Molecules 2019, 24(18), 3385; https://doi.org/10.3390/molecules24183385 - 18 Sep 2019
Cited by 35 | Viewed by 5025
Abstract
Seven compounds, carbazole alkaloids (heptaphylline, 7-methoxyheptaphylline, 7-methoxymukonal) and coumarins (clausarin, dentatin, nordentatin, and xanthoxyletin), were isolated from the root bark of Clausena harmandiana. Antioxidation, cytotoxicity and apoptosis induction were evaluated in vitro. Results showed that clausarin exerted the highest DPPH radical scavenging [...] Read more.
Seven compounds, carbazole alkaloids (heptaphylline, 7-methoxyheptaphylline, 7-methoxymukonal) and coumarins (clausarin, dentatin, nordentatin, and xanthoxyletin), were isolated from the root bark of Clausena harmandiana. Antioxidation, cytotoxicity and apoptosis induction were evaluated in vitro. Results showed that clausarin exerted the highest DPPH radical scavenging and 7-methoxymukonal had the highest ferric reducing antioxidant power. In contrary, dentatin was the least DPPH radical scavenger, and heptaphylline was the least reducing antioxidant power. The isolated compounds showed different cytotoxicity. The hepatocellular carcinoma (HepG2) was generally more sensitive to the isolated compounds than lung cancer (SK-LU-1), colon cancer (HCT-116), and noncancerous (Vero) cell lines, respectively. Clausarin possessed the highest cytotoxicity selectively against cancer cell lines tested. 7-Methoxymukonal and 7-methoxyheptaphylline exhibited less cytotoxicity only in HepG2 cells and were inactive in the SK-LU-1 and HCT116 cells. Despite xantoxyletin possessing low antioxidant and low cytotoxic activity, it induced the highest apoptosis percentage with the lowest necrosis percentage of HepG2 cells after 24 h. In conclusion, xantoxyletin primarily show potential anticancer activity. The root bark of C. harmandiana is a good source of bioactive compounds or the lead for the development of new pharmaceutical agent. Full article
(This article belongs to the Special Issue Selected Papers from the Joint Symposia of MESMAP-5 & ISPBS-5)
Show Figures

Graphical abstract

Back to TopTop