Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = Caspr2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6057 KB  
Article
Autoimmune Encephalitis with Neuronal Surface Autoantibodies and Other Suspected Cases of Autoimmune Etiology: A Single-Center Experience in Poland
by Iwona Kurkowska-Jastrzębska, Katarzyna Polanowska, Katarzyna Kurczych, Agnieszka Cudna, Halina Sienkiewicz-Jarosz and Agnieszka Piechal
Int. J. Mol. Sci. 2025, 26(19), 9541; https://doi.org/10.3390/ijms26199541 - 30 Sep 2025
Viewed by 825
Abstract
Autoimmune encephalitis (AE) is an autoantibody-mediated central nervous system disorder with diverse neuropsychiatric and neurological manifestations, and should be considered in the differential diagnosis of acute and subacute neurological or psychiatric syndromes. In this retrospective study, we analyzed 65 patients: 54 with AE [...] Read more.
Autoimmune encephalitis (AE) is an autoantibody-mediated central nervous system disorder with diverse neuropsychiatric and neurological manifestations, and should be considered in the differential diagnosis of acute and subacute neurological or psychiatric syndromes. In this retrospective study, we analyzed 65 patients: 54 with AE (47 antibody-positive, seven antibody-negative) and 11 antibody-positive without AE. The most frequently detected antibodies targeted N-methyl-D-aspartate receptor (NMDAR), leucine-rich glioma-inactivated protein 1 (LGI1), and contactin-associated protein-like 2 (CASPR2)—key synaptic and axonal membrane proteins involved in excitatory neurotransmission, neuronal signaling, and synaptic plasticity. Clinical presentations were heterogeneous, ranging from common neuropsychiatric, cognitive, and seizure manifestations to atypical brainstem or cerebellar features. Symptom distribution analysis further demonstrated distinct patterns among Ab-positive AE, Ab-negative AE, and Ab-positive non-AE groups, with specific symptom–antibody associations providing potential diagnostic clues. Diagnostic complexity was underscored by unusual age at onset, overlap with multiple sclerosis, cases preceded by herpes labialis, and dual-antibody detection. A subset of antibody-positive patients had alternative diagnoses, highlighting the need for careful clinical correlation and cautious interpretation of antibody results. These findings illustrate the diagnostic challenges and broad clinical spectrum of AE, emphasizing the importance of integrating serological, clinical, and imaging data to improve diagnostic accuracy and guide management. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 1135 KB  
Review
Neuromyotonia and CASPR2 Antibodies: Electrophysiological Clues to Disease Pathophysiology
by João Moura, Pietro Antenucci, Ester Coutinho, Kailash P. Bhatia, Lorenzo Rocchi and Anna Latorre
Biomolecules 2025, 15(9), 1262; https://doi.org/10.3390/biom15091262 - 1 Sep 2025
Viewed by 1631
Abstract
Contactin-associated protein-like 2 (CASPR2) is a transmembrane protein of the neurexin superfamily, essential for clustering voltage-gated potassium channels, particularly Kv1, at the juxtaparanodal regions of myelinated axons. This precise localisation is essential for maintaining normal axonal excitability and preventing aberrant signal propagation. Autoantibodies [...] Read more.
Contactin-associated protein-like 2 (CASPR2) is a transmembrane protein of the neurexin superfamily, essential for clustering voltage-gated potassium channels, particularly Kv1, at the juxtaparanodal regions of myelinated axons. This precise localisation is essential for maintaining normal axonal excitability and preventing aberrant signal propagation. Autoantibodies targeting CASPR2 have been associated with various neurological syndromes, notably peripheral nerve hyperexcitability (PNH), which presents clinically with neuromyotonia and myokymia. PNH is characterised by distinctive electrophysiological findings, including neuromyotonic discharges, myokymic discharges, and afterdischarges, which provide diagnostic value and insight into underlying pathophysiology. This review explores the mechanisms of anti-CASPR2-associated PNH, focusing on how antibody-mediated disruption of Kv1 channel clustering leads to altered axonal excitability. Current evidence suggests that both the distal and proximal segments of the axon are sites of pathological activity, where impairments in action potential termination and re-entry prevention result in spontaneous, repetitive discharges. While afterdischarges likely originate within the axon, the precise location—whether in the alpha-motoneuron soma or axon—is uncertain. The involvement of spinal inhibitory circuits has also been proposed, though it remains speculative. Understanding the neurophysiological features of anti-CASPR2-associated PNH is essential for improving diagnostic accuracy and guiding treatment strategies. Further research is needed to clarify the mechanisms of CASPR2-related hyperexcitability. Full article
Show Figures

Figure 1

4 pages, 497 KB  
Case Report
An Unusual Case of Multifactorial Hemolytic Anemia: A Complex Interaction Between Genetic and Autoimmune Factors
by Mario Biglietto, Giusy Peluso, Cristina Luise, Diletta Tripi, Maria Francesca Conforti, Valeria Filipponi, Luisa Bizzoni and Stefania Trasarti
Hemato 2025, 6(2), 15; https://doi.org/10.3390/hemato6020015 - 29 May 2025
Viewed by 863
Abstract
Hemolytic anemias (HAs) encompasses a heterogeneous group of disorders with either congenital or acquired etiologies. We present a complex case of a 27-year-old woman with hemolytic anemia of multifactorial origin, involving both inherited RBC membrane defects and multiple autoimmune comorbidities. Genetic testing identified [...] Read more.
Hemolytic anemias (HAs) encompasses a heterogeneous group of disorders with either congenital or acquired etiologies. We present a complex case of a 27-year-old woman with hemolytic anemia of multifactorial origin, involving both inherited RBC membrane defects and multiple autoimmune comorbidities. Genetic testing identified heterozygous variants in SPTA1 and SBDS, consistent with carrier status for hereditary elliptocytosis and Shwachman–Diamond syndrome. The patient was also diagnosed with Caspr2-positive Isaacs syndrome, systemic lupus erythematosus, seronegative antiphospholipid syndrome, and anti-aquaporin-4 antibody-positive optic neuritis. Despite extensive immunosuppressive and immunotherapic treatment and splenectomy, the clinical course was marked by recurrent hemolytic crises, thrombotic complications, and progressive neurological involvement, ultimately leading to death. Our experience highlights the challenges posed by the diagnosis and management of HAs, underlining the relevance of a multidisciplinary and personalized approach. Full article
(This article belongs to the Section Non Neoplastic Blood Disorders)
Show Figures

Figure 1

26 pages, 827 KB  
Review
Antibody-Mediated Nodo- and Paranodopathies
by Valérie Quinot, Kevin Rostasy and Romana Höftberger
J. Clin. Med. 2024, 13(19), 5721; https://doi.org/10.3390/jcm13195721 - 25 Sep 2024
Cited by 5 | Viewed by 4225
Abstract
The recent discovery of pathogenic antibodies targeting cell adhesion molecules of the node of Ranvier has prompted efforts to develop a new classification for a subset of antibody-mediated peripheral neuropathies. These autoimmune nodo- and paranodopathies encompass epitopes such as neurofascin 155, neurofascin 186, [...] Read more.
The recent discovery of pathogenic antibodies targeting cell adhesion molecules of the node of Ranvier has prompted efforts to develop a new classification for a subset of antibody-mediated peripheral neuropathies. These autoimmune nodo- and paranodopathies encompass epitopes such as neurofascin 155, neurofascin 186, contactin-1, and contactin-associated protein 1, with a high likelihood of involving additional yet unidentified proteins. So far, the investigation of this subset of patients was primarily focused on adults, with only rare reports of pediatric cases. Low awareness among pediatricians and insufficient availability of appropriate diagnostic methods in many laboratories may mask a higher pediatric incidence than currently observed. Diagnosis is made by transfected cell-based assays and ELISA to characterize the specific target antigen and antibody subclass that provides insight into the pathophysiology. Clinical features often resemble those of CIDP or GBS in adults, whilst in pediatric patients, although rare, an atypical CIDP phenotype has predominantly been reported. Yet, in contrast to classical immune-mediated neuropathies, the clinical course is usually rapidly progressive, and response to classical first-line therapy often poor. Although electrophysiological signs of demyelination are observed, segmental demyelination and inflammation are not present on pathological examination. Rather, few neuropathological reports demonstrate features of axonal neuropathy without signs of true de- or remyelination. This review aims to summarize recent findings on such nodo- and paranodoneuropathies, shining light on features of these disorders in pediatric patients, a still little-explored field with only a few reports currently present. Full article
Show Figures

Figure 1

19 pages, 604 KB  
Article
Inflammatory and Autoimmune Aspects of Multisystem Inflammatory Syndrome in Children (MIS-C): A Prospective Cohort Study
by David A. Lawrence, Aishwarya Jadhav, Tapan K. Mondal, Kyle Carson, William T. Lee, Alexander H. Hogan, Katherine W. Herbst, Ian C. Michelow, Michael Brimacombe, Juan C. Salazar and The Connecticut Children’s COVID Collaborative
Viruses 2024, 16(6), 950; https://doi.org/10.3390/v16060950 - 12 Jun 2024
Cited by 6 | Viewed by 2389
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C) is a potentially life-threatening complication of COVID-19. The pathophysiological mechanisms leading to severe disease are poorly understood. This study leveraged clinical samples from a well-characterized cohort of children hospitalized with COVID-19 or MIS-C to compare immune-mediated biomarkers. [...] Read more.
Multisystem Inflammatory Syndrome in Children (MIS-C) is a potentially life-threatening complication of COVID-19. The pathophysiological mechanisms leading to severe disease are poorly understood. This study leveraged clinical samples from a well-characterized cohort of children hospitalized with COVID-19 or MIS-C to compare immune-mediated biomarkers. Our objective was to identify selected immune molecules that could explain, in part, why certain SARS-CoV-2-infected children developed MIS-C. We hypothesized that type-2 helper T cell-mediated inflammation can elicit autoantibodies, which may account for some of the differences observed between the moderate–severe COVID-19 (COVID+) and MIS-C cohort. We enumerated blood leukocytes and measured levels of selected serum cytokines, chemokines, antibodies to COVID-19 antigens, and autoantibodies in children presenting to an academic medical center in Connecticut, United States. The neutrophil/lymphocyte and eosinophil/lymphocyte ratios were significantly higher in those in the MIS-C versus COVID+ cohort. IgM and IgA, but not IgG antibodies to SARS-CoV-2 receptor binding domain were significantly higher in the MIS-C cohort than the COVID+ cohort. The serum levels of certain type-2 cytokines (interleukin (IL)-4, IL-5, IL-6, IL-8, IL-10, IL-13, and IL-33) were significantly higher in children with MIS-C compared to the COVID+ and SARS-CoV-2-negative cohorts. IgG autoantibodies to brain antigens and pentraxin were higher in children with MIS-C compared to SARS-CoV-19-negative controls, and children with MIS-C had higher levels of IgG anti-contactin-associated protein-like 2 (caspr2) compared to the COVID+ and SARS-CoV-19-negative controls. We speculate that autoimmune responses in certain COVID-19 patients may induce pathophysiological changes that lead to MIS-C. The triggers of autoimmunity and factors accounting for type-2 inflammation require further investigation. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

14 pages, 583 KB  
Review
Autoimmune Encephalitis with Antibodies: Anti-NMDAR, Anti-AMPAR, Anti-GQ1b, Anti-DPPX, Anti-CASPR2, Anti-LGI1, Anti-RI, Anti-Yo, Anti-Hu, Anti-CV2 and Anti-GABAAR, in the Course of Psychoses, Neoplastic Diseases, and Paraneoplastic Syndromes
by Michał Braczkowski, Dariusz Soszyński, Alicja Sierakowska, Ryszard Braczkowski, Klaudia Kufel and Beata Łabuz-Roszak
Diagnostics 2023, 13(15), 2589; https://doi.org/10.3390/diagnostics13152589 - 3 Aug 2023
Cited by 19 | Viewed by 6614
Abstract
Encephalitis is a condition with a variety of etiologies, clinical presentations, and degrees of severity. The causes of these disorders include both neuroinfections and autoimmune diseases in which host antibodies are pathologically directed against self-antigens. In autoimmune encephalitis, autoantibodies are expressed in the [...] Read more.
Encephalitis is a condition with a variety of etiologies, clinical presentations, and degrees of severity. The causes of these disorders include both neuroinfections and autoimmune diseases in which host antibodies are pathologically directed against self-antigens. In autoimmune encephalitis, autoantibodies are expressed in the central nervous system. The incidence of this disease is approximately 4% of all reported cases of encephalitis. Autoimmune encephalitis can be induced by antibodies against neuronal surface antigens such as N-methyl-D-aspartate-activated glutamate receptors (NMDAR), α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPAR) or gangliosides GQ1b, DPPX, CASPR2, LGI1, as well as by antibodies against neuronal intracellular antigens. The paper presents a number of both mental and neurological symptoms of autoimmune encephalitis. Moreover, the coexistence of psychoses, neoplastic diseases, and the methods of diagnosing autoimmune encephalitis are discussed. Attention was also drawn to the fact that early diagnosis, as well as early initiation of targeted treatment, increases the chance of a successful course of the therapeutic process. Strategy and Methodology: The articles on which the following paper was based were searched using search engines such as PubMed and Medline. Considering that anti-NMDAR antibodies were first described in 2007, the articles were from 2007 to 2023. The selection of papers was made by entering the phrases “autoimmune encephalitis and psychosis/paraneplastic syndromes or cancer”. The total number of articles that could be searched was 747, of which 100 items were selected, the most recent reports illustrating the presented topic. Thirty-four of them were rejected in connection with case reports or papers that could not be accessed. Full article
(This article belongs to the Special Issue Diagnostics in Immunological, Allergic and Inflammatory Disorders)
Show Figures

Figure 1

22 pages, 4720 KB  
Article
Compromised Myelin and Axonal Molecular Organization Following Adult-Onset Sulfatide Depletion
by Elizabeth Dustin, Edna Suarez-Pozos, Camryn Stotesberry, Shulan Qiu, Juan Pablo Palavicini, Xianlin Han and Jeffrey L. Dupree
Biomedicines 2023, 11(5), 1431; https://doi.org/10.3390/biomedicines11051431 - 12 May 2023
Cited by 7 | Viewed by 3162
Abstract
3-O-sulfogalactosylceramide, or sulfatide, is a prominent myelin glycosphingolipid reduced in the normal appearing white matter (NAWM) in Multiple Sclerosis (MS), indicating that sulfatide reduction precedes demyelination. Using a mouse model that is constitutively depleted of sulfatide, we previously demonstrated that sulfatide is essential [...] Read more.
3-O-sulfogalactosylceramide, or sulfatide, is a prominent myelin glycosphingolipid reduced in the normal appearing white matter (NAWM) in Multiple Sclerosis (MS), indicating that sulfatide reduction precedes demyelination. Using a mouse model that is constitutively depleted of sulfatide, we previously demonstrated that sulfatide is essential during development for the establishment and maintenance of myelin and axonal integrity and for the stable tethering of certain myelin proteins in the sheath. Here, using an adult-onset depletion model of sulfatide, we employ a combination of ultrastructural, immunohistochemical and biochemical approaches to analyze the consequence of sulfatide depletion from the adult CNS. Our findings show a progressive loss of axonal protein domain organization, which is accompanied by axonal degeneration, with myelin sparing. Similar to our previous work, we also observe differential myelin protein anchoring stabilities that are both sulfatide dependent and independent. Most notably, stable anchoring of neurofascin155, a myelin paranodal protein that binds the axonal paranodal complex of contactin/Caspr1, requires sulfatide. Together, our findings show that adult-onset sulfatide depletion, independent of demyelination, is sufficient to trigger progressive axonal degeneration. Although the pathologic mechanism is unknown, we propose that sulfatide is required for maintaining myelin organization and subsequent myelin–axon interactions and disruptions in these interactions results in compromised axon structure and function. Full article
Show Figures

Figure 1

16 pages, 1089 KB  
Article
Brain Metabolic Alterations in Seropositive Autoimmune Encephalitis: An 18F-FDG PET Study
by Sébastien Bergeret, Cristina Birzu, Pierre Meneret, Alain Giron, Sophie Demeret, Clemence Marois, Louis Cousyn, Laura Rozenblum, Alice Laurenge, Agusti Alentorn, Vincent Navarro, Dimitri Psimaras and Aurélie Kas
Biomedicines 2023, 11(2), 506; https://doi.org/10.3390/biomedicines11020506 - 9 Feb 2023
Cited by 7 | Viewed by 3263
Abstract
Introduction: Autoimmune encephalitis (AE) diagnosis and follow-up remain challenging. Brain 18F-fluoro-deoxy-glucose positron emission tomography (FDG PET) has shown promising results in AE. Our aim was to investigate FDG PET alterations in AE, according to antibody subtype. Methods: We retrospectively included patients with [...] Read more.
Introduction: Autoimmune encephalitis (AE) diagnosis and follow-up remain challenging. Brain 18F-fluoro-deoxy-glucose positron emission tomography (FDG PET) has shown promising results in AE. Our aim was to investigate FDG PET alterations in AE, according to antibody subtype. Methods: We retrospectively included patients with available FDG PET and seropositive AE diagnosed in our center between 2015 and 2020. Brain PET Z-score maps (relative to age matched controls) were analyzed, considering metabolic changes significant if |Z-score| ≥ 2. Results: Forty-six patients were included (49.4 yrs [18; 81]): 13 with GAD autoantibodies, 11 with anti-LGI1, 9 with NMDAR, 5 with CASPR2, and 8 with other antibodies. Brain PET was abnormal in 98% of patients versus 53% for MRI. The most frequent abnormalities were medial temporal lobe (MTL) and/or striatum hypermetabolism (52% and 43% respectively), cortical hypometabolism (78%), and cerebellum abnormalities (70%). LGI1 AE tended to have more frequent MTL hypermetabolism. NMDAR AE was prone to widespread cortical hypometabolism. Fewer abnormalities were observed in GAD AE. Striatum hypermetabolism was more frequent in patients treated for less than 1 month (p = 0.014), suggesting a relation to disease activity. Conclusion: FDG PET could serve as an imaging biomarker for early diagnosis and follow-up in AE. Full article
(This article belongs to the Special Issue Molecular Epidemiology and Pathophysiology of Autoimmune Encephalitis)
Show Figures

Figure 1

19 pages, 1726 KB  
Review
Seizures, Epilepsy, and NORSE Secondary to Autoimmune Encephalitis: A Practical Guide for Clinicians
by Alberto Vogrig, Gian Luigi Gigli, Annacarmen Nilo, Giada Pauletto and Mariarosaria Valente
Biomedicines 2023, 11(1), 44; https://doi.org/10.3390/biomedicines11010044 - 25 Dec 2022
Cited by 19 | Viewed by 10816
Abstract
The most recent International League Against Epilepsy (ILAE) classification has included “immune etiology” along with other well-known causes of epilepsy. This was possible thanks to the progress in detection of pathogenic neural antibodies (Abs) in a subset of patients, and resulted in an [...] Read more.
The most recent International League Against Epilepsy (ILAE) classification has included “immune etiology” along with other well-known causes of epilepsy. This was possible thanks to the progress in detection of pathogenic neural antibodies (Abs) in a subset of patients, and resulted in an increased interest in identifying potentially treatable causes of otherwise refractory seizures. Most autoimmune encephalitides (AE) present with seizures, but only a minority of cases evolve to long-term epilepsy. The risk of epilepsy is higher for patients harboring Abs targeting intracellular antigens (T cell-mediated and mostly paraneoplastic, such as Hu, CV2/CRMP5, Ma2, GAD65 Abs), compared with patients with neuronal surface Abs (antibody-mediated and less frequently paraneoplastic, such as NMDAR, GABAbR, LGI1, CASPR2 Abs). To consider these aspects, conceptual definitions for two entities were provided: acute symptomatic seizures secondary to AE, and autoimmune-associated epilepsy, which reflect the different pathophysiology and prognoses. Through this manuscript, we provide an up-to-date review on the current state of knowledge concerning diagnosis and management of patients with Ab-mediated encephalitis and associated epilepsy. Special emphasis is placed on clinical aspects, such as brain magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) specificities, electroencephalographic (EEG) findings, cancer screening and suggestions for a rational therapeutic approach. Full article
(This article belongs to the Special Issue Molecular Epidemiology and Pathophysiology of Autoimmune Encephalitis)
Show Figures

Figure 1

17 pages, 1444 KB  
Review
Presynaptic Paraneoplastic Disorders of the Neuromuscular Junction: An Update
by Maria Pia Giannoccaro, Patrizia Avoni and Rocco Liguori
Brain Sci. 2021, 11(8), 1035; https://doi.org/10.3390/brainsci11081035 - 3 Aug 2021
Cited by 10 | Viewed by 6658
Abstract
The neuromuscular junction (NMJ) is the target of a variety of immune-mediated disorders, usually classified as presynaptic and postsynaptic, according to the site of the antigenic target and consequently of the neuromuscular transmission alteration. Although less common than the classical autoimmune postsynaptic myasthenia [...] Read more.
The neuromuscular junction (NMJ) is the target of a variety of immune-mediated disorders, usually classified as presynaptic and postsynaptic, according to the site of the antigenic target and consequently of the neuromuscular transmission alteration. Although less common than the classical autoimmune postsynaptic myasthenia gravis, presynaptic disorders are important to recognize due to the frequent association with cancer. Lambert Eaton myasthenic syndrome is due to a presynaptic failure to release acetylcholine, caused by antibodies to the presynaptic voltage-gated calcium channels. Acquired neuromyotonia is a condition characterized by nerve hyperexcitability often due to the presence of antibodies against proteins associated with voltage-gated potassium channels. This review will focus on the recent developments in the autoimmune presynaptic disorders of the NMJ. Full article
(This article belongs to the Special Issue Advanced Research in Neuromuscular Disorders)
Show Figures

Figure 1

12 pages, 1306 KB  
Review
Prevalence of Neural Autoantibodies in Epilepsy of Unknown Etiology: Systematic Review and Meta-Analysis
by Pablo Cabezudo-García, Natalia Mena-Vázquez, Nicolás L. Ciano-Petersen, Guillermina García-Martín, Guillermo Estivill-Torrús and Pedro J. Serrano-Castro
Brain Sci. 2021, 11(3), 392; https://doi.org/10.3390/brainsci11030392 - 19 Mar 2021
Cited by 9 | Viewed by 4126
Abstract
Background: The prevalence of neural autoantibodies in epilepsy of unknown etiology varies among studies. We aimed to conduct a systematic review and meta-analysis to determine the pooled global prevalence and the prevalence for each antibody. Methods: A systematic search was conducted for studies [...] Read more.
Background: The prevalence of neural autoantibodies in epilepsy of unknown etiology varies among studies. We aimed to conduct a systematic review and meta-analysis to determine the pooled global prevalence and the prevalence for each antibody. Methods: A systematic search was conducted for studies that included prospectively patients ≥16 years old with epilepsy of unknown etiology and systematically determined neural autoantibodies. A meta-analysis was undertaken to estimate pooled prevalence in total patients with a positive result for at least one neural autoantibody in serum and/or cerebrospinal fluid (CSF) and for each autoantibody. Results: Ten of the eleven studies that met the inclusion criteria and a total of 1302 patients with epilepsy of unknown etiology were included in themeta-analysis. The global pooled prevalence (IC95%) was 7.6% (4.6–11.2) in a total of 82 patients with a positive result for any neural autoantibody. None of the controls available in the studies had a positive result. Individual pooled prevalence for each autoantibody was: glycine receptor (GlyR) (3.2%), glutamic acid decarboxylase (GAD) (1.9%), N-methyl-d-aspartate receptor (NMDAR) (1.8%), leucine-rich glioma inactivated-1 protein (LGI1) (1.1%), contactin-2-associated protein (CASPR2) (0.6%) and onconeuronal (0.2%). Conclusions: The pooled prevalence of neural autoantibodies in patients with epilepsy of unknown etiology is small but not irrelevant. None of the controls had a positive result. There was high heterogeneity among studies. In the future, a homogeneous protocol for testing neural autoantibodies is recommended. Full article
(This article belongs to the Special Issue The Immune System, Neuroinflammation and Epilepsy)
Show Figures

Graphical abstract

18 pages, 4747 KB  
Article
Generation of High-Yield, Functional Oligodendrocytes from a c-myc Immortalized Neural Cell Line, Endowed with Staminal Properties
by Mafalda Giovanna Reccia, Floriana Volpicelli, Eirkiur Benedikz, Åsa Fex Svenningsen and Luca Colucci-D’Amato
Int. J. Mol. Sci. 2021, 22(3), 1124; https://doi.org/10.3390/ijms22031124 - 23 Jan 2021
Cited by 1 | Viewed by 3462
Abstract
Neural stem cells represent a powerful tool to study molecules involved in pathophysiology of Nervous System and to discover new drugs. Although they can be cultured and expanded in vitro as a primary culture, their use is hampered by their heterogeneity and by [...] Read more.
Neural stem cells represent a powerful tool to study molecules involved in pathophysiology of Nervous System and to discover new drugs. Although they can be cultured and expanded in vitro as a primary culture, their use is hampered by their heterogeneity and by the cost and time needed for their preparation. Here we report that mes-c-myc A1 cells (A1), a neural cell line, is endowed with staminal properties. Undifferentiated/proliferating and differentiated/non-proliferating A1 cells are able to generate neurospheres (Ns) in which gene expression parallels the original differentiation status. In fact, Ns derived from undifferentiated A1 cells express higher levels of Nestin, Kruppel-like factor 4 (Klf4) and glial fibrillary protein (GFAP), markers of stemness, while those obtained from differentiated A1 cells show higher levels of the neuronal marker beta III tubulin. Interestingly, Ns differentiation, by Epidermal Growth Factors (EGF) and Fibroblast Growth Factor 2 (bFGF) withdrawal, generates oligodendrocytes at high-yield as shown by the expression of markers, Galactosylceramidase (Gal-C) Neuron-Glial antigen 2 (NG2), Receptor-Interacting Protein (RIP) and Myelin Basic Protein (MBP). Finally, upon co-culture, Ns-A1-derived oligodendrocytes cause a redistribution of contactin-associated protein (Caspr/paranodin) protein on neuronal cells, as primary oligodendrocytes cultures, suggesting that they are able to form compact myelin. Thus, Ns-A1-derived oligodendrocytes may represent a time-saving and low-cost tool to study the pathophysiology of oligodendrocytes and to test new drugs. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Figure 1

22 pages, 1705 KB  
Review
Assembly and Function of the Juxtaparanodal Kv1 Complex in Health and Disease
by Delphine Pinatel and Catherine Faivre-Sarrailh
Life 2021, 11(1), 8; https://doi.org/10.3390/life11010008 - 24 Dec 2020
Cited by 19 | Viewed by 6569
Abstract
The precise axonal distribution of specific potassium channels is known to secure the shape and frequency of action potentials in myelinated fibers. The low-threshold voltage-gated Kv1 channels located at the axon initial segment have a significant influence on spike initiation and waveform. Their [...] Read more.
The precise axonal distribution of specific potassium channels is known to secure the shape and frequency of action potentials in myelinated fibers. The low-threshold voltage-gated Kv1 channels located at the axon initial segment have a significant influence on spike initiation and waveform. Their role remains partially understood at the juxtaparanodes where they are trapped under the compact myelin bordering the nodes of Ranvier in physiological conditions. However, the exposure of Kv1 channels in de- or dys-myelinating neuropathy results in alteration of saltatory conduction. Moreover, cell adhesion molecules associated with the Kv1 complex, including Caspr2, Contactin2, and LGI1, are target antigens in autoimmune diseases associated with hyperexcitability such as encephalitis, neuromyotonia, or neuropathic pain. The clustering of Kv1.1/Kv1.2 channels at the axon initial segment and juxtaparanodes is based on interactions with cell adhesion molecules and cytoskeletal linkers. This review will focus on the trafficking and assembly of the axonal Kv1 complex in the peripheral and central nervous system (PNS and CNS), during development, and in health and disease. Full article
(This article belongs to the Special Issue Myelin and Oligodendrocyte-Neuron Interactions)
Show Figures

Figure 1

24 pages, 1543 KB  
Review
Maternal-Autoantibody-Related (MAR) Autism: Identifying Neuronal Antigens and Approaching Prospects for Intervention
by Katya Marks, Ester Coutinho and Angela Vincent
J. Clin. Med. 2020, 9(8), 2564; https://doi.org/10.3390/jcm9082564 - 7 Aug 2020
Cited by 13 | Viewed by 6517
Abstract
Recent studies indicate the existence of a maternal-autoantibody-related subtype of autism spectrum disorder (ASD). To date, a large number of studies have focused on describing patterns of brain-reactive serum antibodies in maternal-autoantibody-related (MAR) autism and some have described attempts to define the antigenic [...] Read more.
Recent studies indicate the existence of a maternal-autoantibody-related subtype of autism spectrum disorder (ASD). To date, a large number of studies have focused on describing patterns of brain-reactive serum antibodies in maternal-autoantibody-related (MAR) autism and some have described attempts to define the antigenic targets. This article describes evidence on MAR autism and the various autoantibodies that have been implicated. Among other possibilities, antibodies to neuronal surface protein Contactin Associated Protein 2 (CASPR2) have been found more frequently in mothers of children with neurodevelopmental disorders or autism, and two independent experimental studies have shown pathogenicity in mice. The N-methyl-D-aspartate receptor (NMDAR) is another possible target for maternal antibodies as demonstrated in mice. Here, we discuss the growing evidence, discuss issues regarding biomarker definition, and summarise the therapeutic approaches that might be used to reduce or prevent the transfer of pathogenic maternal antibodies. Full article
(This article belongs to the Special Issue New Frontiers in Neurodevelopmental Disorders)
Show Figures

Figure 1

9 pages, 3108 KB  
Article
Intrasession Reliability of Arterial Spin-Labeled MRI–Measured Noncontrast Perfusion in Glioblastoma at 3 T
by Limin Zhou, Yiming Wang, Marco C. Pinho, Edward Pan, Yin Xi, Joseph A. Maldjian and Ananth J. Madhuranthakam
Tomography 2020, 6(2), 139-147; https://doi.org/10.18383/j.tom.2020.00010 - 1 Jun 2020
Cited by 7 | Viewed by 1576
Abstract
Arterial spin-labeled magnetic resonance imaging can provide quantitative perfusion measurements in the brain and can be potentially used to evaluate therapy response assessment in glioblastoma (GBM). The reliability and reproducibility of this method to measure noncontrast perfusion in GBM, however, are lacking. We [...] Read more.
Arterial spin-labeled magnetic resonance imaging can provide quantitative perfusion measurements in the brain and can be potentially used to evaluate therapy response assessment in glioblastoma (GBM). The reliability and reproducibility of this method to measure noncontrast perfusion in GBM, however, are lacking. We evaluated the intrasession reliability of brain and tumor perfusion in both healthy volunteers and patients with GBM at 3 T using pseudocontinuous labeling (pCASL) and 3D turbo spin echo (TSE) using Cartesian acquisition with spiral profile reordering (CASPR). Two healthy volunteers at a single time point and 6 newly diagnosed patients with GBM at multiple time points (before, during, and after chemoradiation) underwent scanning (total, 14 sessions). Compared with 3D GraSE, 3D TSE-CASPR generated cerebral blood flow maps with better tumor-to-normal background tissue contrast and reduced image distortions. The intraclass correlation coefficient between the 2 runs of 3D pCASL with TSE-CASPR was consistently high (≥0.90) across all normal-appearing gray matter (NAGM) regions of interest (ROIs), and was particularly high in tumors (0.98 with 95% confidence interval [CI]: 0.97–0.99). The within-subject coefficients of variation were relatively low in all normal-appearing gray matter regions of interest (3.40%–7.12%), and in tumors (4.91%). Noncontrast perfusion measured using 3D pCASL with TSE-CASPR provided robust cerebral blood flow maps in both healthy volunteers and patients with GBM with high intrasession repeatability at 3 T. This approach can be an appropriate noncontrast and noninvasive quantitative perfusion imaging method for longitudinal assessment of therapy response and management of patients with GBM. Full article
Back to TopTop