Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Canine oral melanoma (COM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2195 KiB  
Article
Pilot Transcriptomic Profiling of Canine Oral Melanoma Reveals Conserved Oncogenic Pathways and Uncharacterized Molecular Signatures
by Carmen G. Pérez-Santana, Francisco Rodríguez-Esparragón, Sara E. Cazorla-Rivero, Ana A. Jiménez-Alonso, Bernardino Clavo, Jesús M. González-Martín, Ángeles Cánovas-Molina, Carmen Bartolomé, Lidia Estupiñán and Enrique Rodríguez Grau-Bassas
Cancers 2025, 17(13), 2106; https://doi.org/10.3390/cancers17132106 - 23 Jun 2025
Viewed by 898
Abstract
Background: Canine oral melanoma (COM) is an aggressive and often fatal neoplasm in dogs, with clinical and molecular similarities to human melanoma. Despite its relevance as a comparative oncology model, the molecular mechanisms underlying COM remain poorly understood. This study aimed to characterize [...] Read more.
Background: Canine oral melanoma (COM) is an aggressive and often fatal neoplasm in dogs, with clinical and molecular similarities to human melanoma. Despite its relevance as a comparative oncology model, the molecular mechanisms underlying COM remain poorly understood. This study aimed to characterize gene expression profiles in COM to identify differentially expressed genes (DEGs), potential biomarkers, and therapeutic targets. Methods: In this pilot study, we performed RNA sequencing (RNA-seq) on tumor and healthy oral tissue samples from dogs. Two independent analytical pipelines—Bowtie2-DESeq2 and HISAT-StringTie-Ballgown—were used to ensure robustness in DEG detection. We also conducted pathway enrichment and isoform-level analyses to investigate biological processes and alternative splicing events. Results: Both approaches identified a core set of 929 common DEGs. Key oncogenic pathways, including MAPK/ERK and cell cycle regulation, were significantly affected, with notable upregulation of BRAF, NRAS, CDK4, and MITF (log2FC = 2.86, p < 0.001). The transcription factor SOX10 and the cytokine IL-33, both previously implicated in melanoma progression, were consistently overexpressed. Additionally, NF1, a known RAS pathway inhibitor, was also upregulated. Isoform analysis revealed novel transcript variants, suggesting a complex layer of post-transcriptional regulation in COM. Many DEGs remained uncharacterized, and chromosomal distribution analysis highlighted potential genomic influences. Conclusions: Our findings provide new insights into the molecular landscape of COM, reinforcing its utility as a model for human melanoma. The identification of conserved oncogenic pathways and novel transcript variants opens avenues for further functional studies and the development of targeted therapies in both veterinary and human oncology. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

18 pages, 2634 KiB  
Article
Canine Adipose-Derived Mesenchymal Stromal Cells Reduce Cell Viability and Migration of Metastatic Canine Oral Melanoma Cell Lines In Vitro
by Fwu Shing Teng, Patricia de Faria Lainetti, Mayara Simão Franzoni, Antonio Fernando Leis Filho, Cristina de Oliveira Massoco Salles Gomes, Renée Laufer-Amorim, Rogério Martins Amorim and Carlos Eduardo Fonseca-Alves
Vet. Sci. 2024, 11(12), 636; https://doi.org/10.3390/vetsci11120636 - 9 Dec 2024
Cited by 1 | Viewed by 1411
Abstract
Canine oral melanoma (COM) is a promising target for immunomodulatory therapies aimed at enhancing the immune system’s antitumor response. Given that adipose-derived mesenchymal stem cells (Ad-MSCs) possess immunomodulatory properties through cytokine release, we hypothesized that co-culturing Ad-MSCs and canine peripheral blood mononuclear cells [...] Read more.
Canine oral melanoma (COM) is a promising target for immunomodulatory therapies aimed at enhancing the immune system’s antitumor response. Given that adipose-derived mesenchymal stem cells (Ad-MSCs) possess immunomodulatory properties through cytokine release, we hypothesized that co-culturing Ad-MSCs and canine peripheral blood mononuclear cells (PBMCs) could stimulate interleukin (IL) production against melanoma cell lines (MCCLs) and help identify therapeutic targets. This study evaluated IL-2, IL-8, and IL-12 expressions in co-culture with MCCL, Ad-MSCs, and PBMCs and assessed the relationship between gene expression, cell viability, and migration. Using four experimental groups in a Transwell insert system to separate cell types, we found that Ad-MSCs can reduce MCCL migration and viability, though the effect may vary depending on each cell line’s susceptibility. Furthermore, Ad-MSCs modified IL expression profiles in co-cultured cells. Our findings suggest that Ad-MSCs could have therapeutic potential for COM by inhibiting cell migration and reducing viability. However, deeper insights into Ad-MSC interactions with the tumor microenvironment and melanoma-specific factors will be essential to optimize therapeutic efficacy. Full article
Show Figures

Figure 1

21 pages, 845 KiB  
Review
The Comparative Oncology of Canine Malignant Melanoma in Targeted Therapy: A Systematic Review of In Vitro Experiments and Animal Model Reports
by Xiaohui He, Yu Gao, Yuqing Deng, Junying He, Ingo Nolte, Hugo Murua Escobar and Feng Yu
Int. J. Mol. Sci. 2024, 25(19), 10387; https://doi.org/10.3390/ijms251910387 - 26 Sep 2024
Cited by 5 | Viewed by 3174
Abstract
Canine malignant melanoma (CMM) is highly aggressive and mostly located in the oral cavity. CMM is the predominant type of canine oral malignancy and shows striking homologies with human mucosal melanoma. In comparative oncology, canine oral melanomas (COMs), as spontaneous tumor models, have [...] Read more.
Canine malignant melanoma (CMM) is highly aggressive and mostly located in the oral cavity. CMM is the predominant type of canine oral malignancy and shows striking homologies with human mucosal melanoma. In comparative oncology, canine oral melanomas (COMs), as spontaneous tumor models, have the potential to acquire a unique value as a translational model of rare human melanoma subtypes. This review aims to provide a comprehensive summary of targeted therapies for canine malignant melanoma and to enrich the field of comparative oncology. Following the PRISMA guidelines, a comprehensive literature search was conducted across databases for studies from 1976 to April 2024. Studies were selected based on their relevance to targeted treatments. A total of 30 studies met the inclusion criteria. Based on the treatment approaches, the studies were further categorized into immunotherapies, small molecule signaling inhibitors, indirect kinase inhibitors, and other alternative strategies. Some treatments have been shown to result in stable disease or partial response, accounting for 29% (monoclonal antibody) and 76.5% (micro-RNA therapies) in clinical trials. Moreover, in vitro experiments of small molecule inhibitors, including cell signaling inhibitors and indirect kinase inhibitors, have shown the potential to be an effective treatment option for the development of therapeutic strategies in canine malignant melanoma. The observed response in in vitro experiments of CMM (particularly the oral and certain cutaneous subtypes) to drugs used in the treatment of human melanoma underlines the resemblance to human melanoma, therefore supporting the notion that CMM may be a valuable model for understanding rare human melanoma subtypes and exploring potential therapeutic avenues in preclinical trials. Finally, this literature review serves as a valuable resource for the development of therapeutic strategies for CMM and highlights the potential for translating these findings to human cancer treatment. Full article
(This article belongs to the Special Issue Advances in Pathogenesis and Treatment of Skin Cancer)
Show Figures

Figure 1

19 pages, 1079 KiB  
Article
A Whole-Transcriptomic Analysis of Canine Oral Melanoma: A Chance to Disclose the Radiotherapy Effect and Outcome-Associated Gene Signature
by Greta Mucignat, Ludovica Montanucci, Ramy Elgendy, Mery Giantin, Paola Laganga, Marianna Pauletto, Franco Mutinelli, Marta Vascellari, Vito Ferdinando Leone, Mauro Dacasto and Anna Granato
Genes 2024, 15(8), 1065; https://doi.org/10.3390/genes15081065 - 13 Aug 2024
Cited by 1 | Viewed by 2424
Abstract
Oral melanoma (OM) is the most common malignant oral tumour among dogs and shares similarities with human mucosal melanoma (HMM), validating the role of canine species as an immunocompetent model for cancer research. In both humans and dogs, the prognosis is poor and [...] Read more.
Oral melanoma (OM) is the most common malignant oral tumour among dogs and shares similarities with human mucosal melanoma (HMM), validating the role of canine species as an immunocompetent model for cancer research. In both humans and dogs, the prognosis is poor and radiotherapy (RT) represents a cornerstone in the management of this tumour, either as an adjuvant or a palliative treatment. In this study, by means of RNA-seq, the effect of RT weekly fractionated in 9 Gray (Gy), up to a total dose of 36 Gy (4 weeks), was evaluated in eight dogs affected by OM. Furthermore, possible transcriptomic differences in blood and biopsies that might be associated with a longer overall survival (OS) were investigated. The immune response, glycosylation, cell adhesion, and cell cycle were the most affected pathways by RT, while tumour microenvironment (TME) composition and canonical and non-canonical WNT pathways appeared to be modulated in association with OS. Taking these results as a whole, this study improved our understanding of the local and systemic effect of RT, reinforcing the pivotal role of anti-tumour immunity in the control of canine oral melanoma (COM). Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1998 KiB  
Article
Hypoxia-Mediated Long Non-Coding RNA Fragment Identified in Canine Oral Melanoma through Transcriptome Analysis
by Yasunori Hino, Mohammad Arif, Md Mahfuzur Rahman, Al Asmaul Husna, MD Nazmul Hasan and Naoki Miura
Vet. Sci. 2024, 11(8), 361; https://doi.org/10.3390/vetsci11080361 - 9 Aug 2024
Viewed by 1990
Abstract
Hypoxia contributes to tumor progression and metastasis, and hypoxically dysregulated RNA molecules may, thus, be implicated in poor outcomes. Canine oral melanoma (COM) has a particularly poor prognosis, and some hypoxia-mediated miRNAs are known to exist in this cancer; however, equivalent data on [...] Read more.
Hypoxia contributes to tumor progression and metastasis, and hypoxically dysregulated RNA molecules may, thus, be implicated in poor outcomes. Canine oral melanoma (COM) has a particularly poor prognosis, and some hypoxia-mediated miRNAs are known to exist in this cancer; however, equivalent data on other hypoxically dysregulated non-coding RNAs (ncRNAs) are lacking. Accordingly, we aimed to elucidate non-miRNA ncRNAs that may be mediated by hypoxia, targeting primary-site and metastatic COM cell lines and clinical COM tissue samples in next-generation sequencing (NGS), with subsequent qPCR validation and quantification in COM primary and metastatic cells and plasma and extracellular vesicles (EVs) for any identified ncRNA of interest. The findings suggest that a number of non-miRNA ncRNA species are hypoxically up- or downregulated in COM. We identified one ncRNA, the long ncRNA fragment ENSCAFT00000084705.1, as a molecule of interest due to its consistent downregulation in COM tissues, hypoxically and normoxically cultured primary and metastatic cell lines, when compared to the oral tissues from healthy dogs. However, this molecule was undetectable in plasma and plasma EVs, suggesting that its expression may be tumor tissue-specific, and it has little potential as a biomarker. Here, we provide evidence of hypoxic transcriptional dysregulation for ncRNAs other than miRNA in COM for the first time and suggest that ncRNA ENSCAFT00000084705.1 is a molecule of interest for future research on the role of the transcriptome in the hypoxia-mediated progression of this aggressive cancer. Full article
(This article belongs to the Special Issue Novel Approaches for Canine Melanoma)
Show Figures

Figure 1

22 pages, 1149 KiB  
Review
A Comparative View on Molecular Alterations and Potential Therapeutic Strategies for Canine Oral Melanoma
by Laura Hardwick
Vet. Sci. 2021, 8(11), 286; https://doi.org/10.3390/vetsci8110286 - 22 Nov 2021
Cited by 8 | Viewed by 4330
Abstract
Canine oral melanoma (COM) is a highly aggressive tumour associated with poor prognosis due to metastasis and resistance to conventional anti-cancer therapies. As with human mucosal melanoma, the mutational landscape is predominated by copy number aberrations and chromosomal structural variants, but differences in [...] Read more.
Canine oral melanoma (COM) is a highly aggressive tumour associated with poor prognosis due to metastasis and resistance to conventional anti-cancer therapies. As with human mucosal melanoma, the mutational landscape is predominated by copy number aberrations and chromosomal structural variants, but differences in study cohorts and/or tumour heterogeneity can lead to discordant results regarding the nature of specific genes affected. This review discusses somatic molecular alterations in COM that result from single nucleotide variations, copy number changes, chromosomal rearrangements, and/or dysregulation of small non-coding RNAs. A cross-species comparison highlights notable recurrent aberrations, and functionally grouping dysregulated proteins reveals unifying biological pathways that may be critical for oncogenesis and metastasis. Finally, potential therapeutic strategies are considered to target these pathways in canine patients, and the benefits of collaboration between science, medical, and veterinary communities are emphasised. Full article
(This article belongs to the Special Issue Advances in Understanding Spontaneously Occurring Melanoma in Animals)
Show Figures

Figure 1

13 pages, 1066 KiB  
Article
KIT Somatic Mutations and Immunohistochemical Expression in Canine Oral Melanoma
by Ginevra Brocca, Beatrice Poncina, Alessandro Sammarco, Laura Cavicchioli and Massimo Castagnaro
Animals 2020, 10(12), 2370; https://doi.org/10.3390/ani10122370 - 10 Dec 2020
Cited by 7 | Viewed by 3294
Abstract
Canine oral melanoma (COM) is an aggressive neoplasm with a low response to therapies, sharing similarities with human mucosal melanomas. In the latter, significant alterations of the proto-oncogene KIT have been shown, while in COMs only its exon 11 has been adequately investigated. [...] Read more.
Canine oral melanoma (COM) is an aggressive neoplasm with a low response to therapies, sharing similarities with human mucosal melanomas. In the latter, significant alterations of the proto-oncogene KIT have been shown, while in COMs only its exon 11 has been adequately investigated. In this study, 14 formalin-fixed, paraffin-embedded COMs were selected considering the following inclusion criteria: unequivocal diagnosis, presence of healthy tissue, and a known amplification status of the gene KIT (seven samples affected and seven non-affected by amplification). The DNA was extracted and KIT target exons 13, 17, and 18 were amplified by PCR and sequenced. Immunohistochemistry (IHC) for KIT and Ki67 was performed, and a quantitative index was calculated for each protein. PCR amplification and sequencing was successful in 97.62% of cases, and no single nucleotide polymorphism (SNP) was detected in any of the exons examined, similarly to exon 11 in other studies. The immunolabeling of KIT was positive in 84.6% of the samples with a mean value of 3.1 cells in positive cases, yet there was no correlation with aberration status. Our findings confirm the hypothesis that SNPs are not a frequent event in KIT activation in COMs, with the pathway activation relying mainly on amplification. Full article
(This article belongs to the Special Issue Comparative Pathology and Immunohistochemistry of Veterinary Species)
Show Figures

Figure 1

19 pages, 5112 KiB  
Article
Micro RNA Transcriptome Profile in Canine Oral Melanoma
by Md. Mahfuzur Rahman, Yu-Chang Lai, Al Asmaul Husna, Hui-wen Chen, Yuiko Tanaka, Hiroaki Kawaguchi, Noriaki Miyoshi, Takayuki Nakagawa, Ryuji Fukushima and Naoki Miura
Int. J. Mol. Sci. 2019, 20(19), 4832; https://doi.org/10.3390/ijms20194832 - 28 Sep 2019
Cited by 21 | Viewed by 6405
Abstract
MicroRNAs (miRNAs) dysregulation contribute the cancer pathogenesis. However, the miRNA profile of canine oral melanoma (COM), one of the frequent malignant melanoma in dogs is still unrevealed. The aim of this study is to reveal the miRNA profile in canine oral melanoma. MiRNAs [...] Read more.
MicroRNAs (miRNAs) dysregulation contribute the cancer pathogenesis. However, the miRNA profile of canine oral melanoma (COM), one of the frequent malignant melanoma in dogs is still unrevealed. The aim of this study is to reveal the miRNA profile in canine oral melanoma. MiRNAs profile of oral tissues from normal healthy dogs and COM patients were compared by next-generation sequencing. Along with tumour suppressor miRNAs, we report 30 oncogenic miRNAs in COM. The expressions of miRNAs were further confirmed by quantitative real-time PCR (qPCR). Pathway analysis showed that deregulated miRNAs impact on cancer and signalling pathways. Three oncogenic miRNAs targets (miR-450b, 301a, and 223) from human study also were down-regulated in COM and had a significant negative correlation with their respective miRNA. Furthermore, we found that miR-450b expression is higher in metastatic cells and regulated MMP9 expression through a PAX9-BMP4-MMP9 axis. In silico analysis indicated that miR-126, miR-20b, and miR-106a regulated the highest numbers of differentially expressed transcription factors with respect to human melanoma. Chromosomal enrichment analysis revealed the X chromosome was enriched with oncogenic miRNAs. We comprehensively analyzed the miRNA’s profile in COM which will be a useful resource for developing therapeutic interventions in both species. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

Back to TopTop