Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (837)

Search Parameters:
Keywords = Ca2+ transients

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 588 KB  
Review
The Physiological Significance of TRP and Piezo Channels as Physical Stimulus Sensors in Brown Adipocytes
by Kunitoshi Uchida and Mari Iwase
Cells 2026, 15(3), 293; https://doi.org/10.3390/cells15030293 - 4 Feb 2026
Abstract
Most transient receptor potential (TRP) channels are Ca2+-permeable non-selective cation channels that function as polymodal receptors activated by a wide variety of stimuli, including natural compounds such as pungent substances, physical stimuli, lipids, intracellular signaling molecules, and ions. Their physiological roles [...] Read more.
Most transient receptor potential (TRP) channels are Ca2+-permeable non-selective cation channels that function as polymodal receptors activated by a wide variety of stimuli, including natural compounds such as pungent substances, physical stimuli, lipids, intracellular signaling molecules, and ions. Their physiological roles are diverse, including sensory perception, ion transport, and intracellular signaling. Similarly, Piezo channels, which are also Ca2+-permeable non-selective cation channels, are activated by mechanical stimuli such as membrane stretching and contribute to touch sensation, blood flow regulation, and bladder-filling sensation, among other functions. While research on non-selective cation channels in relation to energy metabolism has primarily focused on TRP channels expressed in primary afferent neurons, studies over the past decade have revealed the important roles of TRP and Piezo channels in brown adipocytes. In this review, we highlight evidence regarding the contributions of TRPV2 and Piezo1 to brown adipocyte differentiation and thermogenesis and briefly summarize recent advances regarding other TRP channels expressed in brown adipocytes. Furthermore, we propose a conceptual framework in which a “modal shift” in TRP/Piezo channels, defined as developmental stage-dependent changes in their functional properties, may contribute to the regulation of brown adipocytes’ functions. Full article
(This article belongs to the Special Issue Transient Receptor Potential (TRP) Channels and Health and Disease)
Show Figures

Figure 1

17 pages, 3245 KB  
Article
Twisted Anthracene-Fused BODIPY: Intersystem Crossing and Torsion-Induced Non-Radiative Relaxation of the Singlet Excited State
by Andrey A. Sukhanov, Yanran Wu, Yuqi Hou, Bei Li, Yu Dong, Jianzhang Zhao, Violeta K. Voronkova and Bernhard Dick
Molecules 2026, 31(3), 524; https://doi.org/10.3390/molecules31030524 - 2 Feb 2026
Abstract
The photophysical properties of a BODIPY derivative with the highly twisted molecular structure of anthracene-fused boron–dipyrromethene (AN-BDP) were studied with steady-state and time-resolved spectroscopic methods. The fused anthryl and the BDP units in AN-BDP units both adopt distorted geometry (with ca. [...] Read more.
The photophysical properties of a BODIPY derivative with the highly twisted molecular structure of anthracene-fused boron–dipyrromethene (AN-BDP) were studied with steady-state and time-resolved spectroscopic methods. The fused anthryl and the BDP units in AN-BDP units both adopt distorted geometry (with ca. 10° of torsion), and there is large dihedral angle between the two units (ca. 49.7°). Interestingly, the fluorescence quantum yields are highly dependent on the solvent polarity (59~3%, from toluene to acetonitrile), yet the fluorescence emission wavelength does not change in different solvents. Nanosecond transient absorption spectra indicate that the triplet state is long-lived, with an intrinsic triplet state lifetime of 551 μs. Interestingly the severely twisted structure only shows a moderate intersystem crossing (ISC) yield (10%). Femtosecond transient absorption spectra indicate slow ISC (>1.5 ns), which is in agreement with the fluorescence lifetime (2.3 ns). Time-resolved electron paramagnetic resonance (TREPR) spectra show smaller zero-field-splitting D and E tensors as (−71.4 mT, 16.7 mT, respectively) compared to the triplet state of the iodinated native BDP (D = −104.6 mT, E = 22.8 mT), inferring that the triplet-state wave function of the new compound is delocalized over the twisted molecular framework. The theoretical computation indicated a solvent-polarity-dependent energy barrier for the relaxed S1 state to a conical interaction (CI) of the S1 and the S0 state potential curves, which agrees with the weaker fluorescence in polar solvents. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Graphical abstract

20 pages, 15695 KB  
Article
Effects of Pre- and Post-Supplementation of Taurine in the Hippocampus of a Gerbil Model of Transient Global Cerebral Ischemia
by Md Shiblee Sadik Sabuj, Su-Cheol Han, Byung-Yong Park, Hyun-Jin Tae and Sung Min Nam
Int. J. Mol. Sci. 2026, 27(3), 1341; https://doi.org/10.3390/ijms27031341 - 29 Jan 2026
Viewed by 90
Abstract
Taurine is a free amino acid with various effects, such as developing the nervous system, an immune function, an antioxidative effect, enhancing muscle and cardiovascular function, and reducing fatigue. In this study, we investigated the effect of taurine supplementation on ischemic neuronal damage [...] Read more.
Taurine is a free amino acid with various effects, such as developing the nervous system, an immune function, an antioxidative effect, enhancing muscle and cardiovascular function, and reducing fatigue. In this study, we investigated the effect of taurine supplementation on ischemic neuronal damage in the hippocampus of gerbils. Taurine (150 mg/kg) was orally administered to gerbils before and after induction of transient ischemia. Histologically, we examined surviving and degenerating neurons by neuronal nuclei immunostaining and fluoro-jade C (FJC) staining. Gliosis was morphologically confirmed by GFAP and Iba1 immunostaining. Compared to the ischemia and pre-treated gerbils, pre- and post-taurine supplementation was neuroprotective by maintaining higher number of mature NeuN-immunoreactive neurons and reducing neuronal death (FJC-stained cells) in the hippocampal CA1 region. Additionally, the ischemia-induced reactive astrocytosis and microgliosis was significantly mitigated by long-term taurine treatment in the gerbil hippocampus. Furthermore, we confirmed that pre- and post-taurine supplementation downregulated ischemia-mediated induction in the MAPK cascade, such as ERK, JNK, and p38, which are involved in oxidative stress, inflammation, apoptosis, and cell differentiation, and this treatment upregulated an ischemia-mediated reduction in antioxidants such as SOD2, GPX4, and anti-apoptotic factor Bcl-2 in the gerbil hippocampus. Pre- and post-taurine supplementation also downregulated again the ischemic injury-mediated activation of transcriptional factor NFkβ, an important gene expression regulator, especially in the inflammatory response, and pro-apoptotic factor Bax in the gerbil hippocampus. Our present results suggest that pre- and post-taurine supplementation has potential in neuroprotection against ischemia-induced neuronal death and glial activation by attenuating oxidative stress and apoptosis. Full article
Show Figures

Figure 1

29 pages, 2995 KB  
Review
Molecular Regulators of In Vitro Regeneration in Wheat: Roles of Morphogenic Factors in Transformation, Genome Editing, and Breeding
by Sylwia Kowalik, Monika Samoń and Mateusz Przyborowski
Int. J. Mol. Sci. 2026, 27(3), 1271; https://doi.org/10.3390/ijms27031271 - 27 Jan 2026
Viewed by 166
Abstract
Efficient in vitro regeneration remains a major constraint in the genetic transformation, genome editing, and molecular breeding of wheat (Triticum aestivum L.), largely due to strong genotype-dependent recalcitrance and limited activation of developmental programs required for somatic embryogenesis. Plant regeneration relies on [...] Read more.
Efficient in vitro regeneration remains a major constraint in the genetic transformation, genome editing, and molecular breeding of wheat (Triticum aestivum L.), largely due to strong genotype-dependent recalcitrance and limited activation of developmental programs required for somatic embryogenesis. Plant regeneration relies on extensive transcriptional reprogramming and epigenetic remodeling orchestrated by morphogenic regulators that modulate meristem identity, as well as cellular pluri- and totipotency. In this review, we synthesize current molecular knowledge on key transcription factors (BBM, WUS/WUS2, GRF-GIF, WOX, LAX1, SERK, WIND1/ERF115) and signaling peptides (CLE/CLV-WUS module, phytosulfokine/PSK) that regulate embryogenic competence in monocot cereals, with emphasis on their orthologs and functional relevance in wheat. We highlight how controlled expression of these morphogenic genes, promoter engineering, and transient or excisable induction systems can significantly enhance regeneration capacity, reduce chimerism in CRISPR-Cas-edited plants, and facilitate genotype-independent transformation. We also discuss epigenetic and metabolic constraints underlying wheat recalcitrance and their potential modulation to improve culture responsiveness. By integrating evidence from wheat, rice, maize, and barley, we outline conserved gene-regulatory networks that reinitiate totipotency and propose strategies to accelerate doubled haploid production and speed-breeding pipelines. Collectively, morphogenic factors emerge as central molecular tools for overcoming regeneration bottlenecks and enabling next-generation wheat improvement. The objective of this review is to synthesize and critically evaluate current molecular knowledge on morphogenic regulators controlling in vitro regeneration in wheat (Triticum aestivum L.), with particular emphasis on their roles in genetic transformation and genome editing. Full article
(This article belongs to the Special Issue Advancements and Trends in Plant Genomics)
Show Figures

Figure 1

19 pages, 4121 KB  
Article
TRIC-A Loss Sensitizes the Heart to β-Adrenergic Stress and Drives Cardiomyocyte Death and Fibrosis
by Ki Ho Park, Daiju Yamazaki, Xinyu Zhou, Shinji Komazaki, Chengzhu Zhao, Miyuki Nishi, Jingsong Zhou, Hiroshi Takeshima and Jianjie Ma
Biomolecules 2026, 16(2), 181; https://doi.org/10.3390/biom16020181 - 23 Jan 2026
Viewed by 492
Abstract
Trimeric intracellular cation channel A (TRIC-A) provides counter-ion support for sarcoplasmic reticulum (SR) Ca2+ release, yet its physiological role in the intact heart under stress remains poorly defined. Here, we demonstrate that TRIC-A is essential for maintaining balanced SR Ca2+ release, [...] Read more.
Trimeric intracellular cation channel A (TRIC-A) provides counter-ion support for sarcoplasmic reticulum (SR) Ca2+ release, yet its physiological role in the intact heart under stress remains poorly defined. Here, we demonstrate that TRIC-A is essential for maintaining balanced SR Ca2+ release, mitochondrial integrity, and cardiac resilience during β-adrenergic stimulation. Tric-a−/− cardiomyocytes exhibited Ca2+ transients evoked by electrical stimuli and exaggerated isoproterenol (ISO)-evoked Ca2+ release, consistent with SR Ca2+ overload. These defects were accompanied by selective upregulation of protein kinase A (PKA)-dependent phosphorylation of ryanodine receptor 2 (RyR2) (S2808) and phospholamban (PLB) (S16). Acute ISO challenge induced mitochondrial swelling, cristae disruption, and Evans Blue Dye uptake, and elevated circulating troponin T in Tric-a−/− hearts, hallmarks of necrosis-like cell death. Mitochondrial Ca2+ uptake inhibition with Ru360 markedly reduced membrane injury, establishing mitochondrial Ca2+ overload as the proximal trigger of cardiac cell death. With sustained β-adrenergic stimulation by ISO, Tric-a−/− hearts developed extensive interstitial and perivascular fibrosis without exaggerated hypertrophy. Cardiac fibroblasts lacked TRIC-A expression and displayed normal Ca2+ signaling and activation, indicating that fibrosis arises secondarily from cardiomyocyte injury rather than fibroblast-intrinsic abnormalities. These findings identify TRIC-A as a critical regulator of SR-mitochondrial Ca2+ coupling and a key molecular safeguard that protects the heart from catecholamine-induced injury and maladaptive remodeling. Full article
(This article belongs to the Special Issue Mitochondrial Calcium Signaling in Cardiac Health and Disease)
Show Figures

Figure 1

11 pages, 1040 KB  
Article
Functional Phytochemicals Cooperatively Suppress Inflammation in RAW264.7 Cells
by Kaori Terashita, Masato Kohakura, Katsura Sugawara, Shinichi Miyagawa and Gen-ichiro Arimura
Nutrients 2026, 18(3), 376; https://doi.org/10.3390/nu18030376 - 23 Jan 2026
Viewed by 273
Abstract
Background: Chronic inflammation contributes to the development of lifestyle-related diseases, and dietary phytochemicals are recognized as important modulators of inflammatory responses. However, the synergistic anti-inflammatory effects of phytochemical combinations and their underlying mechanisms remain insufficiently understood. Methods: The anti-inflammatory activities of menthol (ME), [...] Read more.
Background: Chronic inflammation contributes to the development of lifestyle-related diseases, and dietary phytochemicals are recognized as important modulators of inflammatory responses. However, the synergistic anti-inflammatory effects of phytochemical combinations and their underlying mechanisms remain insufficiently understood. Methods: The anti-inflammatory activities of menthol (ME), 1,8-cineole (CI), β-eudesmol (EU), and capsaicin (CA) were evaluated in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pro-inflammatory gene expression was quantified by quantitative PCR, intracellular Ca2+ signaling was assessed by calcium imaging, and the involvement of transient receptor potential (TRP) channels was examined using selective inhibitors. Synergistic effects were analyzed based on changes in half-maximal effective concentrations (EC50). Results: All compounds suppressed LPS-induced pro-inflammatory genes, including tumor necrosis factor-alpha (Tnf) and interleukin-6 (Il6), in a dose-dependent manner, with CA showing the lowest EC50 for Tnf expression (0.087 µM). Notably, combinations of CA with ME or CI exhibited strong synergy, reducing their EC50 values by 699-fold and 154-fold, respectively, without cytotoxicity. These effects likely resulted from the synergic interaction between ME/CI-induced TRP-mediated signaling and CA-activated, TRP-independent signaling. Conclusions: Specific combinations of plant-derived functional components can markedly enhance anti-inflammatory efficacy, supporting dietary strategies that harness multiple phytochemicals for inflammation control and disease prevention. Full article
Show Figures

Figure 1

13 pages, 2039 KB  
Article
TRPM2 Channel Involvement in the Hesperidin-Mediated Potentiation of Cisplatin’s Antitumor Action in Laryngeal Carcinoma Cells
by Ramazan Çınar, Kenan Yıldızhan, Halil İbrahim Altıner and Tarık Yağcı
Int. J. Mol. Sci. 2026, 27(3), 1141; https://doi.org/10.3390/ijms27031141 - 23 Jan 2026
Viewed by 109
Abstract
Cisplatin (CSP) is a first-line chemotherapeutic for laryngeal squamous cell carcinoma (LSCC), but its clinical effectiveness is limited by resistance and toxicity. Hesperidin (HESP), a citrus flavonoid, may enhance chemotherapeutic efficacy through pro-apoptotic properties. This study investigated the involvement of the transient receptor [...] Read more.
Cisplatin (CSP) is a first-line chemotherapeutic for laryngeal squamous cell carcinoma (LSCC), but its clinical effectiveness is limited by resistance and toxicity. Hesperidin (HESP), a citrus flavonoid, may enhance chemotherapeutic efficacy through pro-apoptotic properties. This study investigated the involvement of the transient receptor potential melastatin-2 (TRPM2) channel in the HESP-mediated potentiation of CSP-induced cytotoxicity in human laryngeal carcinoma (Hep-2) cells. Hep-2 cells were treated with CSP (25 µM), HESP (25 µM), or their combination for 24 h. The findings showed that the combined application of HESP and CSP reduced cell viability by approximately 50% (p < 0.001), which was the lowest compared to CSP alone. Western blot analysis revealed that TRPM2 protein expression was higher in the CSP+HESP group compared to the control group (p < 0.001). This synergistic treatment resulted in an increase in ROS production and a decrease in MDA levels, accompanied by a reduction in cellular GSH levels (p < 0.001). Furthermore, the combination therapy increased pro-inflammatory cytokines such as IL-1β and TNF-α (p < 0.001). Functional analyses showed that HESP treatment enhanced CSP-induced Ca2+ influx and altered mitochondrial membrane potential (p < 0.001). The pharmacological inhibition of TRPM2 with ACA and 2-APB reversed these effects, restoring redox balance and reducing cellular damage. In conclusion, HESP amplifies CSP-induced apoptosis in Hep-2 cells through TRPM2-dependent oxidative stress, Ca2+ dysregulation, and mitochondrial dysfunction. These findings identify TRPM2 as a mechanistic mediator of HESP-enhanced chemosensitivity in LSCC. Full article
(This article belongs to the Special Issue Updates on Synthetic and Natural Antioxidants)
Show Figures

Graphical abstract

15 pages, 8865 KB  
Article
Functional Analysis Identifies Multiple Effectors of Candidatus Liberibacter Asiaticus Suppressing Plant Pattern-Triggered Immunity
by Zhuoyuan He, Hongyan Li, Zonghui Zhao, Desen Wang, Hong Wu, Mei Bai, Xiangxiu Liang and Jian-Bin Yu
Plants 2026, 15(2), 308; https://doi.org/10.3390/plants15020308 - 20 Jan 2026
Viewed by 280
Abstract
Candidatus Liberibacter spp. can infect most citrus plants and rely entirely on phloem sieve tube cells of the host plant for survival. Candidatus Liberibacter primarily contains Ca. L. asiaticus (CLas), Ca. L. africanus (CLaf), and Ca. L. americanus (CLam). Among these, CLas is [...] Read more.
Candidatus Liberibacter spp. can infect most citrus plants and rely entirely on phloem sieve tube cells of the host plant for survival. Candidatus Liberibacter primarily contains Ca. L. asiaticus (CLas), Ca. L. africanus (CLaf), and Ca. L. americanus (CLam). Among these, CLas is the most harmful and widely distributed and is the primary pathogen of the devastating citrus disease Huanglongbing (HLB). Effectors are among the core weapons secreted by pathogens into plant cells to attack the plant immune system. In this study, we focused on CLas-specific effectors and those that are highly expressed during the infection stage to identify essential virulence effectors. Using secretion signal peptide prediction analysis, 40 candidate effectors with potential secretory capabilities were identified. Transient expression of these candidate effectors in Nicotiana benthamiana revealed their impact on pattern-triggered immunity, including INF-induced cell death and microbial pattern-induced reactive oxygen species (ROS) bursts, and the resistance of N. benthamiana to the bacterial pathogen Pst DC3000. 10 candidate effectors capable of suppressing plant immunity were identified. The stable expression of these candidate effectors in Arabidopsis showed that several candidate effectors enhanced plant susceptibility to Pst DC3000 and inhibited flg22-induced ROS production and MAPK activation. Among the three candidate effectors that significantly suppressed ROS burst, one effector, E3 (CLIBASIA_03085), interacts with the plant NADPH oxidase RbohD, a key enzyme responsible for ROS production. This suggests that E3 likely inhibits ROS accumulation by directly targeting RbohD. Here, we identified multiple candidate effectors capable of suppressing microbial pattern-triggered immunity that may be essential virulence factors for CLas infection, enhancing our understanding of CLas pathogenesis. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

27 pages, 917 KB  
Review
Chronic In Vivo CRISPR-Cas Genome Editing: Challenges, Long-Term Safety, and Outlook
by Caroline Bao, Catherine I. Channell, Yi Hsuan Tseng, Johnathan Bailey, Naeem Sbaiti, Aykut Demirkol and Stephen H. Tsang
Cells 2026, 15(2), 156; https://doi.org/10.3390/cells15020156 - 15 Jan 2026
Viewed by 616
Abstract
CRISPR/Cas systems have transformed molecular medicine, yet the field still lacks principled guidance on when transient editing suffices versus when sustained exposure through in vivo viral delivery is necessary and how to keep prolonged exposure safe. Notably, EDIT-101 was designed for a permanent [...] Read more.
CRISPR/Cas systems have transformed molecular medicine, yet the field still lacks principled guidance on when transient editing suffices versus when sustained exposure through in vivo viral delivery is necessary and how to keep prolonged exposure safe. Notably, EDIT-101 was designed for a permanent edit in post-mitotic photoreceptors with lifelong Cas9 persistence. This review addresses this gap by defining the biological and therapeutic conditions that drive benefit from extended Cas activity while minimizing risk. We will (i) examine relationships between expression window and efficacy across Cas9/Cas12/Cas13 modalities, (ii) identify genome-wide off-target liabilities alongside orthogonal assays, and (iii) discuss controllable, self-limiting, and recallable editor platforms. By separating durable edits from persistent nuclease exposure, and by providing validated control levers, this work establishes a generalizable framework for safe, higher-efficacy CRISPR medicines. Furthermore, we highlight key studies in cell lines, murine models, non-human primates, and humans that examine the long-term effects of sustained expression of CRISPR/Cas systems and discuss the safety and efficacy of such approaches. Current evidence demonstrates promising therapeutic outcomes with manageable safety profiles, although there is a need for continued monitoring as CRISPR/Cas therapies are increasingly applied in clinical contexts and therapies are developed for broader clinical applications. Full article
Show Figures

Figure 1

11 pages, 1901 KB  
Article
Serial Expression of Pro-Inflammatory Biomarkers in Acute Lung Injury During the Post-Resuscitation Periods in Rats with Cardiac Arrest
by Han-Ping Wu, Kuan-Miao Lin and Mao-Jen Lin
Int. J. Mol. Sci. 2026, 27(2), 786; https://doi.org/10.3390/ijms27020786 - 13 Jan 2026
Viewed by 151
Abstract
Acute lung injury may occur after cardiac arrest (CA), with innate immunity likely playing an important role in lung inflammation after CA. This study aimed to survey serial changes in the toll-like receptor (TLR) 4 signaling pathway in post-resuscitation lung injury in CA [...] Read more.
Acute lung injury may occur after cardiac arrest (CA), with innate immunity likely playing an important role in lung inflammation after CA. This study aimed to survey serial changes in the toll-like receptor (TLR) 4 signaling pathway in post-resuscitation lung injury in CA rats. A randomized animal study was conducted in rats with CA followed by successful cardiopulmonary resuscitation (CPR). The expression of TLR4 pathway biomarkers was analyzed and compared to the sham controls at different time points after CA with CPR. Lung tissues were collected for histological analysis to assess structural damage. Bronchoalveolar lavage fluid (BALF) was analyzed to quantify inflammatory cytokines and to assess changes in regulatory B cells (Bregs) and regulatory T cells (Tregs). Histological examination revealed marked pulmonary hemorrhage and structural injury shortly after CA. CA with CPR increased myeloid differentiation factor 88 (MyD88) mRNA and protein expression compared to controls at 2 h after CA. Cytokine analysis of BALF showed elevated IFN-γ, interleukin (IL)-1α, IL-1β, IL-2, IL-6, and IL-10 at 2 h after CA. A reduction in Bregs was noted at 2 h, whereas Tregs transiently increased between 2 and 4 h but declined at 6 h after CA. The MyD88-dependent signaling pathway appears to be rapidly activated in rats with CA after CPR, which may contribute to the early pulmonary inflammation observed as soon as 2 h after CA. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 1979 KB  
Article
Ultrastructural, Osmoregulation, Physiological Metabolism, and Antioxidative Response of Red Tilapia (Oreochromis spp.) Under Acute Alkaline Stress
by Endalew Alemu, Wei Ye, Jixiang Hua, Lynda Djemaoun, Siqi Lu, Mohamed Fekri Badran, Yalun Dong, Rahma Halim Mahmoud Aboueleila, Mustafa Hassan Lotfy Saleh, Jun Qiang and Yifan Tao
Fishes 2026, 11(1), 26; https://doi.org/10.3390/fishes11010026 - 2 Jan 2026
Viewed by 331
Abstract
With increasing global demand for fishery products, saline-alkaline aquaculture has emerged as a potential solution. However, limited information exists regarding the tolerance and adaptability of red tilapia (Oreochromis spp.) to alkaline environments. This study evaluated the acute semi-lethal toxicity of alkaline water [...] Read more.
With increasing global demand for fishery products, saline-alkaline aquaculture has emerged as a potential solution. However, limited information exists regarding the tolerance and adaptability of red tilapia (Oreochromis spp.) to alkaline environments. This study evaluated the acute semi-lethal toxicity of alkaline water and its physiological effects on juvenile red tilapia (44.80 ± 1.09 g; 12.84 ± 1.02 cm). Fish were exposed to NaHCO3 for 96 h at five alkalinity levels (50, 55, 60, 65, and 70 mmol/L). Survival declined significantly with increasing alkalinity, and the 96 h LC50 was 60.66 mmol/L, indicating relatively high alkaline tolerance. Gill tissue and serum samples were collected at 0, 12, 24, 48, and 96 h under 50 mmol/L NaHCO3 and freshwater (control). Under prolonged alkaline exposure, gill structure exhibited marked alterations, with SLL and ILCMT progressively decreasing over time. Serum antioxidant responses were impaired, showing a sustained decline in SOD activity and a rise in MDA content, indicating the onset of oxidative stress. TAOC, CAT, and GSH-Px displayed a biphasic response, rising initially before declining with continued stress. TP and GLU levels remained largely stable throughout. Energy metabolism indices also shifted dynamically: TC showed a transient increase followed by a decrease, whereas TG and LDH initially declined before rising later in the exposure period. Stress-related markers, including cortisol, T3, ALP, and ACP, were notably elevated during the exposure. Additionally, serum ion concentrations (K+, Ca2+, Na+, Cl) increased gradually over the 96 h period, reflecting progressive osmoregulatory disturbance under alkaline stress. Overall, this study shows that juvenile red tilapia (Oreochromis spp.) have high alkaline tolerance (96 h LC50 = 60.66 mmol/L NaHCO3), but exposure to alkaline water causes significant physiological stress, affecting gill structure, antioxidant defense, metabolism, and ion balance. These results offer valuable insights into their adaptability to saline-alkaline aquaculture. Full article
(This article belongs to the Special Issue Tilapia Aquaculture: State-of-the-Art)
Show Figures

Graphical abstract

54 pages, 6191 KB  
Review
Integration of cAMP and TRPV4 Signaling to Optimize Collagen Remodeling for Management of Fibrosis
by Connie Di Raimo and Christopher A. McCulloch
Cells 2026, 15(1), 56; https://doi.org/10.3390/cells15010056 - 28 Dec 2025
Viewed by 659
Abstract
Fibrosis manifests as an excessive accumulation of fibrillar collagen in tissues where secreted collagen exceeds degradation. Myofibroblasts are important contributors to the excessive collagen seen in fibrotic lesions. Accordingly, targeting signaling pathways that enhance collagen degradation and subdue myofibroblast differentiation has the potential [...] Read more.
Fibrosis manifests as an excessive accumulation of fibrillar collagen in tissues where secreted collagen exceeds degradation. Myofibroblasts are important contributors to the excessive collagen seen in fibrotic lesions. Accordingly, targeting signaling pathways that enhance collagen degradation and subdue myofibroblast differentiation has the potential to optimize collagen remodeling and improve organ fibrosis. One of the most promising molecular targets for therapeutic development is the G protein-coupled receptor (GPCR) family, which is diverse, cell-type-specific, multi-pass transmembrane receptors that participate in the regulation of extracellular matrix remodeling. GPCRs are categorized into multiple subclasses, some of which activate signaling cascades that can augment or reduce pro-fibrotic processes, depending on which Gα class is activated. Specifically, activation of Gαs GPCR stimulates production of the second messenger, cyclic adenosine monophosphate (cAMP), which generally inhibits pro-fibrotic mediators. A related, second approach for control of fibrosis is the blockade of a specific mechanosensitive, Ca2+-permeable channel that is implicated in fibrosis and contributes to myofibroblast differentiation, the transient receptor potential vanilloid type 4 (TRPV4). In health, TRPV4 activation regulates collagen remodeling, but when dysregulated, it promotes pro-fibrotic gene expression through mechanosensitive transcription factors. In this review, we focus on the functions of the Gαs GPCR pathway and TRPV4 activation through the interplay of the second messengers cAMP and Ca2+ ions. Ca2+ influx modulates cAMP levels by regulating phosphodiesterases and adenylyl cyclases. We consider evidence that Gαs GPCR and TRPV4 signaling pathways interact antagonistically to either promote collagen degradation or to increase the formation of myofibroblasts through signaling that involves cAMP and Ca2+ conductance. Coordinated activation of the Gαs GPCR pathway and inhibition of TRPV4 could provide a novel, bimodal approach to control tissue fibrosis. Full article
(This article belongs to the Special Issue Transient Receptor Potential (TRP) Channels and Health and Disease)
Show Figures

Figure 1

21 pages, 4907 KB  
Article
Atrial TRPM2 Channel-Mediated Ca2+ Influx Regulates ANP Secretion and Protects Against Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis
by Tomohiro Numata, Hideaki Tagashira, Kaori Sato-Numata, Meredith C Hermosura, Fumiha Abe, Ayako Sakai, Shinichiro Yamamoto and Hiroyuki Watanabe
Cells 2026, 15(1), 24; https://doi.org/10.3390/cells15010024 - 22 Dec 2025
Viewed by 712
Abstract
Transient receptor potential melastatin 2 (TRPM2) channel is a Ca2+-permeable, redox-activated cardiac ion channel protective in ischemia–reperfusion, but whether it regulates atrial endocrine output under stress is unclear. Here, we investigated whether TRPM2 contributes to the atrial natriuretic peptide (ANP) response [...] Read more.
Transient receptor potential melastatin 2 (TRPM2) channel is a Ca2+-permeable, redox-activated cardiac ion channel protective in ischemia–reperfusion, but whether it regulates atrial endocrine output under stress is unclear. Here, we investigated whether TRPM2 contributes to the atrial natriuretic peptide (ANP) response during β-adrenergic stimulation. We compared how male C57BL/6J wild-type (WT) and TRPM2 knockout (TRPM2−/−) mice (8–12 weeks old) respond to β-adrenergic stress induced by isoproterenol (ISO) using echocardiography, histology, RT-PCR, electrophysiology, Ca2+ imaging, ELISA, and atrial RNA-seq. We detected abundant Trpm2 transcripts in WT atria and measured ADP-ribose (ADPr)-evoked currents and hydrogen peroxide (H2O2)-induced Ca2+ influx characteristic of TRPM2; these were absent in TRPM2−/− cells. Under the ISO-induced hypertrophic model, TRPM2−/− mice developed greater cardiac hypertrophy, fibrosis, and systolic dysfunction compared with WT mice. Atrial bulk RNA-seq showed significant induction of Nppa (ANP precursor gene) in WT + ISO, accompanied by higher circulating ANP; TRPM2−/− + ISO showed blunted Nppa and ANP responses. ISO-treated TRPM2−/− mice exhibited more blunt responses, in both Nppa transcripts and circulating ANP levels. Exogenous ANP attenuated ISO-induced dysfunction, hypertrophy, and fibrosis in TRPM2−/− mice, suggesting that TRPM2 is needed for the cardioprotective endocrine response via ANP to control stress-induced β-adrenergic remodeling. Full article
(This article belongs to the Special Issue Insight into Cardiomyopathy)
Show Figures

Graphical abstract

18 pages, 1825 KB  
Article
Tranilast Does Not Inhibit TRPV2
by Tabea C. Fricke, Nele Stein, Christine Herzog, Frank G. Echtermeyer and Andreas Leffler
Cells 2026, 15(1), 13; https://doi.org/10.3390/cells15010013 - 21 Dec 2025
Viewed by 494
Abstract
Transient receptor potential vanilloid 2 (TRPV2) is a non-selective cation channel involved in diverse physiological and pathological processes. Tranilast has frequently been described and used as a rather specific inhibitor of TRPV2. However, the molecular basis of this inhibition was never been studied [...] Read more.
Transient receptor potential vanilloid 2 (TRPV2) is a non-selective cation channel involved in diverse physiological and pathological processes. Tranilast has frequently been described and used as a rather specific inhibitor of TRPV2. However, the molecular basis of this inhibition was never been studied in detail. Here, we investigated whether tranilast indeed directly inhibits TRPV2. Rat TRPV2 was expressed in human embryonic kidney (HEK293) cells, and channel function was assessed using whole-cell electrophysiology and calcium imaging in response to established agonists. In parallel, we conducted phagocytosis assays in rat basophilic leukemia (RBL) cells, including a CRISPR/Cas9-generated TRPV2-knockout cell line. Tranilast up to 1 mM did not inhibit TRPV2-mediated currents or calcium influx induced by any agonist. However, when co-applied with the oxidant chloramine T, tranilast diminished oxidation-induced activation of TRPV2. This effect may indicate a general interference of tranilast with redox signaling. Accordingly, tranilast also reduced chloramine T-induced activation of TRPA1 as well as the development of non-inactivating currents of voltage-gated Na+ channels. Furthermore, tranilast decreased phagocytic activity in both wildtype and TRPV2-knockout RBL cells. However, the reduction was less pronounced in TRPV2-knockout cells. These findings demonstrate that tranilast does not directly inhibit TRPV2. Instead, tranilast seems to indirectly suppress channel activation by reducing reactive oxygen species (ROS). This refined understanding of how tranilast modulates TRPV2 has important implications for the interpretation of prior and future pharmacological studies targeting TRPV2. Full article
(This article belongs to the Special Issue Transient Receptor Potential (TRP) Channels and Health and Disease)
Show Figures

Figure 1

17 pages, 334 KB  
Review
Monocellular and Multicellular Parasites Infesting Humans: A Review of Calcium Ion Mechanisms
by John A. D’Elia and Larry A. Weinrauch
Biomedicines 2026, 14(1), 2; https://doi.org/10.3390/biomedicines14010002 - 19 Dec 2025
Viewed by 538
Abstract
Calcium (Ca2+) is a signal messenger for ion flow in and out of microbial, parasitic, and host defense cells. Manipulation of calcium ion signaling with ion blockers and calcineurin inhibitors may improve host defense while decreasing microbial/parasitic resistance to therapy. Ca [...] Read more.
Calcium (Ca2+) is a signal messenger for ion flow in and out of microbial, parasitic, and host defense cells. Manipulation of calcium ion signaling with ion blockers and calcineurin inhibitors may improve host defense while decreasing microbial/parasitic resistance to therapy. Ca2+ release from intracellular storage sites controls many host defense functions (cell integrity, movement, and growth). The transformation of phospholipids in the erythrocyte membrane is associated with changes in deformability. This type of lipid bilayer defense mechanism helps to prevent attack by Plasmodium. Patients with sickle cell disease (SS hemoglobin) do not have this protection and are extremely vulnerable to massive hemolysis from parasitic infestation. Patients with thalassemia major also lack parasite protection. Alteration of Ca2+ ion channels responsive to environmental stimuli (transient receptor potential) results in erythrocyte protection from Plasmodium. Similarly, calcineurin inhibitors (cyclosporine) reduce heart and brain inflammation injury with Trypanosoma and Taenia. Ca2+ channel blockers interfere with malarial life cycles. Several species of parasites are known to invade hepatocytes: Plasmodium, Echinococcus, Schistosoma, Taenia, and Toxoplasma. Ligand-specific membrane channel constituents (inositol triphosphate and sphingosine phospholipid) constitute membrane surface signal messengers. Plasmodium requires Ca2+ for energy to grow and to occupy red blood cells. A cascade of signals proceeds from Ca2+ to two proteins: calmodulin and calcineurin. Inhibitors of calmodulin were found to blunt the population growth of Plasmodium. An inhibitor of calcineurin (cyclosporine) was found to retard population growth of both Plasmodium and Schistosoma. Calcineurin also controls sensitivity and resistance to antibiotics. After exposure to cyclosporine, the liver directs Ca2+ ions into storage sites in the endoplasmic reticulum and mitochondria. Storage of large amounts of Ca2+ would be useful if pathogens began to occupy both red blood cells and liver cells. We present scientific evidence supporting the benefits of calcium channel blockers and calcineurin inhibitors to potentiate current antiparasitic therapies. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Back to TopTop