Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,688)

Search Parameters:
Keywords = CXCL10

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3009 KiB  
Article
PD-1-Positive CD8+ T Cells and PD-1-Positive FoxP3+ Cells in Tumor Microenvironment Predict Response to Neoadjuvant Chemoimmunotherapy in Gastric Cancer Patients
by Liubov A. Tashireva, Anna Yu. Kalinchuk, Elena O. Shmakova, Elisaveta A. Tsarenkova, Dmitriy M. Loos, Pavel Iamschikov, Ivan A. Patskan, Alexandra V. Avgustinovich, Sergey V. Vtorushin, Irina V. Larionova and Evgeniya S. Grigorieva
Cancers 2025, 17(14), 2407; https://doi.org/10.3390/cancers17142407 - 21 Jul 2025
Viewed by 144
Abstract
Background/Objectives: In gastric cancer, only a subset of patients benefit clinically from neoadjuvant chemoimmunotherapy, underscoring the need for robust biomarkers that can predict treatment responses and guide personalized immunotherapy. This study aimed to characterize the immune microenvironment of gastric tumors and identify predictive [...] Read more.
Background/Objectives: In gastric cancer, only a subset of patients benefit clinically from neoadjuvant chemoimmunotherapy, underscoring the need for robust biomarkers that can predict treatment responses and guide personalized immunotherapy. This study aimed to characterize the immune microenvironment of gastric tumors and identify predictive markers associated with therapeutic efficacy. Methods: We prospectively enrolled 16 patients with histologically confirmed, PD-L1–positive (CPS ≥ 1) gastric adenocarcinoma (T2–4N0–1M0). All patients received eight cycles of FLOT chemotherapy combined with pembrolizumab. Treatment response was assessed by Mandard tumor regression grading. Spatial transcriptomic profiling (10x Genomics Visium) and multiplex immunofluorescence were used to evaluate tumor-infiltrating immune cell subsets and PD-1 expression at baseline and after treatment. Results: Transcriptomic analysis differentiated the immune landscapes of responders from non-responders. Responders exhibited elevated expression of IL1B, CXCL5, HMGB1, and IFNGR2, indicative of an inflamed tumor microenvironment and type I/II interferon signaling. In contrast, non-responders demonstrated upregulation of immunosuppressive genes such as LGALS3, IDO1, and CD55, along with enrichment in oxidative phosphorylation and antigen presentation pathways. Multiplex immunofluorescence confirmed a higher density of FoxP3+ regulatory T cells in non-responders (median 5.36% vs. 2.41%; p = 0.0032). Notably, PD-1+ CD8+ T cell and PD-1+ FoxP3+ Treg frequencies were significantly elevated in non-responders, suggesting that PD-1 expression within cytotoxic and regulatory compartments may contribute to immune evasion. No substantial differences were observed in PD-L1 CPS or PD-1+ B cells and PD-1+ macrophages. Conclusions: Our findings identify PD-1+ CD8+ T cells and PD-1+ FoxP3+ Tregs as potential biomarkers of resistance to neoadjuvant chemoimmunotherapy in gastric cancer. Transcriptional programs centered on IL1B/CXCL5 and LGALS3/IDO1 define distinct immune phenotypes that may guide future combination strategies targeting both effector and suppressive arms of the tumor immune response. Full article
Show Figures

Figure 1

23 pages, 1372 KiB  
Article
Immunization with Complete Freund’s Adjuvant Reveals Trained Immunity-like Features in A/J Mice
by Kiruthiga Mone, Shraddha Singh, Fatema Abdullatif, Meghna Sur, Mahima T. Rasquinha, Javier Seravalli, Denise K. Zinniel, Indranil Mukhopadhyay, Raul G. Barletta, Teklab Gebregiworgis and Jay Reddy
Vaccines 2025, 13(7), 768; https://doi.org/10.3390/vaccines13070768 - 21 Jul 2025
Viewed by 264
Abstract
Background/Objectives: Freund’s adjuvants induce different immunomodulatory effects, but their underlying molecular mechanisms are unclear. In this study, we investigated whether the immune-stimulating effects of the complete Freund’s adjuvant (CFA) involve the mechanisms of trained immunity (TI). Methods: We examined bone marrow cells (BMCs) [...] Read more.
Background/Objectives: Freund’s adjuvants induce different immunomodulatory effects, but their underlying molecular mechanisms are unclear. In this study, we investigated whether the immune-stimulating effects of the complete Freund’s adjuvant (CFA) involve the mechanisms of trained immunity (TI). Methods: We examined bone marrow cells (BMCs) isolated from CFA-immunized A/J mice to address this question. Incomplete Freund’s adjuvant (IFA) and Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guérin (BCG) served as negative and positive controls, respectively. We evaluated cytokine profiles, metabolic, and epigenetic changes. Results: First, BMCs from all groups except saline showed varied levels of IL-1β, IL-6, and TNF-α. But expression of CCL5 and CXCL10 was significantly elevated only in the CFA and BCG groups. Transcriptionally, significant elevations were noted for TNF-α and IL-1β in the CFA and BCG groups, whereas CXCL10, IL-6, and IL-10 were upregulated in the CFA and BCG groups, respectively. Second, while BMCs from the BCG group expressed the markers of both the M1 and M2 macrophages, no clear trends were noted in the CFA and IFA groups. Third, cell lysates from the CFA group revealed metabolic reprogramming in the BMCs. Specifically, we observed an increased level of lactate, indicative of aerobic glycolysis, which is implicated in TI, and this was also detected in the IFA group. Fourth, epigenetic analysis revealed histone enrichment in the promoter region of TNF-α, in the CFA group, but to a lesser degree than the BCG group. However, no epigenetic changes were observed in the IFA group. Conclusions: Our data provide new insights into the mechanisms of Freund’s adjuvants and the immunomodulatory effects of CFA could involve the features of TI. Full article
(This article belongs to the Special Issue Recent Advances in Vaccine Adjuvants and Formulation)
Show Figures

Figure 1

12 pages, 1344 KiB  
Article
Transcriptomic Profiling of Paired Primary Tumors and CNS Metastases in Breast Cancer Reveals Immune Modulation Signatures
by Ana Julia Aguiar de Freitas, Muriele Bertagna Varuzza, Stéphanie Calfa, Rhafaela Lima Causin, Vinicius Duval da Silva, Cristiano de Pádua Souza and Márcia Maria Chiquitelli Marques
Int. J. Mol. Sci. 2025, 26(14), 6944; https://doi.org/10.3390/ijms26146944 - 19 Jul 2025
Viewed by 178
Abstract
Breast cancer is a leading cause of central nervous system (CNS) metastases in women, often associated with poor prognosis and limited therapeutic options. However, molecular differences between primary tumors and CNS metastases remain underexplored. We aimed to characterize transcriptomic differences between primary breast [...] Read more.
Breast cancer is a leading cause of central nervous system (CNS) metastases in women, often associated with poor prognosis and limited therapeutic options. However, molecular differences between primary tumors and CNS metastases remain underexplored. We aimed to characterize transcriptomic differences between primary breast tumors and matched CNS metastases and identify immune-related biomarkers associated with metastatic progression and patient outcomes. Transcriptomic profiling was based on 11 matched FFPE sample pairs (primary tumor and CNS metastasis). Paired formalin-fixed paraffin-embedded (FFPE) samples from primary tumors (T1) and CNS metastases (T2) were analyzed using the NanoString nCounter® platform and the PanCancer IO 360™ Gene Expression Panel. Differential gene expression, Z-score transformation, and heatmap visualization were performed in R. In silico survival analyses for overall survival (OS) and recurrence-free survival (RFS) were conducted using publicly available TCGA and GEO datasets. Forty-five genes were significantly differentially expressed between the T1 and T2 samples. Immune-related genes such as CXCL9, IL7R, CD79A, and CTSW showed consistent downregulation in CNS metastases. High expression of CXCL9 and CD79A was associated with improved OS and RFS, whereas high IL7R and CTSW expression correlated with worse outcomes. These findings indicate immune suppression as a hallmark of CNS colonization. Comparative transcriptomic analysis further underscored the distinct molecular landscapes between primary and metastatic tumors. This study highlights transcriptional signatures associated with breast cancer CNS metastases, emphasizing the role of immune modulation in metastatic progression. The identified genes have potential as prognostic biomarkers and therapeutic targets, supporting the need for site-specific molecular profiling in metastatic breast cancer management. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Oncology in Brazil, 3rd Edition)
Show Figures

Graphical abstract

19 pages, 4255 KiB  
Article
Impacts of Early Weaning on Lamb Gut Health and Immune Function: Short-Term and Long-Term Effects
by Chong Li, Yunfei Xu, Jiale Jia, Xiuxiu Weng, Yang Zhang, Jialin Peng, Xueming An and Guoxiu Wang
Animals 2025, 15(14), 2135; https://doi.org/10.3390/ani15142135 - 18 Jul 2025
Viewed by 211
Abstract
Despite the known impacts of weaning on animal health, the underlying molecular mechanisms remain unclear, particularly how psychological and nutritional stress differentially affect gut health and immune function over time. This study hypothesized that early weaning exerts distinct short- and long-term effects on [...] Read more.
Despite the known impacts of weaning on animal health, the underlying molecular mechanisms remain unclear, particularly how psychological and nutritional stress differentially affect gut health and immune function over time. This study hypothesized that early weaning exerts distinct short- and long-term effects on lamb stress physiology, immunity, and gut health, mediated by specific molecular pathways. Twelve pairs of full-sibling male Hu sheep lambs were assigned to control (CON) or early-weaned (EW) groups. Plasma stress/immune markers were dynamically monitored, and intestinal morphology, antioxidant capacity, apoptosis, and transcriptomic profiles were analyzed at 5 and 28 days post-weaning. Early weaning triggered transient psychological stress, elevating hypothalamic–pituitary–adrenal (HPA) axis hormones (cortisol, catecholamines) and inflammatory cytokines (TNF-α) within 1 day (p < 0.05); however, stress responses were transient and recovered by 7 days post-weaning. Sustained intestinal remodeling was observed in EW lambs, featuring reduced ileal villus height, increased crypt depth (p < 0.05), and oxidative damage (MDA levels doubled vs. CON; p < 0.01). Compensatory epithelial adaptation included increased crypt depth but paradoxically reduced villus tip apoptosis. The transcriptome analysis revealed significant changes in gene expression related to immune function, fat digestion, and metabolism. Key DEGs included APOA4, linked to lipid transport adaptation; NOS2, associated with nitric oxide-mediated immune–metabolic crosstalk; and mitochondrial gene COX1, reflecting energy metabolism dysregulation. Protein–protein interaction analysis revealed NOS2 as a hub gene interacting with IDO1 and CXCL11, connecting oxidative stress to immune cell recruitment. Early weaning exerts minimal lasting psychological stress but drives persistent gut dysfunction through transcriptome-mediated changes in metabolic and immune pathways, highlighting key genes such as APOA4, NOS2, and COX1 as potential regulators of these effects. Full article
(This article belongs to the Topic Feeding Livestock for Health Improvement)
Show Figures

Figure 1

18 pages, 5007 KiB  
Article
Integrated Multi-Omics Profiling Reveals That Highly Pyroptotic MDMs Contribute to Psoriasis Progression Through CXCL16
by Liping Jin, Xiaowen Xie, Mi Zhang, Wu Zhu, Guanxiong Zhang and Wangqing Chen
Biomedicines 2025, 13(7), 1763; https://doi.org/10.3390/biomedicines13071763 - 18 Jul 2025
Viewed by 205
Abstract
Background: Psoriasis, an inflammatory skin disorder, involves pyroptosis—a pro-inflammatory cell death process. However, cell-specific pyroptosis dynamics and immune microenvironment interactions remain unclear. Objective: To investigate cell-type-specific pyroptosis patterns in psoriasis and their immunoregulatory mechanisms. Methods: We integrated 21 transcriptomic datasets (from 2007 to [...] Read more.
Background: Psoriasis, an inflammatory skin disorder, involves pyroptosis—a pro-inflammatory cell death process. However, cell-specific pyroptosis dynamics and immune microenvironment interactions remain unclear. Objective: To investigate cell-type-specific pyroptosis patterns in psoriasis and their immunoregulatory mechanisms. Methods: We integrated 21 transcriptomic datasets (from 2007 to 2020) obtained from the GEO database and two single-cell RNA sequencing datasets to quantify pyroptotic activity using Gene Set Variation Analysis and AUCell algorithms. Immune cell infiltration profiles were evaluated via CIBERSORT, while cell-cell communication networks were analyzed by CellChat. In vitro and in vivo experiments were performed to validate key findings. Results: Our analysis revealed that psoriasis patients exhibited significantly elevated levels of pyroptosis compared to healthy controls, with pyroptotic activity reflecting treatment responses. Notably, monocyte-derived macrophages (MDMs) in psoriatic lesions displayed markedly heightened pyroptotic activity. In vitro experiments confirmed that MDMs derived from psoriasis patients overexpressed pyroptosis-related molecules (Caspase 1 and Caspase 4) as well as pro-inflammatory cytokines (TNFα, IL6, IL1β) when compared to healthy controls. Furthermore, these cells showed increased expression of CXCL16, which might potentially activate Th17 cells through CXCR6 signaling, thereby driving skin inflammation. Inhibition of monocyte migration in an imiquimod-induced psoriasiform dermatitis model significantly alleviated skin inflammation and reduced the proportion of M1 macrophages and Th17 cells in lesional skin. Conclusions: This study revealed that MDMs in psoriatic lesions exhibited a hyperactive pyroptotic state, which contributed to disease progression through CXCL16-mediated remodeling of the immune microenvironment. These findings highlight pyroptosis as a potential therapeutic target for psoriasis. Full article
Show Figures

Figure 1

15 pages, 1484 KiB  
Article
High-Risk PNPLA3 rs738409 Genotype Is Associated with Higher Concentrations of CCL2 in Liver Transplant Candidates with Alcoholic End-Stage Liver Disease
by Ivan Budimir Bekan, Dino Šisl, Alan Šućur, Ana Bainrauch, Valerija Bralić Lang, Pavao Planinić, Nataša Kovačić, Danka Grčević, Anna Mrzljak and Tomislav Kelava
Medicina 2025, 61(7), 1293; https://doi.org/10.3390/medicina61071293 - 18 Jul 2025
Viewed by 136
Abstract
Background and Objectives: Patients with GG rs738409 patatin-like phospholipase domain-containing protein 3 (PNPLA3) genotype (148M variant) have greater risk to develop end-stage liver disease and its associated clinical complications, including hepatocellular carcinoma (HCC). We aimed to analyze the association between the PNPLA3 [...] Read more.
Background and Objectives: Patients with GG rs738409 patatin-like phospholipase domain-containing protein 3 (PNPLA3) genotype (148M variant) have greater risk to develop end-stage liver disease and its associated clinical complications, including hepatocellular carcinoma (HCC). We aimed to analyze the association between the PNPLA3 genotype and augmented inflammatory response in transplant candidates with end-stage alcoholic liver disease (ALD). Materials and Methods: Concentrations of 13 cytokines were measured in 106 end-stage ALD patients without HCC (40 with CC, 40 with CG, and 26 with GG genotype), 35 end-stage ALD patients with HCC, and 19 control patients by cytometric bead array. Results: We found significantly higher concentrations of IL-1, IFN-α, IFN-γ, TNF-α, IL-6, CXCL8, IL-10, IL-12, IL-32, and IL-33 in patients with ALD compared to controls, while the concentration of CCL2 was significantly lower. No differences were observed in the concentration of IL-17 and IL-18. ALD patients with and without HCC had similar cytokine concentrations (p > 0.05 for all comparisons). End-stage ALD patients without HCC of the GG genotype had significantly higher CCL2 concentrations (212.6 [135.9–264.9] pg/mL) compared to end-stage ALD patients without HCC carrying the CC/CG genotypes (141.3 [104.1–201.6] pg/mL, p = 0.002, Mann–Whitney). No significant differences across the genotypes were found for the remaining measured cytokines (p > 0.05). GG carriers also had significantly higher levels of AST and ALT, and lower platelet counts. Conclusions: End-stage ALD patients without HCC who carry the PNPLA3 GG genotype have relatively higher CCL2 levels compared to those with the CC or CG genotypes. Relatively elevated CCL2 concentrations in GG patients might contribute to their increased risk of developing clinical complications compared to CC/CG patients. Full article
(This article belongs to the Special Issue Advances in Pathogenesis and Treatment of Chronic Liver Disease)
Show Figures

Figure 1

16 pages, 805 KiB  
Review
Heparin, Heparin-like Molecules, and Heparin Mimetics in Breast Cancer: A Concise Review
by Diego R. Gatica Portillo, Yishu Li, Navneet Goyal, Brian G. Rowan, Rami A. Al-Horani and Muralidharan Anbalagan
Biomolecules 2025, 15(7), 1034; https://doi.org/10.3390/biom15071034 - 17 Jul 2025
Viewed by 243
Abstract
Heparin and heparan sulfate are essential in various biological processes relevant to cancer biology and pathology. Given the clinical importance of breast cancer, it is of high interest to seek more effective and safer treatment. The application of heparins (UFH, LMWH, ULMWH, fondaparinux) [...] Read more.
Heparin and heparan sulfate are essential in various biological processes relevant to cancer biology and pathology. Given the clinical importance of breast cancer, it is of high interest to seek more effective and safer treatment. The application of heparins (UFH, LMWH, ULMWH, fondaparinux) and heparin mimetics as potential treatments is particularly interesting. Their use led to promising results in various breast cancer models by exhibiting anti-angiogenic and anti-metastatic properties. This article concisely reviews studies involving heparins and mimetics in both in vitro and in vivo breast cancer settings. We highlight molecules, conjugates, delivery systems, and combinations involving heparin or its mimetics. We also survey several potential biological targets such as VEGF, FGF-2, TGFβ-1, PDGF-B, NPP-1, CXCL12-CXCR4 axis, and CCR7-CCL21 axis. Overall, heparins and their mimetics, conjugates, and combinations represent a powerful strategy to effectively and safely treat breast cancer, which is the most common cancer diagnosed in women worldwide and the fifth leading cause of cancer-related deaths worldwide. Full article
(This article belongs to the Special Issue Advances in Glycosaminoglycans (GAGs) and Mimetics)
Show Figures

Figure 1

15 pages, 10930 KiB  
Article
Leflunomide-Mediated Immunomodulation Inhibits Lesion Progression in a Vitiligo Mouse Model
by Fang Miao, Xiaohui Li, Liang Zhao, Shijiao Zhang, Mengmeng Geng, Chuhuan Ye, Ying Shi and Tiechi Lei
Int. J. Mol. Sci. 2025, 26(14), 6787; https://doi.org/10.3390/ijms26146787 - 15 Jul 2025
Viewed by 222
Abstract
Autoimmune CD8+ T cell-driven melanocyte destruction constitutes a key pathogenic mechanism in the development of vitiligo. Therefore, the pharmacological inhibition of CD8+ T cell effector functions and skin trafficking is a clinically viable therapeutic strategy. This study investigates leflunomide (LEF), an [...] Read more.
Autoimmune CD8+ T cell-driven melanocyte destruction constitutes a key pathogenic mechanism in the development of vitiligo. Therefore, the pharmacological inhibition of CD8+ T cell effector functions and skin trafficking is a clinically viable therapeutic strategy. This study investigates leflunomide (LEF), an immunomodulatory drug with established safety in autoimmune diseases, for its therapeutic potential in a tyrosine-related protein (TRP) 2-180-induced vitiligo mouse model. Through flow cytometry, immunofluorescence, ELISA, and histopathological analyses, we systematically evaluated LEF’s effects on T cell regulation, chemokine expression, and cytokine profiles. Key findings demonstrated that LEF (20 mg/kg/day) significantly attenuated depigmentation by reducing CD8+ T cell infiltration and suppressing the IFN-γ-driven expression of CXCL9/10. Furthermore, LEF restored CD4+/CD8+ T cell homeostasis and rebalanced pro-inflammatory (IFN-γ, TNF-α, IL-2) and anti-inflammatory (IL-4, IL-10) cytokines, inducing a shift from Th1 to Th2. These results position LEF as an effective immunomodulator that disrupts the IFN-γ-CXCL9/10 axis and re-establishes immune balance, offering a promising repurposing strategy for halting vitiligo progression. Full article
(This article belongs to the Special Issue Advances in Vitiligo: From Mechanisms to Treatment Innovations)
Show Figures

Figure 1

19 pages, 3360 KiB  
Article
PTEN Inactivation in Mouse Colonic Epithelial Cells Curtails DSS-Induced Colitis and Accelerates Recovery
by Larissa Kotelevets, Francine Walker, Godefroy Mamadou, Bruno Eto, Thérèse Lehy and Eric Chastre
Cancers 2025, 17(14), 2346; https://doi.org/10.3390/cancers17142346 - 15 Jul 2025
Viewed by 287
Abstract
Background: PTEN is a tumor suppressor that controls many pathophysiological pathways, including cell proliferation, differentiation, apoptosis and invasiveness. Although PTEN down-modulation is a critical event in neoplastic progression, it becomes apparent that transient and local inhibition of PTEN activity might be beneficial [...] Read more.
Background: PTEN is a tumor suppressor that controls many pathophysiological pathways, including cell proliferation, differentiation, apoptosis and invasiveness. Although PTEN down-modulation is a critical event in neoplastic progression, it becomes apparent that transient and local inhibition of PTEN activity might be beneficial for the healing process. Methods: In the present study, we investigated the impact of PTEN invalidation in mouse intestinal epithelium under a physiological condition and after dextran sulfate sodium (DSS) treatment to induce experimental colitis. PTEN conditional knockout was induced in intestinal epithelial cells after crossing villin-Cre and PTENflox/flox mice. Results: PTEN invalidation alleviates experimental colitis induced by DSS, as evidenced by decreased weight loss during the acute phase, the lower expression of inflammation markers, including the proinflammatory cytokines IFN-γ, CXCL1 and CXCL2, reduced mucosal lesions, and faster recovery after resolution of inflammation. This protective effect might result in part from the sustained proliferation of colonic epithelium, leading to hyperplasia and increased colonic crypt depth under physiological conditions, which was further exacerbated in the vicinity of mucosal injury induced by DSS treatment. Furthermore, PTEN knockout decreased paracellular permeability, thereby enhancing the intestinal barrier function. This process was associated with the reinforcement of claudin-3 immunostaining, especially on the surface epithelium of villin-Cre PTENflox/flox mice. Conclusions: PTEN inactivation exerts a protective effect on the onset of colitis, and the transient and local down-modulation of PTEN might constitute an approach to drive recovery following acute intestinal inflammation. Full article
(This article belongs to the Special Issue PTEN: Regulation, Signalling and Targeting in Cancer)
Show Figures

Figure 1

13 pages, 1243 KiB  
Article
Sex Differences in Human Myogenesis Following Testosterone Exposure
by Paolo Sgrò, Cristina Antinozzi, Guglielmo Duranti, Ivan Dimauro, Zsolt Radak and Luigi Di Luigi
Biology 2025, 14(7), 855; https://doi.org/10.3390/biology14070855 - 14 Jul 2025
Viewed by 160
Abstract
Previous research has demonstrated sex-specific differences in muscle cells regarding sex hormone release and steroidogenic enzyme expression after testosterone exposure. The present study aims to elucidate sex-related differences in intracellular processes involved in myogenesis and regeneration. Neonatal 46XX and 46XY human primary skeletal [...] Read more.
Previous research has demonstrated sex-specific differences in muscle cells regarding sex hormone release and steroidogenic enzyme expression after testosterone exposure. The present study aims to elucidate sex-related differences in intracellular processes involved in myogenesis and regeneration. Neonatal 46XX and 46XY human primary skeletal muscle cells were treated with increasing doses of testosterone (0.5, 2, 5, 10, 32, and 100 nM) for 24 h. The molecular pathways involved in muscle metabolism and growth, as well as the release of myokines involved in satellite cell activation, were analyzed using western blot, real-time PCR, and a Luminex assay. The unpaired Student’s t-test and one-way ANOVA for repeated measures were used to determine significant variations within and between groups. An increase in the expression and release of MYF6, IGF-I, IGF-II, and CXCL1, as well as a decrease in GM-CSF, IL-9, and IL-12, was observed in 46XX cells. Conversely, testosterone up-regulated GM-CSF and CXCL1 in 46XY cells but did not affect the release of the other myokines. Preferential activation of the MAPK pathway was observed in 46XX cells, while the PI3K/AKT pathway was preferentially activated in 46XY cells. In conclusion, our findings demonstrate differential responses to androgen exposure in 46XX and 46XY cells, resulting in the activation of muscle cell growth and energy metabolic pathways in a sex-specific manner. Full article
Show Figures

Figure 1

21 pages, 2845 KiB  
Article
Circulating Plasma Proteins as Biomarkers for Immunotherapy Toxicity: Insights from Proteome-Wide Mendelian Randomization and Bioinformatics Analysis
by Liansha Tang, Wenbo He, Handan Hu, Jiyan Liu and Zhike Li
Biomedicines 2025, 13(7), 1717; https://doi.org/10.3390/biomedicines13071717 - 14 Jul 2025
Viewed by 329
Abstract
Background: Immune checkpoint inhibitors (ICIs) have transformed cancer treatment, yet severe immune-related adverse events (irAEs) often necessitate immunotherapy discontinuation and cause life-threatening complications. Circulating plasma proteins, dynamically accessible and functionally linked to immunity, may predict and offer novel targets for irAEs. Methods: Leveraging [...] Read more.
Background: Immune checkpoint inhibitors (ICIs) have transformed cancer treatment, yet severe immune-related adverse events (irAEs) often necessitate immunotherapy discontinuation and cause life-threatening complications. Circulating plasma proteins, dynamically accessible and functionally linked to immunity, may predict and offer novel targets for irAEs. Methods: Leveraging multi-omics integration, we conducted bidirectional two-sample Mendelian randomization (MR) using protein quantitative trait loci (pQTLs) from 4998 plasma proteins and genome-wide association data of irAE phenotypes. A causal inference framework combining colocalization analysis, multivariable MR (MVMR) adjusting for body mass index (BMI) confounding, and mediation MR elucidated BMI-independent pathways. Systems biology approaches including tissue-specific expression profiling, pathway enrichment, and protein interaction network analysis revealed spatial and functional drivers of irAE pathogenesis. Results: Proteome-wide MR mapping identified eight plasma proteins (CCL20, CSF1, CXCL9, CD40, TGFβ1, CLSTN2, TNFSF12, TGFα) causally associated with all-grade irAEs, and five (CCL20, CCL25, CXCL10, ADA, TGFα) with high-grade irAEs. Colocalization prioritized CD40/TNFSF12 (all-grade) and ADA/CCL25 (high-grade) as therapeutic targets (PPH4 > 0.7). CXCL9/TNFSF12 (all-grade) and CCL25 (high-grade) exerted BMI-independent effects, suggesting intrinsic immune dysregulation mechanisms. Tissue-specific gene expression patterns, CSF1, TGFβ1 in lung, TNFSF12 in the ileum may explain organ-specific irAE vulnerabilities. High-grade irAEs correlated with compartmentalized immune dysregulation and IL-17/immunodeficiency pathway activation. Conclusions: This study establishes the causal atlas of plasma proteins in irAE pathogenesis, bridging biomarker discovery with actionable therapeutic targets. These advances align with next-generation immunotherapy goals: maximizing efficacy while taming the immune storm. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

17 pages, 6355 KiB  
Article
Regulation of Hindbrain Vascular Development by rps20 in Zebrafish
by Xinyu Shen, Zhaozhi Wen, Shunze Deng, Yuxuan Qiu, Weijie Ma, Xinyue Dong, Jie Gong, Yu Zhang, Dong Liu and Bing Xu
Cells 2025, 14(14), 1070; https://doi.org/10.3390/cells14141070 - 13 Jul 2025
Viewed by 381
Abstract
During aging, the brain vasculature undergoes significant deterioration characterized by increased arterial tortuosity, compromised blood–brain barrier integrity, and reduced cerebral blood flow, all of which contribute to various neurological disorders. Thus, understanding the mechanisms underlying aging-related cerebrovascular defects is critical for developing strategies [...] Read more.
During aging, the brain vasculature undergoes significant deterioration characterized by increased arterial tortuosity, compromised blood–brain barrier integrity, and reduced cerebral blood flow, all of which contribute to various neurological disorders. Thus, understanding the mechanisms underlying aging-related cerebrovascular defects is critical for developing strategies to alleviate aging-associated neurological diseases. In this study, we investigated the role of aging-related genes in brain vascular development using zebrafish as an in vivo model. By thoroughly analyzing scRNA-seq datasets of mid- and old-aged brain vascular endothelial cells (human/mouse), we found ribosomal protein S20 (rps20) significantly down-regulated during aging. qPCR analysis and whole-mount in situ hybridization validated a high expression of rps20 during early zebrafish development, which progressively decreased in adult and aged zebrafish brains. Functional studies using the CRISPR/Cas9-mediated knockout of rps20 revealed an impaired growth of central arteries in the hindbrain and a marked increased intracranial hemorrhage incidence. Mechanistically, qPCR analysis demonstrated a significant downregulation of vegfa, cxcl12b, and cxcr4a, key signaling molecules required for hindbrain vascular development, in rps20-deficient embryos. In conclusion, our findings demonstrate that rps20 is essential for proper brain vascular development and the maintenance of vascular homeostasis in zebrafish, revealing a novel mechanism by which aging-related genes regulate brain vascular development. This study provides new insights that may aid in understanding and treating aging-associated vascular malformations and neurological pathologies. Full article
Show Figures

Figure 1

29 pages, 7767 KiB  
Article
Therapeutic Efficacy of CD34-Derived Allogeneic Dendritic Cells Engineered to Express CD93, CD40L, and CXCL13 in Humanized Mouse Models of Pancreatic Cancer
by Sara Huerta-Yepez, Jose D. Gonzalez, Neha Sheik, Senay Beraki, Elango Kathirvel, Ariel Rodriguez-Frandsen, Po-Chun Chen, Tiran Sargsyan, Saleemulla Mahammad, Mark R. Dybul, Lu Chen, Francois Binette and Anahid Jewett
Vaccines 2025, 13(7), 749; https://doi.org/10.3390/vaccines13070749 - 12 Jul 2025
Viewed by 675
Abstract
Background/Objectives: Pancreatic cancer remains the fourth leading cause of cancer-related deaths. While peripheral blood-derived mature dendritic cell (mDC) vaccines have shown potential in eliciting anti-tumor immune responses, clinical efficacy has been limited. This study aimed to enhance the potency and scalability of [...] Read more.
Background/Objectives: Pancreatic cancer remains the fourth leading cause of cancer-related deaths. While peripheral blood-derived mature dendritic cell (mDC) vaccines have shown potential in eliciting anti-tumor immune responses, clinical efficacy has been limited. This study aimed to enhance the potency and scalability of DC-based immunotherapy by developing an allogeneic DC platform derived from CD34+ hematopoietic stem cells (HSCs), genetically engineered to overexpress CD93, CD40L, and CXCL13, followed by maturation and tumor antigen pulsing. Methods: Engineered DCs were generated from CD34+ HSCs and matured in vitro after lentiviral transduction of CD93, CD40L, and CXCL13. Tumor lysates were used for antigen pulsing. A scrambled-sequence control DC was used for comparison. In vitro assays were performed to assess T cell activation and tumor cell killing. In vivo efficacy was evaluated using orthotopic pancreatic tumors in BLT and PBMC-humanized NSG mice established with the MiaPaca-2 (MP2) cell line. Results: Engineered DCs significantly enhanced T cell activation and tumor-specific cytotoxicity in vitro compared to control DCs. Antigen pulsing further amplified immune activation. In vivo, treated humanized mice showed increased CD4+, CD8+, and NK cell frequencies in peripheral blood and within tumors, correlating with reduced tumor burden. Conclusions: Our data shows that the antigen-pulsed, engineered DCs have the potency to activate immune cells, which leads to a significant reduction in pancreatic tumors and therefore could potentially provide an effective therapeutic opportunity for the treatment of pancreatic cancer and other solid tumors. Full article
(This article belongs to the Section Vaccination Against Cancer and Chronic Diseases)
Show Figures

Graphical abstract

16 pages, 1599 KiB  
Article
Acute Immunological Biomarkers for Predicting Chronic Rheumatologic Disease After Chikungunya Virus Infection
by Anyela Lozano-Parra, Víctor Herrera, Luis Ángel Villar, Silvio Urcuqui-Inchima, Juan Felipe Valdés-López and Elsa Marina Rojas Garrido
Trop. Med. Infect. Dis. 2025, 10(7), 195; https://doi.org/10.3390/tropicalmed10070195 - 11 Jul 2025
Viewed by 313
Abstract
Early biomarkers are needed to predict the long-term persistence of rheumatical symptoms in patients infected with Chikungunya virus (CHIKV). This nested case-control study aimed to assess immunological factors during the early phases of CHIKV infection to predict the risk of post-CHIK chronic rheumatism [...] Read more.
Early biomarkers are needed to predict the long-term persistence of rheumatical symptoms in patients infected with Chikungunya virus (CHIKV). This nested case-control study aimed to assess immunological factors during the early phases of CHIKV infection to predict the risk of post-CHIK chronic rheumatism (pCHIK-CR) in adult patients of two prospective cohorts. We evaluated 46 febrile patients (median age: 33.5 years; IQR: 19 years; women: 50.0%) with CHIKV infection confirmed during the 2014–2015 outbreak in Santander, Colombia. The participants were classified by a rheumatologist as either cases (pCHIK-CR) or controls (WoRM, without rheumatical manifestations). We quantified serum levels of IL-4, IL-6, IL-8/CXCL-8, IL-27, CCL-2, CXCL-9, CXCL-10, and IgG using Luminex and ELISA assays during the acute and subacute phases of infection. Then, we evaluated the association of these immune factors with the case-control status using piecewise logistic regression adjusted for age and sex. There were non-linear associations between IL-8/CXCL-8, CXCL-9, and CXCL-10 with pCHIK-CR. Increases in the levels of IL-8/CXCL-8 (<35.7 pg/mL), CXCL-9 (≥6000 pg/mL), and CXCL-10 (≥36,800 pg/mL) were significantly associated with a reduced risk of pCHIK-CR (adjusted ORs: 0.85, 0.96, and 0.94, respectively). These results suggest that increases in IL-8/CXCL-8, CXCL-9, and CXCL-10 levels, measured in the early stages of CHIKV infection, may predict a chronic disease risk. This suggests the possibility that an early and strong immune response could contribute to enhancing CHIKV control and potentially reduce the risk of persistent joint symptoms. Given their expression patterns and timing, these three immune factors may be considered promising biomarker candidates for assessing the risk of chronic rheumatologic disease. These findings should be considered as exploratory and validated in additional cohort studies. Full article
Show Figures

Figure 1

18 pages, 5892 KiB  
Article
CXCL12 Drives Reversible Fibroimmune Remodeling in Androgenetic Alopecia Revealed by Single-Cell RNA Sequencing
by Seungchan An, Mei Zheng, In Guk Park, Leegu Song, Jino Kim, Minsoo Noh and Jong-Hyuk Sung
Int. J. Mol. Sci. 2025, 26(14), 6568; https://doi.org/10.3390/ijms26146568 - 8 Jul 2025
Viewed by 452
Abstract
Androgenetic alopecia (AGA) is a common form of hair loss characterized by androgen-driven tissue remodeling, including progressive follicular miniaturization and dermal fibrosis, which is accompanied by low-grade immune activation. However, the molecular mechanisms underlying this fibroimmune dysfunction remain poorly understood. Dermal fibroblasts (DFs) [...] Read more.
Androgenetic alopecia (AGA) is a common form of hair loss characterized by androgen-driven tissue remodeling, including progressive follicular miniaturization and dermal fibrosis, which is accompanied by low-grade immune activation. However, the molecular mechanisms underlying this fibroimmune dysfunction remain poorly understood. Dermal fibroblasts (DFs) have been suggested as androgen-responsive stromal cells and a potential source of CXCL12, a chemokine implicated in fibroimmune pathology, but their precise role in AGA has not been fully established. In this study, we performed single-cell transcriptomic profiling of a testosterone-induced mouse model of AGA, with or without treatment of CXCL12-neutralizing antibody, to elucidate the pathological role of CXCL12 in mediating stromal-immune interactions. Our analysis suggested that DFs are the primary androgen-responsive population driving CXCL12 expression. Autocrine CXCL12-ACKR3 signaling in DFs activated TGF-β pathways and promoted fibrotic extracellular matrix deposition. In parallel, paracrine CXCL12-CXCR4 signaling reprogrammed Sox2+Twist1+ dermal papilla cells (DPCs) and promoted the accumulation of pro-fibrotic Trem2+ macrophages, contributing to impaired hair follicle regeneration. Notably, CXCL12 blockade attenuated these stromal and immune alterations, restored the regenerative capacity of DPCs, reduced pro-fibrotic macrophage infiltration, and promoted hair regrowth. Together, these findings identify CXCL12 as a central mediator of androgen-induced fibroimmune remodeling and highlight its potential as a therapeutic target in AGA. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

Back to TopTop