Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = CRISP−Cas9

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 373 KB  
Article
Diagnosing Structural Change in Digital Interventions: A Configurational Evaluation Framework
by Nachiket Mor, Ritika Ramasuri and Divya Saraf
Information 2025, 16(9), 714; https://doi.org/10.3390/info16090714 - 22 Aug 2025
Cited by 1 | Viewed by 1147
Abstract
Digital interventions are widely promoted as levers of institutional change, yet their effects often prove fragile. We examine why some interventions persist while others fade. Using crisp-set Qualitative Comparative Analysis (csQCA) on 13 large-scale cases from India and abroad, we identify the configurations [...] Read more.
Digital interventions are widely promoted as levers of institutional change, yet their effects often prove fragile. We examine why some interventions persist while others fade. Using crisp-set Qualitative Comparative Analysis (csQCA) on 13 large-scale cases from India and abroad, we identify the configurations of conditions under which digital systems become self-sustaining. We conceptualise persistence as a shift in the Nash equilibrium: when incentives realign, the new behaviour maintains itself without continuing external push. The analysis shows that software openness is neither necessary nor sufficient for durable change. Instead, six non-technological conditions—regulatory enablement, a credible revenue model, substantial scale, a clearly targeted systemic barrier, presence of enabling prerequisites, and sufficient time—are each necessary and, in combination, sufficient for an equilibrium shift; no single condition is enough on its own. Successful cases (e.g., Aadhaar, UPI, Chalo, Swiggy) meet these conditions in combination, whereas others (e.g., ONDC, DIKSHA, ICDS-CAS) illustrate how missing elements limit institutional embedding. The paper contributes a theory-informed diagnostic that links game-theoretic stability to configurational evaluation and provides practical “if–then” decision rules for appraisal. We argue that policy and investment decisions should prioritise incentive-compatible ecosystems over software attributes, and judge success by whether interventions reconfigure the rules of the game rather than by short-term uptake. This perspective clarifies when digital systems can contribute to sustainable, inclusive institutional transformation. Full article
Show Figures

Figure 1

20 pages, 1398 KB  
Article
Growth Curve and Nutrient Accumulation in Lettuce for Seed Production Under Organic System
by Jolinda Mércia de Sá, Antonio Ismael Inácio Cardoso, Daniel Seiji Seguchi, Jorgiani de Ávila, Joseantonio Ribeiro de Carvalho, Emanuele Possas de Souza and Pâmela Gomes Nakada-Freitas
Horticulturae 2025, 11(6), 707; https://doi.org/10.3390/horticulturae11060707 - 19 Jun 2025
Viewed by 1414
Abstract
Producing seeds in the organic production system still requires a lot of information regarding the fertilization and nutritional requirements. Thus, the objective of this study was to determine the dry mass and macronutrient accumulation curve in lettuce for seed production, aiming at cultivation [...] Read more.
Producing seeds in the organic production system still requires a lot of information regarding the fertilization and nutritional requirements. Thus, the objective of this study was to determine the dry mass and macronutrient accumulation curve in lettuce for seed production, aiming at cultivation in an organic system. The treatments consisted of two phosphorus doses (320 and 800 kg ha−1 of P2O5, Yoorin® thermophosphate source). The crisp lettuce plants, cultivar Solaris, were collected at eight stages (0, 14, 28, 42, 56, 70, 84, and 98 days after transplanting—DAT) for an analysis of the proposed characteristics. A nonlinear sigmoid regression curve was fitted and the results demonstrated continuous plant growth, accompanied by a gradual increase in dry matter throughout the experimental period, regardless of the phosphorus dose studied. The vegetative part of the lettuce plant shows slow initial growth, followed by acceleration up to the beginning of flowering (70 DAT), and stabilization after this period. The reproductive part of the lettuce plant begins to grow from 56 DAT, increasing the daily nutrient demand until the end of the seed maturation and harvest at 98 DAT. The dose of 800 kg ha−1 of P2O5, the lettuce plant accumulated 1527.7, 308.2, 2922.6, 1658.4, 416.0, and 197.6 mg per plant of N, P, K, Ca, Mg, and S, respectively. The dose of 320 kg ha−1 of P2O5, the lettuce plant accumulated 1743.1, 256.9, 2575.7, 1210.2, 358.8, and 185.5 mg per plant of N, P, K, Ca, Mg, and S, respectively. The greatest demand for nutrients in the plant occurred between 55 and 88 DAT. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

12 pages, 1410 KB  
Article
Mutation-Specific Cardiomyocyte Lines from Patients with Fabry Disease: A Sustainable In Vitro Model to Investigate Structure, Function, and Disease Mechanisms
by Kathleen Nicholls, Andrea Wise, David Elliot, Menno ter Huurne, Maria Fuller and Sharon Ricardo
Int. J. Transl. Med. 2025, 5(2), 15; https://doi.org/10.3390/ijtm5020015 - 15 Apr 2025
Viewed by 1563
Abstract
Background: Fabry disease (FD) results from pathogenic GLA variants, causing lysosomal α-galactosidase A (α-GalA) deficiency and sphingolipid ceramide trihexoside (Gb3 or THC) accumulation. Disease phenotype varies widely but cardiomyopathy is commonly life-limiting. As a multisystemic disorder, FD initiates at the cellular level; however, [...] Read more.
Background: Fabry disease (FD) results from pathogenic GLA variants, causing lysosomal α-galactosidase A (α-GalA) deficiency and sphingolipid ceramide trihexoside (Gb3 or THC) accumulation. Disease phenotype varies widely but cardiomyopathy is commonly life-limiting. As a multisystemic disorder, FD initiates at the cellular level; however, the mechanism/s underlying Gb3-induced cell dysfunction remains largely unknown. This study established an in vitro mutation-specific model of Fabry cardiomyopathy using human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes to explore underlying cell pathology. Methods: Skin biopsies from consenting Fabry patients and normal control subjects were reprogrammed to iPSCs then differentiated into cardiomyocytes. The GLA mutations in Fabry cell lines were corrected using CRISP-Cas9. Phenotypic characteristics, α-Gal A activity, Gb3 accumulation, functional status, and lipid analysis were assessed. Cardiomyocytes derived from two patients with severe clinical phenotype and genotypes, GLAc.851T>C, GLAc.1193_1196del, and their respective corrected lines, GLAcorr c.851T>C, GLAcorr c.1193_1196del, were selected for further studies. Results: Cardiomyocytes derived from individuals with FD iPSCs exhibited stable expression of cardiomyocyte markers and spontaneous contraction, morphological features of FD, reduced α-Gal A activity, and accumulation of Gb3. Lipidomic profiling revealed differences in the Gb3 isoform profile between the control and FD patient iPSC-derived cardiomyocytes. Contraction strength was unchanged but relaxation after contraction was delayed, mimicking the diastolic dysfunction typical of Fabry cardiomyopathy. Conclusions: iPSC-derived cardiomyocytes provide a useful model to explore aspects of Fabry cardiomyopathy, including disruptions in sphingolipid pathways, proteomics, and multigene expression that together link genotype to phenotype. The platform potentially offers broad applicability across many genetic diseases and offers the prospect of testing and implementation of individualised therapies. Full article
Show Figures

Figure 1

39 pages, 24264 KB  
Article
Digital Health Transformation: Leveraging a Knowledge Graph Reasoning Framework and Conversational Agents for Enhanced Knowledge Management
by Abid Ali Fareedi, Muhammad Ismail, Stephane Gagnon, Ahmad Ghazanweh and Zartashia Arooj
Systems 2025, 13(2), 72; https://doi.org/10.3390/systems13020072 - 22 Jan 2025
Cited by 1 | Viewed by 2773
Abstract
The research focuses on the limitations of traditional systems in optimizing information flow in the healthcare domain. It focuses on integrating knowledge graphs (KGs) and utilizing AI-powered applications, specifically conversational agents (CAs), particularly during peak operational hours in emergency departments (EDs). Leveraging the [...] Read more.
The research focuses on the limitations of traditional systems in optimizing information flow in the healthcare domain. It focuses on integrating knowledge graphs (KGs) and utilizing AI-powered applications, specifically conversational agents (CAs), particularly during peak operational hours in emergency departments (EDs). Leveraging the Cross Industry Standard Process for Data Mining (CRISP-DM) framework, the authors tailored a customized methodology, CRISP-knowledge graph (CRISP-KG), designed to harness KGs for constructing an intelligent knowledge base (KB) for CAs. This KG augmentation empowers CAs with advanced reasoning, knowledge management, and context awareness abilities. We utilized a hybrid method integrating a participatory design collaborative methodology (CM) and Methontology to construct a domain-centric robust formal ontological model depicting and mapping information flow during peak hours in EDs. The ultimate objective is to empower CAs with intelligent KBs, enabling seamless interaction with end users and enhancing the quality of care within EDs. The authors leveraged semantic web rule language (SWRL) to enhance inferencing capabilities within the KG framework further, facilitating efficient information management for assisting healthcare practitioners and patients. This innovative assistive solution helps efficiently manage information flow and information provision during peak hours. It also leads to better care outcomes and streamlined workflows within EDs. Full article
(This article belongs to the Special Issue Integration of Cybersecurity, AI, and IoT Technologies)
Show Figures

Figure 1

14 pages, 2885 KB  
Article
Enhancing the Texture and Sensory Properties of Pickled Cucumbers with Different Brine Solutions
by Mahdieh Yousefi, Akram Arianfar, Vahid Hakimzadeh and Ali Rafe
Foods 2025, 14(3), 336; https://doi.org/10.3390/foods14030336 - 21 Jan 2025
Cited by 3 | Viewed by 4859
Abstract
Softening of pickled cucumbers during storage poses significant challenges for the pickle industry, leading to considerable losses. This softening is attributed to the breakdown of pectic materials in the middle lamella of the cucumber tissue. To address this issue, our study aimed to [...] Read more.
Softening of pickled cucumbers during storage poses significant challenges for the pickle industry, leading to considerable losses. This softening is attributed to the breakdown of pectic materials in the middle lamella of the cucumber tissue. To address this issue, our study aimed to assess the impact of various ions on cucumber pickle fermentation, storage (over 6 months), as well as overall structure and texture. Fermentation brines were prepared, incorporating different salts, such as KCl, CaCl2, MgCl2, AlCl3, and calcium acetate, at concentrations of 50, 100, 200, and 400 ppm, alongside 6% NaCl. Each month, we removed the pickles from the fermentation brines and analyzed their physicochemical and sensory properties. Our findings revealed that, when pH declined to 3.6, undesirable textural and sensory properties were observed in the pickled cucumbers. However, pickles treated with CaCl2 and calcium acetate exhibited higher pH levels compared to other samples after 6 months. Calcium ions demonstrated a positive effect on firmness, contributing to improved consumer acceptance during storage. Among the different salts tested, firmness followed the order of Ca(C2H3O2)2 > CaCl2 > KCl > MgCl2 > AlCl3. Furthermore, we observed a positive relationship between pickle firmness and crispness, as well as color values. The sensory evaluation affirmed the positive influence of Ca2+ on enhancing pickles’ firmness throughout their shelf-lives. Ca-acetate and CaCl2 displayed the most favorable results across sensory, textural, and physical properties among the samples. In conclusion, the addition of Ca-acetate in conjunction with CaCl2 was proven to be an effective approach in improving the firmness and extending the shelf-life of cucumber pickles. Our study highlights the potential of calcium ions to enhance the quality and durability of pickled cucumbers, offering promising implications for the pickle industry. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

15 pages, 1056 KB  
Review
Targeting HBV cccDNA Levels: Key to Achieving Complete Cure of Chronic Hepatitis B
by Wei He, Zhijin Zheng, Qian Zhao, Renxia Zhang and Hui Zheng
Pathogens 2024, 13(12), 1100; https://doi.org/10.3390/pathogens13121100 - 13 Dec 2024
Cited by 6 | Viewed by 5207
Abstract
Chronic hepatitis B (CHB) caused by HBV infection has brought suffering to numerous people. Due to the stable existence of HBV cccDNA, the original template for HBV replication, chronic hepatitis B (CHB) is difficult to cure completely. Despite current antiviral strategies being able [...] Read more.
Chronic hepatitis B (CHB) caused by HBV infection has brought suffering to numerous people. Due to the stable existence of HBV cccDNA, the original template for HBV replication, chronic hepatitis B (CHB) is difficult to cure completely. Despite current antiviral strategies being able to effectively limit the progression of CHB, complete CHB cure requires directly targeting HBV cccDNA. In this review, we discuss strategies that may achieve a complete cure of CHB, including inhibition of cccDNA de novo synthesis, targeting cccDNA degradation through host factors and small molecules, CRISP-Cas9-based cccDNA editing, and silencing cccDNA epigenetically. Full article
Show Figures

Figure 1

18 pages, 2041 KB  
Article
The Toxin Diversity, Cytotoxicity, and Enzymatic Activity of Cape Cobra (Naja nivea) Venom
by Tim Lüddecke, Ignazio Avella, Maik Damm, Lennart Schulte, Johanna Eichberg, Kornelia Hardes, Susanne Schiffmann, Marina Henke, Thomas Timm, Günter Lochnit and Andreas Vilcinskas
Toxins 2024, 16(10), 438; https://doi.org/10.3390/toxins16100438 - 11 Oct 2024
Cited by 4 | Viewed by 3588
Abstract
“True” cobras (genus Naja) are among the venomous snakes most frequently involved in snakebite accidents in Africa and Asia. The Cape cobra (Naja nivea) is one of the African cobras of highest medical importance, but much remains to be learned [...] Read more.
“True” cobras (genus Naja) are among the venomous snakes most frequently involved in snakebite accidents in Africa and Asia. The Cape cobra (Naja nivea) is one of the African cobras of highest medical importance, but much remains to be learned about its venom. Here, we used a shotgun proteomics approach to better understand the qualitative composition of N. nivea venom and tested its cytotoxicity and protease activity as well as its effect on intracellular Ca2+ release and NO synthesis. We identified 156 venom components representing 17 protein families, with the dominant ones being three-finger toxins, mostly of the short-chain type. Two-thirds of the three-finger toxin entries identified were assigned as cytotoxins, while the remainder were categorized as neurotoxins, including short-chain, long-chain, and ancestral three-finger toxins. We also identified snake venom metalloproteinases and members of CRISP, l-amino acid oxidase, and other families. Protease activity and its effect on intracellular Ca2+ release and NO synthesis were low. Phospholipase A2 activity was surprisingly high, despite this toxin family being marginally recovered in the analyzed venom. Cytotoxicity was relevant only at higher venom concentrations, with macrophage and neuroblastoma cell lines showing the lowest viability. These results are in line with the predominantly neurotoxic envenomation symptoms caused by Cape cobra bites. The present overview of the qualitatively complex and functionally intriguing venom of N. nivea may provide insights into the pathobiochemistry of this species’ venom. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

14 pages, 1514 KB  
Article
Process Adaptability Appraisal of Fermented Chopped Chili Pepper Made from Fresh Chili Peppers of Different Varieties
by Zhixu Zhang, Lu Zeng, Weiming Zhang, Hongbin Ren, Li Liu, Zhuqing Zhang, Xuexiao Zou, Dan Qin and Lijun Ou
Agronomy 2024, 14(8), 1833; https://doi.org/10.3390/agronomy14081833 - 20 Aug 2024
Cited by 2 | Viewed by 1920
Abstract
Fermented chopped chili pepper (FCCP) is the most important fermented and processed chili pepper product, and most pepper varieties can be processed with obvious flavor differences. Many studies have tried to explain these differences using the results of component analysis, processing technology, the [...] Read more.
Fermented chopped chili pepper (FCCP) is the most important fermented and processed chili pepper product, and most pepper varieties can be processed with obvious flavor differences. Many studies have tried to explain these differences using the results of component analysis, processing technology, the microbes involved, etc., but few have examined the characteristics of these varieties along with the flavor of products. We conducted a physiochemical characteristic analysis of 35 kinds of fresh chili peppers with different genotypes and made fermented products from 17 varieties, using principal component analysis (PCA) and cluster analysis (CA) to correlate their components with FCCP products. The results were as follows: (1) Protein, total acids, a* (representation of the object’s red and green color), protopectin, and fruit thickness are the five key indexes that affect the quality of fresh chili peppers the most. (2) Protein, total acids, a*, protopectin, and fruit thickness are also the key indexes that affect the quality of FCCP. (3) Suitable ranges of fresh chili pepper to manufacture FCCP are 1.3–2.0 g/100 g for protein, 2.5–4.0 g/kg for total acids, 10–15 g/100 g for protopectin, 30–39 for a*, and 1.2–2.0 mm for fruit thickness. (4) Sensory appraisal shows crispness is the most important mouthfeel sensation and can decrease during the process. The varieties with the top three scores were A12 (21G675), A13 (20Z663), and A14 (21Z698) with scores of 87.92, 74.08, and 74.15, respectively. The varieties in the top three scores are pod peppers. The PCA and CA showed that pod peppers were the most suitable materials for making FCCP. Our results will benefit others in selecting fresh chili peppers for making FCCP and provide data support for directing processable variety breeding. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

6 pages, 587 KB  
Proceeding Paper
MspGI Restriction–Modification System and Its Flanking Genes of Microbacterium sp. Gd 4-13
by Alfiya K. Yunusova, Elena V. Spirina, Valeriya N. Antipova and Rimma I. Artyukh
Biol. Life Sci. Forum 2024, 35(1), 4; https://doi.org/10.3390/blsf2024035004 - 20 Aug 2024
Viewed by 1214
Abstract
Bacteria have defense systems against the penetration of foreign DNA (phages and plasmids). Some defense systems protect bacteria from phage penetration into the cell, while others block phage replication. Antiphage defense systems are often located next to already known defense systems (RM system, [...] Read more.
Bacteria have defense systems against the penetration of foreign DNA (phages and plasmids). Some defense systems protect bacteria from phage penetration into the cell, while others block phage replication. Antiphage defense systems are often located next to already known defense systems (RM system, CRISP-Cas system, and others). In this work, the genetic sequence flanking the restriction–modification system of Microbacterium sp. strain Gd 4-13 was analyzed. The genes of the endonuclease HNH, hypothetical proteins, recombinase, and helicase/ATPase have been identified. Their combination and some analogy with the DISARM, BREX, and Druantia systems allow us to hypothesize that, next to the MspGI restriction–modification system, there is another defense system, and together they create an island of antiphage defense in the bacteria in vivo. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biomolecules)
Show Figures

Figure 1

27 pages, 1202 KB  
Review
New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
by Diego Hojsgaard, Manuela Nagel, Sergio E. Feingold, Gabriela A. Massa and John E. Bradshaw
Biomolecules 2024, 14(6), 614; https://doi.org/10.3390/biom14060614 - 23 May 2024
Cited by 5 | Viewed by 4202
Abstract
Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop’s biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities [...] Read more.
Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop’s biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding. Developing diploid varieties instead of tetraploid ones has been proposed as an alternative way to fill the gap in genetic gain, that is being achieved by using gene-edited self-compatible genotypes and inbred lines to exploit hybrid seed technology. In a similar way, modulating the formation of unreduced gametes and synthesizing apomixis in diploid or tetraploid potatoes may help to reinforce the transition to a diploid hybrid crop or enhance introgression schemes and fix highly heterozygous genotypes in tetraploid varieties. In any case, the induction of apomixis-like phenotypes will shorten the time and costs of developing new varieties by allowing the multi-generational propagation through true seeds. In this review, we summarize the current knowledge on potato reproductive phenotypes and underlying genes, discuss the advantages and disadvantages of using potato’s natural variability to modulate reproductive steps during seed formation, and consider strategies to synthesize apomixis. However, before we can fully modulate the reproductive phenotypes, we need to understand the genetic basis of such diversity. Finally, we visualize an active, central role for genebanks in this endeavor by phenotyping properly genotyped genebank accessions and new introductions to provide scientists and breeders with reliable data and resources for developing innovations to exploit market opportunities. Full article
(This article belongs to the Special Issue Molecular Plant Reproduction: From Cells to Nature)
Show Figures

Figure 1

21 pages, 4641 KB  
Article
Agonist-Induced Ca2+ Signaling in HEK-293-Derived Cells Expressing a Single IP3 Receptor Isoform
by Ekaterina N. Kochkina, Elizaveta E. Kopylova, Olga A. Rogachevskaja, Nina P. Kovalenko, Natalia V. Kabanova, Polina D. Kotova, Marina F. Bystrova and Stanislav S. Kolesnikov
Cells 2024, 13(7), 562; https://doi.org/10.3390/cells13070562 - 22 Mar 2024
Cited by 5 | Viewed by 3384
Abstract
In mammals, three genes encode IP3 receptors (IP3Rs), which are involved in agonist-induced Ca2+ signaling in cells of apparently all types. Using the CRISPR/Cas9 approach for disruption of two out of three IP3R genes in HEK-293 cells, [...] Read more.
In mammals, three genes encode IP3 receptors (IP3Rs), which are involved in agonist-induced Ca2+ signaling in cells of apparently all types. Using the CRISPR/Cas9 approach for disruption of two out of three IP3R genes in HEK-293 cells, we generated three monoclonal cell lines, IP3R1-HEK, IP3R2-HEK, and IP3R3-HEK, with the single functional isoform, IP3R1, IP3R2, and IP3R3, respectively. All engineered cells responded to ACh with Ca2+ transients in an “all-or-nothing” manner, suggesting that each IP3R isotype was capable of mediating CICR. The sensitivity of cells to ACh strongly correlated with the affinity of IP3 binding to an IP3R isoform they expressed. Based on a mathematical model of intracellular Ca2+ signals induced by thapsigargin, a SERCA inhibitor, we developed an approach for estimating relative Ca2+ permeability of Ca2+ store and showed that all three IP3R isoforms contributed to Ca2+ leakage from ER. The relative Ca2+ permeabilities of Ca2+ stores in IP3R1-HEK, IP3R2-HEK, and IP3R3-HEK cells were evaluated as 1:1.75:0.45. Using the genetically encoded sensor R-CEPIA1er for monitoring Ca2+ signals in ER, engineered cells were ranged by resting levels of stored Ca2+ as IP3R3-HEK ≥ IP3R1-HEK > IP3R2-HEK. The developed cell lines could be helpful for further assaying activity, regulation, and pharmacology of individual IP3R isoforms. Full article
Show Figures

Figure 1

17 pages, 6691 KB  
Article
Knockout of the Cardiac Transcription Factor NKX2-5 Results in Stem Cell-Derived Cardiac Cells with Typical Purkinje Cell-like Signal Transduction and Extracellular Matrix Formation
by Paul Disse, Isabel Aymanns, Lena Mücher, Sarah Sandmann, Julian Varghese, Nadine Ritter, Nathalie Strutz-Seebohm, Guiscard Seebohm and Stefan Peischard
Int. J. Mol. Sci. 2023, 24(17), 13366; https://doi.org/10.3390/ijms241713366 - 29 Aug 2023
Cited by 3 | Viewed by 2808
Abstract
The human heart controls blood flow, and therewith enables the adequate supply of oxygen and nutrients to the body. The correct function of the heart is coordinated by the interplay of different cardiac cell types. Thereby, one can distinguish between cells of the [...] Read more.
The human heart controls blood flow, and therewith enables the adequate supply of oxygen and nutrients to the body. The correct function of the heart is coordinated by the interplay of different cardiac cell types. Thereby, one can distinguish between cells of the working myocardium, the pace-making cells in the sinoatrial node (SAN) and the conduction system cells in the AV-node, the His-bundle or the Purkinje fibres. Tissue-engineering approaches aim to generate hiPSC-derived cardiac tissues for disease modelling and therapeutic usage with a significant improvement in the differentiation quality of myocardium and pace-making cells. The differentiation of cells with cardiac conduction system properties is still challenging, and the produced cell mass and quality is poor. Here, we describe the generation of cardiac cells with properties of the cardiac conduction system, called conduction system-like cells (CSLC). As a primary approach, we introduced a CrispR-Cas9-directed knockout of the NKX2-5 gene in hiPSC. NKX2-5-deficient hiPSC showed altered connexin expression patterns characteristic for the cardiac conduction system with strong connexin 40 and connexin 43 expression and suppressed connexin 45 expression. Application of differentiation protocols for ventricular- or SAN-like cells could not reverse this connexin expression pattern, indicating a stable regulation by NKX2-5 on connexin expression. The contraction behaviour of the hiPSC-derived CSLCs was compared to hiPSC-derived ventricular- and SAN-like cells. We found that the contraction speed of CSLCs resembled the expected contraction rate of human conduction system cells. Overall contraction was reduced in differentiated cells derived from NKX2-5 knockout hiPSC. Comparative transcriptomic data suggest a specification of the cardiac subtype of CSLC that is distinctly different from ventricular or pacemaker-like cells with reduced myocardial gene expression and enhanced extracellular matrix formation for improved electrical insulation. In summary, knockout of NKX2-5 in hiPSC leads to enhanced differentiation of cells with cardiac conduction system features, including connexin expression and contraction behaviour. Full article
(This article belongs to the Special Issue New Insights into Cardiovascular Diseases in Basic Research)
Show Figures

Figure 1

18 pages, 817 KB  
Article
Physicochemical Attributes, Aroma Profile, and Sensory Quality of Organic Crimson Crisp Apples after Storage
by Niklas Pontesegger, Thomas Rühmer and Barbara Siegmund
Foods 2023, 12(9), 1876; https://doi.org/10.3390/foods12091876 - 2 May 2023
Cited by 6 | Viewed by 3406
Abstract
The objective of this study was to determine the effect of various storage conditions (i.e., storage under regular air with temperature control, controlled atmosphere storage and storage after the application of the ethylene blocker (1-MCP)) on the flavor characteristics of Crimson Crisp apples [...] Read more.
The objective of this study was to determine the effect of various storage conditions (i.e., storage under regular air with temperature control, controlled atmosphere storage and storage after the application of the ethylene blocker (1-MCP)) on the flavor characteristics of Crimson Crisp apples (Malus domestica Borkh.), a scab-resistant cultivar suitable for organic agriculture. Highly ripe organically-grown apples (starch degradation 9.7) were stored under different conditions and evaluated for physicochemical attributes such as fruit weight, firmness, juiciness, total soluble solids, titratable acidity, pH value and aroma profile. The analysis of primary and secondary aroma compounds was conducted utilizing HS-SPME-GCMS and the results were integrated with sensory evaluation. Crimson Crisp apples stored under controlled atmosphere with (MCP) or without (CA) application of 1-MCP, had a higher overall quality than those stored in air (RA) after a storage period of six months. The results from sensory analysis indicated that storage with temperature control alone was not suitable for preserving the distinct properties such as crispness or juiciness of Crimson Crisp apples. However, a significant increase particularly in secondary aroma compounds in RA-stored apples was found accompanied by structural disorders of the apple tissue. While a significant decline in the volatile fraction of CA and MCP-stored apples was observed, PCA showed close correlation between the CA stored and the fresh apple samples. Furthermore, these results demonstrate that the applied measures which are taken to prolong the storage time of Crimson Crisp apples, significantly impact the biochemical reactions in the fruits which are responsible for formation of flavor. These findings underscore the significance of comprehensive aroma analysis for new agricultural products and emphasize the potential for improved the quality of organic apples through carefully considered harvest and storage regimes. Full article
Show Figures

Figure 1

11 pages, 2341 KB  
Article
Generation and Characterization of a Transgenic Mouse That Specifically Expresses the Cre Recombinase in Spermatids
by Clara Gobé, Côme Ialy-Radio, Rémi Pierre and Julie Cocquet
Genes 2023, 14(5), 983; https://doi.org/10.3390/genes14050983 - 27 Apr 2023
Cited by 2 | Viewed by 4605
Abstract
Spermiogenesis is the step during which post-meiotic cells, called spermatids, undergo numerous morphological changes and differentiate into spermatozoa. Thousands of genes have been described to be expressed at this stage and could contribute to spermatid differentiation. Genetically-engineered mouse models using Cre/LoxP or [...] Read more.
Spermiogenesis is the step during which post-meiotic cells, called spermatids, undergo numerous morphological changes and differentiate into spermatozoa. Thousands of genes have been described to be expressed at this stage and could contribute to spermatid differentiation. Genetically-engineered mouse models using Cre/LoxP or CrispR/Cas9 are the favored approaches to characterize gene function and better understand the genetic basis of male infertility. In the present study, we produced a new spermatid-specific Cre transgenic mouse line, in which the improved iCre recombinase is expressed under the control of the acrosomal vesicle protein 1 gene promoter (Acrv1-iCre). We show that Cre protein expression is restricted to the testis and only detected in round spermatids of stage V to VIII seminiferous tubules. The Acrv1-iCre line can conditionally knockout a gene during spermiogenesis with a > 95% efficiency. Therefore, it could be useful to unravel the function of genes during the late stage of spermatogenesis, but it can also be used to produce an embryo with a paternally deleted allele without causing early spermatogenesis defects. Full article
(This article belongs to the Special Issue Animals Models in Diseases Genetics)
Show Figures

Figure 1

14 pages, 2656 KB  
Article
Hybrid Multitask Learning Reveals Sequence Features Driving Specificity in the CRISPR/Cas9 System
by Dhvani Sandip Vora, Shashank Yadav and Durai Sundar
Biomolecules 2023, 13(4), 641; https://doi.org/10.3390/biom13040641 - 3 Apr 2023
Cited by 13 | Viewed by 2812
Abstract
CRISPR/Cas9 technology is capable of precisely editing genomes and is at the heart of various scientific and medical advances in recent times. The advances in biomedical research are hindered because of the inadvertent burden on the genome when genome editors are employed—the off-target [...] Read more.
CRISPR/Cas9 technology is capable of precisely editing genomes and is at the heart of various scientific and medical advances in recent times. The advances in biomedical research are hindered because of the inadvertent burden on the genome when genome editors are employed—the off-target effects. Although experimental screens to detect off-targets have allowed understanding the activity of Cas9, that knowledge remains incomplete as the rules do not extrapolate well to new target sequences. Off-target prediction tools developed recently have increasingly relied on machine learning and deep learning techniques to reliably understand the complete threat of likely off-targets because the rules that drive Cas9 activity are not fully understood. In this study, we present a count-based as well as deep-learning-based approach to derive sequence features that are important in deciding on Cas9 activity at a sequence. There are two major challenges in off-target determination—the identification of a likely site of Cas9 activity and the prediction of the extent of Cas9 activity at that site. The hybrid multitask CNN–biLSTM model developed, named CRISP–RCNN, simultaneously predicts off-targets and the extent of activity on off-targets. Employing methods of integrated gradients and weighting kernels for feature importance approximation, analysis of nucleotide and position preference, and mismatch tolerance have been performed. Full article
(This article belongs to the Special Issue Applications of Machine Learning in Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop