Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = CO2-LSWAG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3932 KB  
Article
Synergistic Effects of Dimethyl Ether and LSW in a CO2 WAG Process for Enhanced Oil Recovery and CO2 Sequestration
by Yongho Seong, Bomi Kim, Qingquan Liu, Liang Wang and Kun Sang Lee
Energies 2025, 18(23), 6104; https://doi.org/10.3390/en18236104 - 21 Nov 2025
Viewed by 385
Abstract
The integrated injection of low-salinity water (LSW) and carbon dioxide (CO2) into the water-alternating-gas (WAG) process offers advantages, primarily increasing oil recovery and reducing operating costs. However, CO2 has challenges in sweep efficiency due to significant differences in density and [...] Read more.
The integrated injection of low-salinity water (LSW) and carbon dioxide (CO2) into the water-alternating-gas (WAG) process offers advantages, primarily increasing oil recovery and reducing operating costs. However, CO2 has challenges in sweep efficiency due to significant differences in density and viscosity compared with oil. While LSW and dimethyl ether (DME) have shown promise in improving recovery through wettability alteration and reducing minimum miscible pressure, interfacial tension (IFT), and CO2 mobility, their synergistic integration with CO2-WAG remains poorly understood. Existing DME-based enhanced oil recovery (EOR) studies have not explored low-salinity water injection as a cost-effective alternative to mitigate high DME operating costs. This study introduces the CO2/DME-LSWAG method, systematically evaluating the effect of DME concentrations (0%, 10%, 25%) and LSWs (seawater, twice-diluted seawater, ten-times-diluted seawater) on sweep and displacement efficiencies, oil recovery, and CO2 storage in a 2D cross-sectional carbonate reservoir model. Results showed that DME dramatically reduces IFT (67% and 95% at 10% and 25% DME solvent, respectively) while salinity effects are relatively small. Compared with CO2-LSWAG, the oil recovery factor improved by 5.2–13.1% depending on DME concentration and water salinity, with DME performance maximized at higher salinity water. CO2 storage efficiency showed opposing trends. Structural trapping decreased, while solubility trapping increased with lower salinity. The sensitivity analysis identified DME concentration as the dominant factor for CO2 storage. The composition modeling and simulation of the CO2/DME-LSWAG process provide critical engineering guidance for the design of future EOR and CO2 storage projects that utilize DME in carbonate reservoirs. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

20 pages, 9044 KB  
Article
Simulation of Low-Salinity Water-Alternating Impure CO2 Process for Enhanced Oil Recovery and CO2 Sequestration in Carbonate Reservoirs
by Kwangduk Seo, Bomi Kim, Qingquan Liu and Kun Sang Lee
Energies 2025, 18(5), 1297; https://doi.org/10.3390/en18051297 - 6 Mar 2025
Cited by 2 | Viewed by 1457
Abstract
This study investigates the combined effects of impurities in CO2 stream, geochemistry, water salinity, and wettability alteration on oil recovery and CO2 storage in carbonate reservoirs and optimizes injection strategy to maximize oil recovery and CO2 storage ratio. Specifically, it [...] Read more.
This study investigates the combined effects of impurities in CO2 stream, geochemistry, water salinity, and wettability alteration on oil recovery and CO2 storage in carbonate reservoirs and optimizes injection strategy to maximize oil recovery and CO2 storage ratio. Specifically, it compares the performance of pure CO2 water-alternating gas (WAG), impure CO2-WAG, pure CO2 low-salinity water-alternating gas (LSWAG), and impure CO2-LSWAG injection methods from perspectives of enhanced oil recovery (EOR) and CO2 sequestration. CO2-enhanced oil recovery (CO2-EOR) is an effective way to extract residual oil. CO2 injection and WAG methods can improve displacement efficiency and sweep efficiency. However, CO2-EOR has less impact on the carbonate reservoir because of the complex pore structure and oil-wet surface. Low-salinity water injection (LSWI) and CO2 injection can affect the complex pore structure by geochemical reaction and wettability by a relative permeability curve shift from oil-wet to water-wet. The results from extensive compositional simulations show that CO2 injection into carbonate reservoirs increases the recovery factor compared with waterflooding, with pure CO2-WAG injection yielding higher recovery factor than impure CO2-WAG injection. Impurities in CO2 gas decrease the efficiency of CO2-EOR, reducing oil viscosity less and increasing interfacial tension (IFT) compared to pure CO2 injection, leading to gas channeling and reduced sweep efficiency. This results in lower oil recovery and lower storage efficiency compared to pure CO2. CO2-LSWAG results in the highest oil-recovery factor as surface changes. Geochemical reactions during CO2 injection also increase CO2 storage capacity and alter trapping mechanisms. This study demonstrates that the use of impure CO2-LSWAG injection leads to improved oil recovery and CO2 storage compared to pure CO2-WAG injection. It reveals that wettability alteration plays a more significant role for oil recovery and geochemical reaction plays crucial role in CO2 storage than CO2 purity. According to optimization, the greater the injection of gas and water, the higher the oil recovery, while the less gas and water injected, the higher the storage ratio, leading to improved storage efficiency. This research provides valuable insights into parameters and injection scenarios affecting enhanced oil recovery and CO2 storage in carbonate reservoirs. Full article
(This article belongs to the Special Issue Oil Recovery and Simulation in Reservoir Engineering)
Show Figures

Figure 1

23 pages, 6747 KB  
Article
A Comprehensive Simulation Study of Physicochemical and Geochemical Interactions on Immiscible CO2-LSWAG Injection in Carbonates
by Ladislane dos Santos Bastos, Igor Emanuel da Silva Lins, Gloria Meyberg Nunes Costa and Silvio Alexandre Beisl Vieira de Melo
Energies 2023, 16(1), 440; https://doi.org/10.3390/en16010440 - 30 Dec 2022
Cited by 1 | Viewed by 2258
Abstract
Low-salinity water-alternating-CO2 (CO2-LSWAG) injection has been widely studied and employed due to its capability to promote enhanced oil recovery (EOR). However, there is no consensus on the dominant mechanisms for oil recovery in carbonates due to the extreme complexity of [...] Read more.
Low-salinity water-alternating-CO2 (CO2-LSWAG) injection has been widely studied and employed due to its capability to promote enhanced oil recovery (EOR). However, there is no consensus on the dominant mechanisms for oil recovery in carbonates due to the extreme complexity of the oil–brine–rock interactions. This work proposes a comparative investigation of the physicochemical and geochemical effects of continuous CO2 and CO2-LSWAG immiscible injections on oil recovery in a carbonate core. Simulations were carried out using oil PVT properties and relative permeability experimental data from the literature. A comparison of SO42− and Mg2+ as interpolant ions, oil, water and gas production, pressure, and rock and fluid properties along the core and in the effluent was made. The results show a high recovery factor for CO2 (62%) and CO2-LSWAG (85%), even in immiscible conditions. The mineral dissolution and porosity variations were more pronounced for CO2-LSWAG than CO2. The simulation results showed that Mg2+ as an interpolant improves oil recovery more than SO42− because Mg2+ concentration in the aqueous phase after LSW injection leads to relative permeability values, which are more favorable. Full article
(This article belongs to the Special Issue Oil Field Chemicals and Enhanced Oil Recovery)
Show Figures

Figure 1

38 pages, 7617 KB  
Review
Literature Review of Hybrid CO2 Low Salinity Water-Alternating-Gas Injection and Investigation on Hysteresis Effect
by Shijia Ma and Lesley A. James
Energies 2022, 15(21), 7891; https://doi.org/10.3390/en15217891 - 24 Oct 2022
Cited by 15 | Viewed by 4729
Abstract
Low salinity water injection (LSWI) is considered to be more cost-effective and has less environmental impacts over conventional chemical Enhanced Oil Recovery (EOR) methods. CO2 Water-Alternating-Gas (WAG) injection is also a leading EOR flooding process. The hybrid EOR method, CO2 low [...] Read more.
Low salinity water injection (LSWI) is considered to be more cost-effective and has less environmental impacts over conventional chemical Enhanced Oil Recovery (EOR) methods. CO2 Water-Alternating-Gas (WAG) injection is also a leading EOR flooding process. The hybrid EOR method, CO2 low salinity (LS) WAG injection, which incorporates low salinity water into CO2 WAG injection, is potentially beneficial in terms of optimizing oil recovery and decreasing operational costs. Experimental and simulation studies reveal that CO2 LSWAG injection is influenced by CO2 solubility in brine, brine salinity and composition, rock composition, WAG parameters, and wettability. However, the mechanism for increased recovery using this hybrid method is still debatable and the conditions under which CO2 LSWAG injection is effective are still uncertain. Hence, a comprehensive review of the existing literature investigating LSWI and CO2 WAG injection, and laboratory and simulation studies of CO2 LSWAG injection is essential to understand current research progress, highlight knowledge gaps and identify future research directions. With the identified research gap, a core-scale simulation study on hysteresis effect in CO2 LSWAG injection is carried out. The results indicate different changing trend in oil recovery due to the impact of salinity on hysteresis and excluding of hysteresis effect in CO2 LSWAG injection simulation and optimization might lead to significant errors. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery (EOR) Methods)
Show Figures

Figure 1

12 pages, 2889 KB  
Article
Experimental Investigation of the Mechanisms of Salt Precipitation during CO2 Injection in Sandstone
by Yen Adams Sokama-Neuyam, Jann Rune Ursin and Patrick Boakye
C 2019, 5(1), 4; https://doi.org/10.3390/c5010004 - 8 Jan 2019
Cited by 14 | Viewed by 5612
Abstract
Deep saline reservoirs have the highest volumetric CO2 storage potential, but drying and salt precipitation during CO2 injection could severely impair CO2 injectivity. The physical mechanisms and impact of salt precipitation, especially in the injection area, is still not fully [...] Read more.
Deep saline reservoirs have the highest volumetric CO2 storage potential, but drying and salt precipitation during CO2 injection could severely impair CO2 injectivity. The physical mechanisms and impact of salt precipitation, especially in the injection area, is still not fully understood. Core-flood experiments were conducted to investigate the mechanisms of external and internal salt precipitation in sandstone rocks. CO2 Low Salinity Alternating Gas (CO2-LSWAG) injection as a potential mitigation technique to reduce injectivity impairment induced by salt precipitation was also studied. We found that poor sweep and high brine salinity could increase salt deposition on the surface of the injection area. The results also indicate that the amount of salt precipitated in the dry-out zone does not change significantly during the drying process, as large portion of the precipitated salt accumulate in the injection vicinity. However, the distribution of salt in the dry-out zone was found to change markedly when more CO2 was injected after salt precipitation. This suggests that CO2 injectivity impairment induced by salt precipitation is probably dynamic rather than a static process. It was also found that CO2-LSWAG could improve CO2 injectivity after salt precipitation. However, below a critical diluent brine salinity, CO2-LSWAG did not improve injectivity. These findings provide vital understanding of core-scale physical mechanisms of the impact of salt precipitation on CO2 injectivity in saline reservoirs. The insight gained could be implemented in simulation models to improve the quantification of injectivity losses during CO2 injection into saline sandstone reservoirs. Full article
Show Figures

Figure 1

Back to TopTop