Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (305)

Search Parameters:
Keywords = CO2 refrigerant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 2180 KiB  
Review
Ternary Choline Chloride-Based Deep Eutectic Solvents: A Review
by Abdulalim Ibrahim, Marc Mulamba Tshibangu, Christophe Coquelet and Fabienne Espitalier
ChemEngineering 2025, 9(4), 84; https://doi.org/10.3390/chemengineering9040084 (registering DOI) - 6 Aug 2025
Abstract
Ternary choline chloride-based deep eutectic solvents (TDESs) exhibit unique physicochemical properties, including lower viscosities, lower melting points, higher thermal stabilities, and enhanced solvations compared to binary deep eutectic solvents (BDESs). Although BDESs have been widely studied, the addition of a third component in [...] Read more.
Ternary choline chloride-based deep eutectic solvents (TDESs) exhibit unique physicochemical properties, including lower viscosities, lower melting points, higher thermal stabilities, and enhanced solvations compared to binary deep eutectic solvents (BDESs). Although BDESs have been widely studied, the addition of a third component in TDESs offers opportunities to further optimize their performance. This review aims to evaluate the physicochemical properties of TDESs and highlight their potential applications in sustainable industrial processes compared to BDESs. A comprehensive analysis of the existing literature was conducted, focusing on TDES properties, such as phase behavior, density, viscosity, pH, conductivity, and the effect of water, along with their applications in various fields. TDESs demonstrated superior physicochemical characteristics compared to BDESs, including improved solvation and thermal stability. Their applications in biomass conversion, CO2 capture, heavy oil upgrading, refrigeration gases, and as solvents/catalysts in organic reactions show significant promise for enhancing process efficiency and sustainability. Despite their advantages, TDESs face challenges including limited predictive models, potential instability under certain conditions, and scalability hurdles. Overall, TDESs offer significant potential for advancing sustainable and efficient chemical processes for industrial applications. Full article
Show Figures

Figure 1

14 pages, 1415 KiB  
Article
Effects of Different Packaging on the Purine Content and Key Enzymes of Refrigerated Yellow Croaker (Larimichthys crocea)
by Tiansheng Xu, Wenxuan Lu, Bohan Chen, Dapeng Li and Jing Xie
Foods 2025, 14(15), 2732; https://doi.org/10.3390/foods14152732 - 5 Aug 2025
Abstract
In this study, we investigated the effects of air packaging, vacuum packaging and modified atmosphere packaging (CO2/N2: 80/20) on the purine metabolism and enzyme activities of refrigerated large yellow croakers. The results showed that modified atmosphere packaging significantly inhibited [...] Read more.
In this study, we investigated the effects of air packaging, vacuum packaging and modified atmosphere packaging (CO2/N2: 80/20) on the purine metabolism and enzyme activities of refrigerated large yellow croakers. The results showed that modified atmosphere packaging significantly inhibited microbial growth, delayed adenosine triphosphate degradation and maintained higher IMP content (1.93 μmol/g on day 21) compared to the air packaging group (2.82 μmol/g on day 12). The total purine content increased with storage time, with hypoxanthine content increasing significantly and occupying most of the total content, which was the key factor for the elevation of purine, followed by adenine content showing a significant decreasing trend. Hypoxanthine accumulation was significantly suppressed in the modified atmosphere packaging group (2.31 μmol/g on day 18), which was much lower than that in the air packaging group (5.64 μmol/g), whereas xanthine and guanine did not show significant differences among the groups. The key enzymes xanthine oxidase and purine nucleoside phosphorylase were much less active in modified atmosphere packaging, effectively delaying the cascade reaction of inosine monophosphate → hypoxanthine → xanthine. The study confirmed that modified atmosphere packaging intervenes in purine metabolism through enzyme activity regulation, providing a theoretical basis for the preservation of low purine aquatic products. Full article
Show Figures

Figure 1

21 pages, 1934 KiB  
Article
Energy Conservation and Carbon Emission Reduction Potentials of Major Household Appliances in China Leveraging the LEAP Model
by Runhao Guo, Aijun Xu and Heng Li
Buildings 2025, 15(15), 2615; https://doi.org/10.3390/buildings15152615 - 23 Jul 2025
Viewed by 285
Abstract
Household appliances constitute the second largest source of residential energy consumption in China, accounting for over 20% of the total and exhibiting a steady growth trend. Despite their substantial impact on energy demand and carbon emissions, a comprehensive analysis of the current status [...] Read more.
Household appliances constitute the second largest source of residential energy consumption in China, accounting for over 20% of the total and exhibiting a steady growth trend. Despite their substantial impact on energy demand and carbon emissions, a comprehensive analysis of the current status and future trends of household appliances in China is still lacking. This study employs the Long-Range Energy Alternatives Planning (LEAP) system to model energy consumption and carbon emissions for five major household appliances (air conditioners, refrigerators, washing machines, TVs, and water heaters) from 2022 to 2052. Three scenarios were analyzed: a Reference (REF) scenario (current trends), an Existing Policy Option (EPO) scenario (current energy-saving measures), and a Further Strengthening (FUR) scenario (enhanced efficiency measures). Key results show that by 2052, the EPO scenario achieves cumulative savings of 1074.8 billion kWh and reduces emissions by 580.7 million metric tons of CO2 equivalent compared to REF. The FUR scenario yields substantially greater benefits, demonstrating the significant potential of strengthened policies. This analysis underscores the critical role of improving appliance energy efficiency and provides vital insights for policymakers and stakeholders aiming to reduce residential sector emissions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

15 pages, 993 KiB  
Review
Energy Footprint of Cheese: A Critical Review of the Environmental Impact and Opportunities for Sustainability
by Karina S. Silvério, Daniela Freitas and João M. Dias
Appl. Sci. 2025, 15(14), 8072; https://doi.org/10.3390/app15148072 - 20 Jul 2025
Viewed by 517
Abstract
Cheese production is an ancient practice that is associated with the food and cultural identity of different peoples. There are over 500 cheese types globally, including 207 with protected denomination of origin (PDO) and 70 with protected geographical indication (PGI) status in the [...] Read more.
Cheese production is an ancient practice that is associated with the food and cultural identity of different peoples. There are over 500 cheese types globally, including 207 with protected denomination of origin (PDO) and 70 with protected geographical indication (PGI) status in the European Union (EU). Each cheese has various biochemical compositions, production methods, and maturation environments. This study has provided a critical review of the environmental impacts of cheese production, focusing on energy consumption, greenhouse gas (GHG) emissions, and the integration of renewable energy sources as sustainable strategies for this sector. Based on case studies and life cycle assessment (LCA) methodologies, the analysis revealed significant variability in energy use (3.0 to 70.2 MJ/kg) and GHG emissions (up to 22.13 kg CO2 eq/kg), influenced by factors such as the cheese type, production complexity, system boundaries, and the technological or geographical context. Particular attention was given to heat treatment, refrigeration, and maturation processes, which contribute substantially to the overall energy footprint. The paper also discusses the methodological challenges in LCA studies, including the role of co-product allocation and database limitations. Finally, strategic renewable energy options, such as biogas recovery and solar thermal integration, are discussed as sustainable alternatives to reduce the environmental footprint of the dairy sector and support its sustainability. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

22 pages, 4482 KiB  
Article
Cu-Doping Induced Structural Transformation and Magnetocaloric Enhancement in CoCr2O4 Nanoparticles
by Ming-Kang Ho, Yun-Tai Yu, Hsin-Hao Chiu, K. Manjunatha, Shih-Lung Yu, Bing-Li Lyu, Tsu-En Hsu, Heng-Chih Kuo, Shuan-Wei Yu, Wen-Chi Tu, Chiung-Yu Chang, Chia-Liang Cheng, H. Nagabhushana, Tsung-Te Lin, Yi-Ru Hsu, Meng-Chu Chen, Yue-Lin Huang and Sheng Yun Wu
Nanomaterials 2025, 15(14), 1093; https://doi.org/10.3390/nano15141093 - 14 Jul 2025
Viewed by 331
Abstract
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a [...] Read more.
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a progressive structural transformation from a cubic spinel to a trigonal corundum phase, as confirmed by X-ray diffraction and Raman spectroscopy. The doping process also leads to increased particle size, improved crystallinity, and reduced agglomeration. Magnetic measurements reveal a transition from hard to soft ferrimagnetic behavior with increasing Cu content, accompanied by a notable rise in the Curie temperature from 97.7 K (x = 0) to 140.2 K (x = 20%). The magnetocaloric effect (MCE) is significantly enhanced at higher doping levels, with the 20% Cu-doped sample exhibiting a maximum magnetic entropy change (−ΔSM) of 2.015 J/kg-K and a relative cooling power (RCP) of 58.87 J/kg under a 60 kOe field. Arrott plot analysis confirms that the magnetic phase transitions remain second-order in nature across all compositions. These results demonstrate that Cu doping is an effective strategy for tuning the magnetostructural response of CoCr2O4 nanoparticles, making them promising candidates for low-temperature magnetic refrigeration applications. Full article
Show Figures

Figure 1

21 pages, 3340 KiB  
Article
Influence of Operating Conditions on the Energy Consumption of CO2 Supermarket Refrigeration Systems
by Ionuț Dumitriu and Ion V. Ion
Processes 2025, 13(7), 2138; https://doi.org/10.3390/pr13072138 - 4 Jul 2025
Viewed by 406
Abstract
Integrating ejectors into CO2 transcritical refrigeration systems to reduce energy consumption has been performed successfully throughout the industry in recent years. The objective of the present work is to investigate the effect of indoor and outdoor operating conditions on the energy efficiency [...] Read more.
Integrating ejectors into CO2 transcritical refrigeration systems to reduce energy consumption has been performed successfully throughout the industry in recent years. The objective of the present work is to investigate the effect of indoor and outdoor operating conditions on the energy efficiency of ejector expansion supermarket refrigeration plants. The analysis uses the measured energy consumptions and loads for two supermarket refrigeration plants operating in two cities in the Republic of Moldova (Chisinau and Balti). A model for the prediction of the plant’s annual energy consumption and the loads of the refrigeration and freezing compressors is developed using experimental results. Although there are theoretical and experimental analyses of the investigated systems in the specialized literature, no studies were found in the specialized literature regarding energy consumption increase due to pressure losses through the pipe route in transcritical CO2 refrigeration installations with an ejector for supermarkets. The results indicate that refrigeration compressors have a greater increase in energy consumption than freezing compressors with increases in the outdoor temperature. The study shows that the additional drop in evaporating pressure at the compressor rack due to incorrect sizing of the pipe route leads to higher energy consumption compared to what the same plant would consume if the pipe route were correctly sized and executed. For every one-degree increase in temperature loss due to additional pressure drop through the pipeline, the entire plant consumes around 1.5% more energy. Knowledge of these performance data of real systems provides designers and manufacturers with clues to understand the importance of the correct design of the pipe route to obtain maximum energy efficiency. Full article
(This article belongs to the Topic Sustainable Energy Technology, 2nd Edition)
Show Figures

Figure 1

35 pages, 5144 KiB  
Systematic Review
A Systematic Review of Two-Phase Expansion Losses: Challenges, Optimization Opportunities, and Future Research Directions
by Muhammad Syaukani, Szymon Lech, Sindu Daniarta and Piotr Kolasiński
Energies 2025, 18(13), 3504; https://doi.org/10.3390/en18133504 - 2 Jul 2025
Cited by 1 | Viewed by 354
Abstract
Two-phase expansion processes have emerged as a promising technology for enhancing energy efficiency in power generation, refrigeration, waste heat recovery systems (for example, partially evaporated organic Rankine cycle, organic flash cycle, and trilateral flash cycle), oil and gas, and other applications. However, despite [...] Read more.
Two-phase expansion processes have emerged as a promising technology for enhancing energy efficiency in power generation, refrigeration, waste heat recovery systems (for example, partially evaporated organic Rankine cycle, organic flash cycle, and trilateral flash cycle), oil and gas, and other applications. However, despite their potential, widespread adoption is hindered by inherent challenges, particularly energy losses that reduce operational efficiency. This review systematically evaluates the current state of two-phase expansion technologies, focusing on the root causes, impacts, and mitigation strategies for expansion losses. This work used Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Using the PRISMA framework, 52 relevant publications were identified from Scopus and Web of Science to conduct the systematic review. A preliminary co-occurrence analysis of keywords was also conducted using VOSviewer version 1.6.20. Three clusters were observed in this co-occurrence analysis. However, the results may not be significant. Therefore, the extended work was done through a comprehensive analysis of experimental and simulation studies from the literature. This study identifies critical loss mechanisms in key components of two-phase expanders, such as the nozzle, diffuser, rotor, working chamber, and vaneless space. Also, losses arising from wetness, such as droplet formation, interfacial friction, and non-equilibrium phase transitions, are examined. These phenomena degrade performance by disrupting flow stability, increasing entropy generation, and causing mechanical erosion. Several losses in the turbine and volumetric expanders operating in two-phase conditions are reported. Ejectors, throttling valves, and flashing flow systems that exhibit similar challenges of losses are also discussed. This review discusses the mitigation and the strategy to minimize the two-phase expansion losses. The geometry of the inlet of the two-phase expanders plays an important role, which also needs improvement to minimize losses. The review highlights recent advancements in addressing these challenges and shows optimization opportunities for further research. Full article
(This article belongs to the Special Issue Design and Experimental Study of Organic Rankine Cycle System)
Show Figures

Figure 1

25 pages, 1264 KiB  
Article
Potential Assessment of Electrified Heavy-Duty Trailers Based on the Methods Developed for EU Legislation (VECTO Trailer)
by Stefan Present and Martin Rexeis
Future Transp. 2025, 5(3), 77; https://doi.org/10.3390/futuretransp5030077 - 1 Jul 2025
Viewed by 351
Abstract
Since 1 January 2024, newly produced heavy-duty trailers are subject to the assessment of their performance regarding CO2 and fuel consumption according to Implementing Regulation (EU) 2022/1362. The method is based on the already established approach for the CO2 and energy [...] Read more.
Since 1 January 2024, newly produced heavy-duty trailers are subject to the assessment of their performance regarding CO2 and fuel consumption according to Implementing Regulation (EU) 2022/1362. The method is based on the already established approach for the CO2 and energy consumption evaluation of trucks and buses, i.e., applying a combination of component testing and vehicle simulation using the software VECTO (Vehicle Energy Consumption calculation TOol). For the evaluation of trailers, generic conventional towing vehicles in combination with the specific CO2 and fuel consumption-relevant properties of the trailer, such as mass, aerodynamics, rolling resistance etc., are simulated in the “VECTO Trailer” software. The corresponding results are used in the European HDV CO2 standards with which manufacturers must comply to avoid penalty payments (2030: −10% for semitrailers and −7.5% for trailers compared with the baseline year 2025). Methodology and legislation are currently being extended to also cover the effects of electrified trailers (trailers with an electrified axle and/or electrically supplied auxiliaries) on CO2, electrical energy consumption, and electric range extension (special use case in combination with a battery-electric towing vehicle). This publication gives an overview of the developed regulatory framework and methods to be implemented in a future extension of VECTO Trailer as well as a comparison of different e-trailer configurations and usage scenarios regarding their impact on CO2, energy consumption, and electric range by applying the developed methods in a preliminary potential analysis. Results from this analysis indicate that e-trailers that use small batteries (5–50 kWh) to power electric refrigeration units achieve a CO2 reduction of 5–10%, depending primarily on battery capacity. In contrast, e-trailers designed for propulsion support with larger batteries (50–500 kWh) and e-axle(s) (50–500 kW) demonstrate a reduction potential of up to 40%, largely determined by battery capacity and e-axle rating. Despite their reduction potential, market acceptance of e-trailers remains uncertain as the higher number of trailers compared with towing vehicles could lead to slow adoption, especially of the more expensive configurations. Full article
Show Figures

Figure 1

17 pages, 3371 KiB  
Article
Thermodynamic Analysis of Refrigerant Systems for Ethane Recovery and Helium Extraction in Medium-Pressure Natural Gas Processing
by Hong Jiang, Wentang Huang and Xiang Cheng
Energies 2025, 18(13), 3406; https://doi.org/10.3390/en18133406 - 28 Jun 2025
Viewed by 299
Abstract
Based on the medium-pressure natural gas ethane recovery and helium extraction process, this paper proposes three different refrigerant Schemes. Thermodynamic analysis and adaptability evaluation of the three Schemes were conducted using Aspen HYSYS V12 software. The ethylene–propane cascade refrigeration Scheme demonstrated superior energy [...] Read more.
Based on the medium-pressure natural gas ethane recovery and helium extraction process, this paper proposes three different refrigerant Schemes. Thermodynamic analysis and adaptability evaluation of the three Schemes were conducted using Aspen HYSYS V12 software. The ethylene–propane cascade refrigeration Scheme demonstrated superior energy efficiency in terms of comprehensive energy consumption, heat exchange performance in the cryogenic cold box, and exergy analysis. Adaptability analysis indicated that this Scheme exhibits strong tolerance to variations in feed gas temperature as well as N2 and CO2 content. The ethylene–propane cascade refrigeration process demonstrates significant energy-saving advantages and exhibits robust operational performance. Full article
Show Figures

Figure 1

11 pages, 831 KiB  
Article
Assessment of Carbon Footprint for Organization in Frozen Processed Seafood Factory and Strategies for Greenhouse Gas Emission Reduction
by Phuanglek Iamchamnan, Somkiat Saithanoo, Thaweesak Putsukee and Sompop Intasuwan
Processes 2025, 13(7), 1990; https://doi.org/10.3390/pr13071990 - 24 Jun 2025
Viewed by 422
Abstract
This study aims to assess the carbon footprint for the organization of frozen processed seafood manufacturing plants and propose sustainable strategies for reducing greenhouse gas emissions. Organizational activity data from 2024 were utilized to evaluate the carbon footprint and develop targeted mitigation measures. [...] Read more.
This study aims to assess the carbon footprint for the organization of frozen processed seafood manufacturing plants and propose sustainable strategies for reducing greenhouse gas emissions. Organizational activity data from 2024 were utilized to evaluate the carbon footprint and develop targeted mitigation measures. The findings indicate that Scope 1 emissions amounted to 12,685 tons of CO2eq, Scope 2 emissions amounted to 15,403 tons of CO2eq, and Scope 3 emissions amounted to 31,564 tons of CO2eq. The total greenhouse gas emissions across all three scopes were 59,652 tons of CO2eq, with additional greenhouse gas emissions recorded at 34,027 tons of CO2eq. Mitigation measures were considered for activities contributing to at least 10% of emissions in each scope. In Scope 1, the use of R507 refrigerant in the production cooling system accounted for 9907 tons of CO2eq, representing 78.10% of emissions. In Scope 2, electricity consumption contributed 15,403 tons of CO2eq, constituting 100% of emissions. In Scope 3, the procurement of surimi (processed fish meat) was responsible for 20,844 tons of CO2eq, accounting for 66.04% of emissions. Based on these findings, key mitigation strategies were proposed. For Scope 1, reducing emissions involves preventive maintenance of cooling systems to prevent leaks, replacing corroded pipelines, installing shut-off valves, and switching to alternative refrigerants with no greenhouse gas emissions. For Scope 2, energy-saving initiatives include promoting electricity conservation within the organization, maintaining equipment for optimal efficiency, installing energy-saving devices such as variable speed drives (VSD), upgrading to high-efficiency motors, and utilizing renewable energy sources like solar power. For Scope 3, emissions can be minimized by sourcing raw materials from suppliers with certified carbon footprint labels, prioritizing purchases from producers committed to carbon reduction, and selecting suppliers closer to manufacturing sites to reduce transportation-related emissions. Implementing these strategies will contribute to sustainable greenhouse gas emission reductions. Full article
(This article belongs to the Special Issue Sustainable Waste Material Recovery Technologies)
Show Figures

Figure 1

13 pages, 2141 KiB  
Article
Guidelines for Reducing the Greenhouse Gas Emissions of a Frozen Seafood Processing Factory Towards Carbon Neutrality Goals
by Phuanglek Iamchamnan, Somkiat Saithanoo, Thaweesak Putsukee and Sompop Intasuwan
Processes 2025, 13(7), 1989; https://doi.org/10.3390/pr13071989 - 24 Jun 2025
Viewed by 468
Abstract
This research aims to calculate the Carbon Footprint for Organization of a plant manufacturing frozen processed seafood and propose strategies to reduce greenhouse gas (GHG) emissions following the Net-Zero Pathway, using 2024 as the baseline year. The findings indicate that Scope 1 emissions [...] Read more.
This research aims to calculate the Carbon Footprint for Organization of a plant manufacturing frozen processed seafood and propose strategies to reduce greenhouse gas (GHG) emissions following the Net-Zero Pathway, using 2024 as the baseline year. The findings indicate that Scope 1 emissions amounted to 12,685 tons of CO2 eq, Scope 2 emissions totaled 15,403 tons of CO2eq, and Scope 3 emissions reached 31,564 tons of CO2eq, leading to a combined total of 59,652 tons of CO2eq across all scopes, with an additional 34,027 tons of CO2eq from other GHG sources. To achieve net-zero emissions by 2050, annual reductions of 3.46% per category are required. The short-term target for 2028f aims to reduce emissions to 10,929 tons of CO2eq for Scope 1, 13,270 tons of CO2eq for Scope 2, and 27,194 tons of CO2eq for Scope 3, resulting in total emissions of 51,392 tons of CO2eq. The proposed reduction strategies include optimizing Scope 1 emissions by preventing leaks in R507 refrigerant systems, replacing corroded pipelines, installing shut-off valves, and switching to low-GHG refrigerants. For Scope 2, measures focus on reducing electricity consumption through energy conservation initiatives, carrying out regular machinery maintenance, installing Variable Speed Drives (VSDs), upgrading to high-efficiency motors, and integrating renewable energy sources such as solar power. For Scope 3, emissions from raw material procurement can be minimized by sourcing from certified suppliers with established product carbon footprints, prioritizing carbon reduction labeling, and selecting nearby suppliers to reduce transportation-related emissions. These strategies will support the organization in achieving carbon neutrality and progressing toward the net-zero goal. Full article
(This article belongs to the Special Issue Sustainable Waste Material Recovery Technologies)
Show Figures

Figure 1

24 pages, 4465 KiB  
Article
Case Study of a Greenfield Blue Hydrogen Plant: A Comparative Analysis of Production Methods
by Mohammad Sajjadi and Hussameldin Ibrahim
Energies 2025, 18(13), 3272; https://doi.org/10.3390/en18133272 - 23 Jun 2025
Viewed by 592
Abstract
Blue hydrogen is a key pathway for reducing greenhouse gas emissions while utilizing natural gas with carbon capture and storage (CCS). This study conducts a techno-economic and environmental analysis of a greenfield blue hydrogen plant in Saskatchewan, Canada, integrating both SMR and ATR [...] Read more.
Blue hydrogen is a key pathway for reducing greenhouse gas emissions while utilizing natural gas with carbon capture and storage (CCS). This study conducts a techno-economic and environmental analysis of a greenfield blue hydrogen plant in Saskatchewan, Canada, integrating both SMR and ATR technologies. Unlike previous studies that focus mainly on production units, this research includes all process and utility systems such as H2 and CO2 compression, air separation, refrigeration, co-generation, and gas dehydration. Aspen HYSYS simulations revealed ATR’s energy demand is 10% lower than that of SMR. The hydrogen production cost was USD 3.28/kg for ATR and USD 3.33/kg for SMR, while a separate study estimated a USD 2.2/kg cost for design without utilities, highlighting the impact of indirect costs. Environmental analysis showed ATR’s lower Global Warming Potential (GWP) compared to SMR, reducing its carbon footprint. The results signified the role of utility integration, site conditions, and process selection in optimizing energy efficiency, costs, and sustainability. Full article
Show Figures

Figure 1

20 pages, 3672 KiB  
Article
Comparative Analysis of Transcritical CO2 Heat Pump Systems With and Without Ejector: Performance, Exergy, and Economic Perspective
by Xiang Qin, Shihao Lei, Heyu Liu, Yinghao Zeng, Yajun Liu, Caiyan Pang and Jiaheng Chen
Energies 2025, 18(12), 3223; https://doi.org/10.3390/en18123223 - 19 Jun 2025
Viewed by 663
Abstract
To promote renewable energy utilization and enhance the environmental friendliness of refrigerants, this study presents a novel experimental investigation on a transcritical CO2 double-evaporator heat pump water heater integrating both air and water sources, designed for high-temperature hot water production. A key [...] Read more.
To promote renewable energy utilization and enhance the environmental friendliness of refrigerants, this study presents a novel experimental investigation on a transcritical CO2 double-evaporator heat pump water heater integrating both air and water sources, designed for high-temperature hot water production. A key innovation of this work lies in the integration of an ejector into the dual-source system, aiming to improve system performance and energy efficiency. This study systematically compares the conventional circulation mode and the proposed ejector-assisted circulation mode in terms of system performance, exergy efficiency, and the economic payback period. Experimental results reveal that the ejector-assisted mode not only achieves a higher water outlet temperature and reduces compressor power consumption but also improves the system’s exergy efficiency by 6.6% under the condition of the maximum outlet water temperature. Although the addition of the ejector increases initial manufacturing and maintenance costs, the payback periods of the two modes remain nearly the same. These findings confirm the feasibility and advantage of incorporating an ejector into a transcritical CO2 compression/ejection heat pump system with integrated air and water sources, offering a promising solution for efficient and environmentally friendly high-temperature water heating applications. Full article
(This article belongs to the Special Issue Advances in Supercritical Carbon Dioxide Cycle)
Show Figures

Figure 1

15 pages, 1480 KiB  
Article
Development of a New Trapping System with Potential Implementation as a Tool for Mosquito-Borne Arbovirus Surveillance
by Luísa Maria Inácio da Silva, Larissa Krokovsky, Rafaela Cassiano Matos, Gabriel da Luz Wallau and Marcelo Henrique Santos Paiva
Insects 2025, 16(6), 637; https://doi.org/10.3390/insects16060637 - 17 Jun 2025
Viewed by 731
Abstract
Mosquitoes of the Aedes and Culex genera are primary vectors of arboviruses such as the dengue, Zika, chikungunya (CHIKV), Oropouche, and West Nile viruses, causing millions of infections annually. Standard virus detection in mosquitoes requires capturing, transporting, and processing samples with a cold [...] Read more.
Mosquitoes of the Aedes and Culex genera are primary vectors of arboviruses such as the dengue, Zika, chikungunya (CHIKV), Oropouche, and West Nile viruses, causing millions of infections annually. Standard virus detection in mosquitoes requires capturing, transporting, and processing samples with a cold chain to preserve RNA, which is challenging in resource-limited areas. FTA cards preserve viral RNA at room temperature and have been used to collect mosquito saliva, a key sample for assessing transmission. However, most FTA-based traps require electricity or CO2, limiting use in low-resource settings. This study adapted and evaluated the BR-ArboTrap, a low-cost trap derived from an oviposition trap, integrating a sugar-based attractant with FTA cards to collect mosquito saliva, without electricity or refrigeration. Aedes aegypti exposed to CHIKV were used in three experiments to evaluate: (i) RNA preservation under different conditions, (ii) the minimum number of positive mosquitoes for detection, and (iii) RNA amounts on FTA versus blood. RT-qPCR detected CHIKV RNA in 90% of FTA cards and 96% of exposed mosquitoes. RNA remained stable under varying conditions, with no significant difference compared to blood. BR-ArboTrap is an effective, affordable, and field-ready tool to enhance arbovirus surveillance in remote and low-resource areas. Full article
Show Figures

Graphical abstract

19 pages, 2782 KiB  
Article
Numerical Study of the Condenser of a Small CO2 Refrigeration Unit Operating Under Supercritical Conditions
by Piotr Szymczak, Piotr Bogusław Jasiński and Marcin Łęcki
Energies 2025, 18(11), 2992; https://doi.org/10.3390/en18112992 - 5 Jun 2025
Viewed by 399
Abstract
The paper presents a numerical analysis of a tube-in-tube condenser of a small refrigeration system. One of the challenges in designing such units is to reduce their dimensions while maintaining the highest possible cooling capacity, so the research presented here focuses on the [...] Read more.
The paper presents a numerical analysis of a tube-in-tube condenser of a small refrigeration system. One of the challenges in designing such units is to reduce their dimensions while maintaining the highest possible cooling capacity, so the research presented here focuses on the search for and impact of the appropriate flow conditions of these two fluids on condenser performance. The refrigerant is supercritical CO2, which is cooled by water. Thermal-flow simulations were performed for eight CO2 inlet velocities in the range of 1–8 m/s, and four cooling water velocities of 0.5–2 m/s. The main parameters of the exchanger operation were analyzed: heat transfer coefficient, Nusselt number, overall heat transfer coefficient, and friction factor, which were compared with selected correlations. The results showed that the condenser achieves the highest power for the highest water velocities (2 m/s) and CO2 (8 m/s), i.e., over 1000 W, which corresponds to a heat flux on the tube surface of approx. 2.6 × 105 W/m2 and a heat transfer coefficient of approx. 4700 W/m2K. One of the most important conclusions is the discovery of a significant effect of water velocity on heat transfer from the CO2 side—an increase in water velocity from 0.5 m/s to 2 m/s results in an increase in the heat transfer coefficient sCO2 by over 60%, with the same Re number. The implication of this study is to show the possibility of adjusting and selecting condenser parameters over a wide range of capacities, just by changing the fluid velocity. Full article
(This article belongs to the Special Issue Advances in Supercritical Carbon Dioxide Cycle)
Show Figures

Figure 1

Back to TopTop