A Novel Signal Design and Performance Analysis in NavCom Based on LEO Constellation
Abstract
:1. Introduction
2. Related Surveys
- Spectrum resources are extremely limited, meaning that it is impossible to give exclusive frequency bands to each system;
- Chaotically propagating signals cause a sharp decline in system performance due to mutual interference, meaning that they cannot be reused.
- Spectrum reuse or spectrum efficiency—that is, the work performed per hertz;
- Planning and design between signals of the same frequency, especially the verification interference/anti-interference and mutual compatibility of planned signals in the same band;
- In addition to the traditional time–frequency features, mining novel dimensional features is also extremely important for the extraction and distinguishing of ubiquitous signal designs for PNTRC.
2.1. Satellite-Based Systems
2.2. Ground-Based Systems
3. Model Design
3.1. System Model
3.2. Signal Model
3.3. PSD and ACF
- The main lobe splits with the increase in k.
- The normalized power spectral density difference between the logarithmic main lobe and the main side lobe is about 26.5 dBW/Hz.
- For k = 1, the main lobe bandwidth can reach 3.069 MHz, and for k ≠ 1 the bandwidth in the main lobe can reach 2.046 MHz, and the side lobe bandwidth can reach 1.023 MHz.
4. Performance Evaluation
4.1. Evaluation Criteria
4.2. Navigation Performance Analysis
- Accuracy potential
- Compatibility
- Anti-multipath
- Anti-jamming
4.3. Communication Performance Analysis
- Our proposed signal scheme is capable of meeting the communication conditions between LEOs and terrestrial locations.
- The low power of the user terminal and the link bandwidth tradeoff settings of the communication signal design can provide technical support for the miniaturization of the transceiver terminal and multi-user cluster.
- The scheme has the potential for expansion towards multi-orbit and multi-LEO satellite networking.
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CSNO. BeiDou Navigation Satellite System Open Service Performance Standard, Version 3.0; CSNO: Beijing, China, 2021. [Google Scholar]
- Zhang, Y.; Wang, N.; Weng, S.; Li, M.; Mou, D.; Han, Y. Emergency Positioning Method of Indoor Pedestrian in Non-Cooperative Navigation Environment Based on Virtual Reference Node Array/INS. IEEE Sens. J. 2020, 20, 10913–10923. [Google Scholar] [CrossRef]
- Yang, Y.X. Resilient PNT concept frame. Acta Geod. Cartogr. Sin. 2018, 47, 893. [Google Scholar]
- Yang, Y.X.; Cheng, Y.; Ren, X. PNT intelligent services. Acta Geod. Cartogr. Sin. 2021, 50, 1006. [Google Scholar]
- Cheng, R.; Wang, L.; Li, D.R.; Cheng, L.; Fu, W. A survey on the fusion of the navigation and the remote sensing techniques. Acta Geod. Cartogr. Sin. 2019, 48, 1507. [Google Scholar]
- Simolunas, A.A.; Quinn, G.H. Alaskan Air Navigation Requirements. Volume I—Overview; Federal Aviation Administration Systems Research & Development Service: Washington, DC, USA, 1977; pp. 1–40. Available online: https://apps.dtic.mil/sti/pdfs/ADA040664.pdf (accessed on 11 April 2021).
- Cox, D.B. Integration of GPS with Inertial Navigation Systems (Miscellaneous Topics). Navig. J. Inst. Navig. 1978, 25, 236–245. [Google Scholar] [CrossRef]
- Enge, P.K.; McCullough, J.R. Aiding GPS with calibrated Loran-C. Navig. J. Inst. Navig. 1988, 35, 469–482. [Google Scholar] [CrossRef]
- Benceze, W.; Ledvina, B.; Humphreys, T. Combining iridium with GPS (iGPS) and other R&D at coherent navigation. In Proceedings of the Stanford PNT Symposium, Stanford, CA, USA, 29–30 October 2009; pp. 21–22. [Google Scholar]
- Bellido-Manganell, M.A.; Graupl, T.; Heirich, O.; Maurer, N.; Filip-Dhaubhadel, A.; Mielke, D.M.; Schalk, L.M.; Becker, D.; Schneckenburger, N.; Schnell, M. LDACS Flight Trials: Demonstration and Performance Analysis of the Future Aeronautical Communications System. IEEE Trans. Aerosp Electron. Syst. 2021, 1–19, in press. [Google Scholar] [CrossRef]
- Ilcev, D.S. Architecture of the Cospas-Sarsat Global Satellite Distress and Safety System for Military Applications. Microw. J. 2021, 64, 14–34. [Google Scholar]
- Ewert, T.; Mäurer, N.; Gräupl, T. Concept of group key distribution procedures for the L-band digital aeronautical communications system (LDACS). In Proceedings of the Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 3–7 October 2021; pp. 1–10. [Google Scholar]
- Torteeka, P.; Chundi, X.; Dongkai, Y. Hybrid technique for indoor positioning system based on Wi-Fi received signal strength indication. In Proceedings of the 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, Korea, 27–30 October 2014; pp. 48–57. [Google Scholar] [CrossRef]
- Meng, Y.; Bian, L.; Han, L.; Lei, W.; Yan, T.; He, M.; Li, X. A global navigation augmentation system based on LEO communication constellation. In Proceedings of the 2018 European Navigation Conference (ENC), Gothenburg, Sweden, 14–17 May 2018; pp. 65–71. [Google Scholar] [CrossRef]
- Han, Y.; Wang, L.; Fu, W.J.; Zhou, H.T.; Li, T.; Xu, B.Z.; Chen, R.Z. LEO navigation augmentation constellation design with the multi-objective optimization approaches. Chin. J. Aeronaut. 2021, 34, 265–278. [Google Scholar] [CrossRef]
- Deng, Z.L.; Yu, Y.; Yuan, X.; Wan, N.; Yang, L. Situation and development tendency of indoor positioning. China Commun. 2013, 10, 42–55. [Google Scholar] [CrossRef]
- Jiao, J.; Deng, Z.L.; Xu, L.; Lei, F. A hybrid of smartphone camera and base-station wide-area indoor positioning method. KSII Trans. Internet Inf. Syst. 2016, 10, 723–743. [Google Scholar]
- Deng, Z.L.; Xiao, Z.M.; Jia, B.Y.; Mo, J. Research on Correction Method of Wireless Positioning Signal Propagation Model in Urban Area. Navig. Position. Timing 2017, 4, 11–16. [Google Scholar]
- Liu, X.L.; Liang, M.Q.; Morton, Y.; Closas, P.; Zhang, T.; Hong, Z.G. Performance evaluation of MSK and OFDM modulations for future GNSS signals. GPS Solut. 2014, 18, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Luo, R.D.; Xu, Y.; Yuan, H. Performance evaluation of the new compound-carrier-modulated signal for future navigation signals. Sensors 2016, 16, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, R.D.; Xu, Y.; Yuan, H. A joint tracking method for NSCC based on WLS algorithm. Adv. Space Res. 2017, 60, 2742–2750. [Google Scholar] [CrossRef]
- Luo, R.D.; Xu, Y.; Yuan, H. A New multichannel acquisition method for navigation signal based on compound carrier. In Proceedings of the China Satellite Navigation Conference (CSNC), Changsha, China, 18–20 May 2016; pp. 631–648. [Google Scholar] [CrossRef]
- Ji, J.; Chen, W.; Zhang, J.T.; Lu, H.Y.; Li, J. A SRC-like Design and Performance Analysis in S Band. In Proceedings of the 16th International Association of Institutes of Navigation (IAIN) World Congress, Makuhari Messe, Chiba, Japan, 28 November–1 December 2018; pp. 4–11. [Google Scholar]
- Betz, J.W. Signal structures for satellite-based navigation: Past, present, and future. In Proceedings of the ION Pacific PNT Meeting, Honolulu, HI, USA, 23–25 April 2013; pp. 131–137. [Google Scholar]
- Tan, S.; Zhang, T. BeiDou multi-service satellite system and application- review on BeiDou Bs navigation. J. Nat. Univ. Def. Technol. 2017, 39, 1–5. [Google Scholar]
- Tan, S.S. GNSS Systems and Engineering: The Chinese BeiDou Navigation and Position Location Satellite, 1st ed.; John Wiley & Sons Inc.: Singapore, 2018; pp. 154–196. [Google Scholar]
- Mateu, I.; Boulanger, C.; Issler, J.-L.; Ries, L.; Avila-Rodriguez, J.-A.; Wallner, S.; Kraus, T.; Eissfeller, B.; Mulassano, P.; Germaine, S.; et al. Exploration of possible GNSS signals in S-band. In Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009), Savannah, GA, USA, 22–25 September 2009; pp. 1573–1587. [Google Scholar]
- Xue, R.; Cao, Q.M.; Wei, Q. A Flexible Modulation Scheme Design for C-Band GNSS Signals. Math. Probl. Eng. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Xue, R.; Sun, Y.B.; Zhao, D.F. CPM Signals for Satellite Navigation in the S and C Bands. Sensors 2015, 15, 13184–13200. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.B.; Xue, R.; Zhao, D.F.; Wang, D. Radio Frequency Compatibility Evaluation of S Band Navigation Signals for Future BeiDou. Sensors 2017, 17, 1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Huang, X.M.; Li, J.Y.; Tang, X.M.; Wang, F.X. Proposal of spread spectrum MSK for BDS RDSS signal modulation. IET Radar Sonar Navig. 2020, 14, 870–878. [Google Scholar] [CrossRef]
- Floch, J.-J.; Antreich, F.; Meurer, M.; Issler, J.-L. S-band signal design considering interoperability and spectral separation. In Proceedings of the 23rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2010), Portland, OR, USA, 21–24 September 2010; pp. 3349–3358. [Google Scholar]
- Soualle, F.; Bey, T.; Floch, J.-J.; Hurd, D.; Notter, M.; Mathew, C.; Mattos, P.; Mongredien, C. Assessment on the use of S-band for combined navigation and communication. In Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 20–23 September 2011; pp. 1219–1233. [Google Scholar]
- Scalise, S.; Niebla, C.P.; Andrenacci, M.; Breiling, M.; Puyuelo, J.M.C.; Gallinaro, G.; Rinaldo, R.; Herrero, O.D.R.; Finocchiaro, D.; Schlüter, G. System design for pan-European MSS services in S-band. In Proceedings of the 5th Advanced Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Communications Workshop (ASMS/SPSC 2010), Cagliari, Italy, 13–15 September 2010; pp. 538–545. [Google Scholar] [CrossRef] [Green Version]
- Han, K.; Song, Y.J.; Won, J.H. A study on the effects of out-of-band interference on RNSS receivers in S-band. In Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS + 2021), St. Louis, MO, USA, 20–24 September 2021; pp. 796–802. [Google Scholar]
- Flournoy, D. Video Course 3: Satellite Communication Services: Lecture 2: MSS-LEO and MSS-GEO. Online J. Space Commun. 2021, 5, 10. Available online: https://ohioopen.library.ohio.edu/spacejournal/vol5/iss11/10 (accessed on 15 May 2021).
- Ge, J.W.; Pei, H.X.; Yao, D.Y.; Zhang, Y. A robust path tracking algorithm for connected and automated vehicles under i-VICS. Transp. Res. Interdiscip. Perspect. 2021, 9, 100314. [Google Scholar] [CrossRef]
- Tan, S.S. Innovative development and forecast of BeiDou system. Acta Geod. Cartogr. Sin. 2017, 46, 1284. [Google Scholar]
- Saikiran, B.; Vikram, V. IRNSS architecture and applications. KIET Int. J. Commun. Electron. 2013, 1, 21–27. [Google Scholar]
- Goel, P.S. Making of a Satellite Centre, 1st ed.; Springer: Singapore, 2022; pp. 73–77, in Press. [Google Scholar]
- ISRO. NavIC (IRNSS) Standard Positioning Service Performance Report; ISRO: Bangalore, India, 2021. [Google Scholar]
- Khalife, J.; Neinavaie, M.; Kassas, Z.M. Universal Receiver architecture for blind navigation with partially known terrestrial and extraterrestrial signals of opportunity. In Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, USA, 20–24 September 2021; pp. 2201–2211. [Google Scholar]
- Zou, D.Y.; Ma, S.C. Satellite Navigation and Communication Integration Based on Correlation Domain Indefinite Pulse Position Modulation Signal. Wirel. Commun. Mob. Comput. 2021, 2021, 5545285. [Google Scholar] [CrossRef]
- Aslan, Y.; Roedere, A.; Fonseca, N.J.; Angeletti, P.; Yarovoy, A. Orthogonal Versus Zero-Forced Beamforming in Multibeam Antenna Systems: Review and Challenges for Future Wireless Networks. IEEE J. Microw. 2021, 1, 879–901. [Google Scholar] [CrossRef]
- Zhuang, W.; Shen, Y.X.; Li, L.; Gao, C.M.; Dai, D. Develop an Adaptive Real-Time Indoor Intrusion Detection System Based on Empirical Analysis of OFDM Subcarriers. Sensors 2021, 21, 2287. [Google Scholar] [CrossRef]
- Bhatti, F.A.; Khan, M.J.; Selim, A.; Paisana, F. Shared Spectrum Monitoring using Deep Learning. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 1171–1185. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Ali, W.A.; Aboushady, H. Performance Evaluation of SDR Blade RF using Wide-band Monopole Antenna for Spectrum Sensing Applications. Appl. Comput. Electromagn. Soc. J. 2021, 36, 419–424. [Google Scholar] [CrossRef]
- Agiwal, M.; Kwon, H.; Park, S.; Jin, H. A Survey on 4G-5G Dual Connectivity: Road to 5G Implementation. IEEE Access. 2021, 9, 16193–16210. [Google Scholar] [CrossRef]
- Mitra, R.N.; Agrawal, D.P. 5G mobile technology: A survey. ICT Express. 2015, 3, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Mehta, H.; Patel, D.; Joshi, B.; Modi, H. 0G to 5G mobile technology: A survey. J. Basic Appl. Eng. Res. 2014, 6, 56–60. [Google Scholar]
- Li, B.; Yang, Q.; Low, C.P.; Gwee, C.L. A survey on mobile WiMAX [wireless broadband access]. IEEE Commun. Mag. 2007, 45, 70–75. [Google Scholar] [CrossRef]
- Lackpour, A.; Luddy, M.; Winters, J. Overview of interference mitigation techniques between WiMAX networks and ground based radar. In Proceedings of the 20th Annual Wireless and Optical Communications Conference (WOCC), Newark, NJ, USA, 15–16 April 2011; pp. 1–5. [Google Scholar]
- Barbeau, M. WiMax/802.16 threat analysis. In Proceedings of the 1st ACM International Workshop on Quality of Service & Security in Wireless and Mobile Networks, New York, NY, USA, 22–26 November 2005; pp. 8–15. [Google Scholar]
- Las-Heras, F.; Sierra-Perez, M.; Gutierrez, J.A. Design and measurement of low-cost sector pattern antennas. IEE Proc. Microw. Antennas Propag. 2000, 147, 407–411. [Google Scholar] [CrossRef]
- Riahi, S.; Riahi, A. Performance evaluation of random access methods for wireless systems. J. Theor. Appl. Inf. Technol. 2021, 99, 1594–1607. [Google Scholar]
- Kovalchukov, R.; Moltchanov, D.; Pirskanen, J.; Sae, J.; Numminen, J.; Koucheryavy, Y.; Valkama, M. DECT-2020 New Radio: The Next Step Towards 5G Massive Machine-Type Communications. arXiv 2021, arXiv:2101.07158. [Google Scholar]
- Vayssade, T.; Azaïs, F.; Latorre, L.; Lefèvre, F. Digital test of ZigBee transmitters: Validation in industrial test environment. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 1–5 February 2021; pp. 396–401. [Google Scholar]
- Vayssade, T.; Chehaitly, M.; Azaïs, F.; Latorre, L.; Lefevre, F. Exploration of a digital-based solution for the generation of 2.4 GHz OQPSK test stimuli. In Proceedings of the 2021 IEEE European Test Symposium (ETS), Bruges, Belgium, 24–28 May 2021; pp. 1–6. [Google Scholar]
- Gupta, M.; Singh, S. A Survey on the ZigBee Protocol, It’s Security in Internet of Things (IoT) and Comparison of ZigBee with Bluetooth and Wi-Fi. In Proceedings of the 1st Global Conference on Artificial Intelligence and Applications (GCAIA 20), Jaipur, India, 8–10 September 2020; pp. 473–482. [Google Scholar]
- Jin, G.P.; Fan, J.J.; Feng, X.C. Design idea of S-band RNSS signals. In Proceedings of the 3rd China Satellite Navigation Conference (CSNC 2012), Guangzhou, China, 15–19 May 2012; pp. 1–4. [Google Scholar]
- Avila-Rodriguez, J.A.; Wallner, S.; Won, J.H.; Eissfeller, B.; Schmitz-Peiffer, A.; Floch, J.J.; Colzi, E.; Gerner, J.L. Study on a Galileo signal and service plan for C-band. In Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), Savannah, GA, USA, 16–19 September 2008; pp. 2515–2529. [Google Scholar]
Types | System | Freq-Range (MHz) | Bandwidth (MHz) | Modulation | EIRP (dBW) | PWR (dBW) |
---|---|---|---|---|---|---|
Space-based | BDS-RDSS | 2483.5~2500 | 16.5 | BPSK (4) | −147.8 | |
IRNSS | 2492.028 | 16.5 | SPS: BPSK (1) | / | −162.3~−157.3 | |
RS: BOCs (5,2) | ||||||
Globalstar | 2483.5~2500 | 16.5 | SRC (0.2, 1) | |||
Planned signal | Galileo Planned | Chirped BPSK (1) | −171.5 | |||
CBOC (6, 1, 1/11) | −162.3 | |||||
BDS-RNSS Candidate | OFDM | |||||
CPM (8) | ||||||
Ground-based | TD-LTE band 41 | 2496~2690 | 20 | QPSK/OFDM | −140~−135 (95%) | |
TD-LTE band 53 | 2483.5~2495 | 11.5 | QPSK/OFDM | −83 dBW/ 100 MHz | −57 dBW/ 100 MHz | |
WiMAX | 2496~2690 | 1.75~20 | OFDM | |||
Wi-Fi Channel 14 | 2473~2495 | 22 | DSSS/ OFDM | −12 dBW | ||
FS | 2450~2690 | MSK/QPSK |
Indicator | Symbols | Values |
---|---|---|
Carrier frequency range | f | 2483.5~2500 MHz |
Carrier center frequency | f | 2491.75 MHz |
Carrier wavelength | λ | 0.12 m |
Bandwidth | B | 16 MHz |
Proposed signal | CE-OFDM-PM | |
Propagation distance | D | 500 km~1000 km |
Uplink information transmission rate | Rb | 64,000 bps |
Downlink information transmission rate | Rb | 4,096,000 bps |
Satellite antenna gain | G | 20 dBi |
Satellite launch power | P | 13 dBW |
Terminal antenna gain | G | 11 dBi |
Terminal launch power | P | 3 dBW |
Systematic loss | Ls | 1 dB |
Feeder noise coefficient | ρ | 0.8 |
Satellite antenna equivalent noise temperature | Tα | 290 K |
LNA equivalent noise temperature | TLNA | 80 K |
Satellite equivalent noise temperature | T | 442.2 K |
Receiver equivalent noise temperature | T | 250 K |
Uplink | Gr/T | −6.5 dB/K |
Downlink | Gr/T | −13 dB/K |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, J.; Liu, Y.; Chen, W.; Wu, D.; Lu, H.; Zhang, J. A Novel Signal Design and Performance Analysis in NavCom Based on LEO Constellation. Sensors 2021, 21, 8235. https://doi.org/10.3390/s21248235
Ji J, Liu Y, Chen W, Wu D, Lu H, Zhang J. A Novel Signal Design and Performance Analysis in NavCom Based on LEO Constellation. Sensors. 2021; 21(24):8235. https://doi.org/10.3390/s21248235
Chicago/Turabian StyleJi, Jing, Yuting Liu, Wei Chen, Di Wu, Hongyang Lu, and Jiantong Zhang. 2021. "A Novel Signal Design and Performance Analysis in NavCom Based on LEO Constellation" Sensors 21, no. 24: 8235. https://doi.org/10.3390/s21248235
APA StyleJi, J., Liu, Y., Chen, W., Wu, D., Lu, H., & Zhang, J. (2021). A Novel Signal Design and Performance Analysis in NavCom Based on LEO Constellation. Sensors, 21(24), 8235. https://doi.org/10.3390/s21248235