Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,521)

Search Parameters:
Keywords = C/N metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3086 KiB  
Article
Trimetazidine–Profen Hybrid Molecules: Synthesis, Chemical Characterization, and Biological Evaluation of Their Racemates
by Diyana Dimitrova, Stanimir Manolov, Iliyan Ivanov, Dimitar Bojilov, Nikol Dimova, Gabriel Marc, Smaranda Oniga and Ovidiu Oniga
Pharmaceuticals 2025, 18(9), 1251; https://doi.org/10.3390/ph18091251 (registering DOI) - 23 Aug 2025
Abstract
Background: Trimetazidine is a clinically established cardioprotective agent with anti-ischemic and antioxidant properties, widely used in the management of coronary artery disease. Combining its metabolic and cytoprotective effects with the potent anti-inflammatory activity of profens presents a promising therapeutic strategy. Methods: Five novel [...] Read more.
Background: Trimetazidine is a clinically established cardioprotective agent with anti-ischemic and antioxidant properties, widely used in the management of coronary artery disease. Combining its metabolic and cytoprotective effects with the potent anti-inflammatory activity of profens presents a promising therapeutic strategy. Methods: Five novel trimetazidine–profen hybrid compounds were synthesized using N,N′-dicyclohexylcarbodiimide-mediated coupling and structurally characterized by NMR and high-resolution mass spectrometry. Their antioxidant activity was evaluated by hydroxyl radical scavenging assays (HRSA), and the anti-inflammatory potential was assessed via the inhibition of albumin denaturation (IAD). Lipophilicity was determined chromatographically. Molecular docking and 100 ns molecular dynamics simulations were performed to investigate the binding modes and stability in human serum albumin (HSA) binding sites. The acute toxicity of the hybrid molecules was predicted in silico using GUSAR software. Results: All synthesized hybrids demonstrated varying degrees of biological activity, with compound 3c exhibiting the most potent antioxidant (HRSA IC₅₀ = 71.13 µg/mL) and anti-inflammatory (IAD IC₅₀ = 108.58 µg/mL) effects. Lipophilicity assays indicated moderate membrane permeability, with compounds 3c and 3d showing favorable profiles. Docking studies revealed stronger binding affinities of S-enantiomers, particularly 3c and 3d, to Sudlow sites II and III in HSA. Molecular dynamics simulations confirmed stable ligand–protein complexes, highlighting compound 3c as maintaining consistent and robust interactions. The toxicity results indicate that most hybrids, particularly compounds 3b3d, exhibit a favorable safety profile compared to the parent trimetazidine. Conclusion: The hybrid trimetazidine–profen compounds synthesized herein, especially compound 3c, demonstrate promising dual antioxidant and anti-inflammatory therapeutic potential. Their stable interaction with serum albumin and balanced physicochemical properties support further development as novel agents for managing ischemic heart disease and associated inflammatory conditions. Full article
(This article belongs to the Special Issue Advances in the Medicinal Synthesis of Bioactive Compounds)
Show Figures

Figure 1

24 pages, 1464 KiB  
Review
Microglia and Macrophages in Central Nervous System Homeostasis and Disease Progression: Guardians and Executioners
by Hossein Chamkouri and Sahar Motlagh Mohavi
Neuroglia 2025, 6(3), 31; https://doi.org/10.3390/neuroglia6030031 (registering DOI) - 23 Aug 2025
Abstract
Microglia and macrophages are critical immune cells within the central nervous system (CNS), with distinct roles in development, homeostasis, and disease. Once viewed as passive bystanders, these cells are now recognized for their dynamic phenotypic plasticity, which enables them to respond to a [...] Read more.
Microglia and macrophages are critical immune cells within the central nervous system (CNS), with distinct roles in development, homeostasis, and disease. Once viewed as passive bystanders, these cells are now recognized for their dynamic phenotypic plasticity, which enables them to respond to a wide range of physiological and pathological stimuli. During homeostasis, microglia and CNS-resident macrophages actively participate in synaptic pruning, neuronal support, myelin regulation, and immune surveillance, contributing to CNS integrity. However, under pathological conditions, these cells can adopt neurotoxic phenotypes, exacerbating neuroinflammation, oxidative stress, and neuronal damage in diseases such as Alzheimer’s, Parkinson’s, multiple sclerosis, and glioblastoma. This review synthesizes emerging insights into the molecular, epigenetic, and metabolic mechanisms that govern the behavior of microglia and macrophages, highlighting their developmental origins, niche-specific programming, and interactions with other CNS cells. We also explore novel therapeutic strategies aimed at modulating these immune cells to restore CNS homeostasis, including nanotechnology-based approaches for selective targeting, reprogramming, and imaging. Understanding the complex roles of microglia and macrophages in both health and disease is crucial for the development of precise therapies targeting neuroimmune interfaces. Continued advances in single-cell technologies and nanomedicine are paving the way for future therapeutic interventions in neurological disorders. Full article
Show Figures

Figure 1

12 pages, 996 KiB  
Article
Augmentation of the Benzyl Isothiocyanate-Induced Antiproliferation by NBDHEX in the HCT-116 Human Colorectal Cancer Cell Line
by Ruitong Sun, Aina Yano, Ayano Satoh, Shintaro Munemasa, Yoshiyuki Murata, Toshiyuki Nakamura and Yoshimasa Nakamura
Int. J. Mol. Sci. 2025, 26(17), 8145; https://doi.org/10.3390/ijms26178145 - 22 Aug 2025
Abstract
Increased drug metabolism and elimination are prominent mechanisms mediating multidrug resistance (MDR) to not only chemotherapy drugs but also anti-cancer natural products, such as benzyl isothiocyanate (BITC). To evaluate the possibility of combined utilization of a certain compound to overcome this resistance, we [...] Read more.
Increased drug metabolism and elimination are prominent mechanisms mediating multidrug resistance (MDR) to not only chemotherapy drugs but also anti-cancer natural products, such as benzyl isothiocyanate (BITC). To evaluate the possibility of combined utilization of a certain compound to overcome this resistance, we focused on glutathione S-transferase (GST)-dependent metabolism of BITC. The pharmacological treatment of a pi-class GST-selective inhibitor, 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX), significantly increased BITC-induced toxicity in human colorectal cancer HCT-116 cells. However, NBDHEX unexpectedly increased the level of the BITC–glutathione (GSH) conjugate as well as BITC-modified proteins, suggesting that NBDHEX might increase BITC-modified protein accumulation by inhibiting BITC–GSH excretion instead of inhibiting GST. Furthermore, NBDHEX significantly potentiated BITC-induced apoptosis with the enhanced activation of apoptosis-related pathways, such as c-Jun N-terminal kinase and caspase-3 pathways. These results suggested that combination treatment with NBDHEX may be an effective way to overcome MDR with drug efflux and thus induce the biological activity of BITC at lower doses. Full article
(This article belongs to the Special Issue Fundamental and Translational Insights into Colorectal Cancer)
Show Figures

Figure 1

16 pages, 2130 KiB  
Article
Gold Nanoparticles Disrupt Mitochondrial Activity in Hypothalamic POMC Cells: Implications for Energy Homeostasis
by Boglárka Mária Schilling-Tóth, Silvia Ondrašovičová, Eszter Vámos, Balázs Radnai, Daiana Alymbaeva, Tibor Bartha, István Tóth and Dávid Sándor Kiss
Nanomaterials 2025, 15(16), 1291; https://doi.org/10.3390/nano15161291 - 21 Aug 2025
Abstract
Background: Gold nanoparticles (AuNPs) have several beneficial properties that make them effective as intracellular drug carriers, and their potential for various diagnostic and therapeutic applications is gaining recognition. Depending on their size and shape, AuNPs can cross the central nervous system (CNS) through [...] Read more.
Background: Gold nanoparticles (AuNPs) have several beneficial properties that make them effective as intracellular drug carriers, and their potential for various diagnostic and therapeutic applications is gaining recognition. Depending on their size and shape, AuNPs can cross the central nervous system (CNS) through the blood–brain barrier (BBB). In the CNS, they can exert a variety of influences on neuronal and glial cells, which can be both supportive—promoting cell health and function—and cytotoxic, potentially leading to cellular damage. The hypothalamus (HT) is the first region where nanoparticles (NPs) interact, as this neuroendocrine center is particularly sensitive to factors in the systemic circulation due to its function and location. This area is affected by systemic factors, including pro-opiomelanocortin (POMC) neurons, which regulate metabolic function and maintain homeostasis. The activity of mitochondria within these cells influences their response to both external factors and the presence of AuNPs, thereby facilitating a complex interplay between nanoparticle interactions and cellular metabolism in this vital brain region. Aims: This study investigates how AuNPs, at different concentrations and exposure times under in vitro conditions, affect the mitochondrial activity of POMC neurons, aiming to provide a comprehensive understanding of the mechanisms in the HT. Methods: The study investigates the effect of varying gold nanoparticle concentrations on the mitochondrial activity of POMC neurons over treatment periods of 1, 15, 24, and 48 h. Mitochondrial activity was measured using a Seahorse XFp Analyzer to provide high-resolution insights. Additionally, mitochondrial functionality was assessed through the detection of reactive oxygen species (ROS) and cell viability. Results: The findings indicated that the effects of gold nanoparticles on mitochondrial activity depend significantly on their concentration and exposure time. Specifically, exposure leads to an increase in early response systems, the citric acid cycle, and proton efflux, ultimately resulting in the inhibition of mitochondrial function and ATP production in POMC cells. This disruption may affect hypothalamic regulation and energy metabolism. Full article
Show Figures

Figure 1

17 pages, 860 KiB  
Review
Neurophysiological Basis of Short-Chain Fatty Acid Action in Pain Modulation: Therapeutic Implications
by Mamoru Takeda, Yukito Sashide and Syogo Utugi
Int. J. Mol. Sci. 2025, 26(16), 8082; https://doi.org/10.3390/ijms26168082 - 21 Aug 2025
Viewed by 39
Abstract
The gut microbiota influences both energy metabolism and central nervous system (CNS) functions. This influence is mediated by humoral factors, including various metabolites, neurotransmitters, cytokines, and hormones, in addition to neural pathways such as the vagus nerve. Notably, short-chain fatty acids (SCFAs)—comprising acetic, [...] Read more.
The gut microbiota influences both energy metabolism and central nervous system (CNS) functions. This influence is mediated by humoral factors, including various metabolites, neurotransmitters, cytokines, and hormones, in addition to neural pathways such as the vagus nerve. Notably, short-chain fatty acids (SCFAs)—comprising acetic, propionic, and butyric acids—merit specific attention. These compounds originate from the anaerobic fermentation of dietary fibers by the gut microbiota. Growing evidence indicates that SCFAs confer beneficial effects on diverse pain conditions. Although previous review articles have summarized animal studies suggesting the possibility that SCFAs can alleviate pathological pain, there are few reviews on the neurophysiological mechanisms by which SCFAs modulate the excitability of nociceptive neurons in the pain pathway under nociceptive and pathological conditions. Extending previous in vitro findings, our laboratory recently conducted in vivo neurophysiological studies using animal models to explore the pain-relieving properties of SCFAs. Our published results demonstrate two significant effects: (i) an intravenous anesthetic action against nociceptive pain and (ii) an anti-inflammatory contribution to chronic pain alleviation. This review synthesizes the current understanding of the mechanisms by which SCFAs modulate pain and explores their contribution to the attenuation of nociceptive and/or pathological pain. Furthermore, we discuss their prospective clinical application Full article
(This article belongs to the Collection Latest Review Papers in Bioactives and Nutraceuticals)
Show Figures

Figure 1

15 pages, 3465 KiB  
Article
Identification of Bioactive Peptides from Caenorhabditis elegans Secretions That Promote Indole-3-Acetic Acid Production in Arthrobacter pascens ZZ21
by Shan Sun, Mengsha Li, Luchen Tao, Xiran Liu, Lei Ouyang, Gen Li, Feng Hu and Huixin Li
Microorganisms 2025, 13(8), 1951; https://doi.org/10.3390/microorganisms13081951 - 21 Aug 2025
Viewed by 90
Abstract
Caenorhabditis elegans, a free-living nematode model, secretes neuropeptides, but the ecological roles of its peptide exudates in regulating rhizosphere microbial activity remain largely unexplored. We identified six short peptides (P1, P9, P19, P20, P25, and P26) from C. elegans exudates that significantly [...] Read more.
Caenorhabditis elegans, a free-living nematode model, secretes neuropeptides, but the ecological roles of its peptide exudates in regulating rhizosphere microbial activity remain largely unexplored. We identified six short peptides (P1, P9, P19, P20, P25, and P26) from C. elegans exudates that significantly enhanced indole-3-acetic acid (IAA) production by the plant growth-promoting bacterium Arthrobacter pascens ZZ21. These peptides were heat-labile and proteinase K-sensitive but unaffected by DNase I or RNase A, confirming their proteinaceous (peptide) nature rather than nucleic acid origin. The retention of bioactivity in n-butanol extracts further supported their hydrophilic, peptide-like properties. LC-MS/MS identified 30 linear peptides, including the six bioactive ones, which exhibited distinct dose-dependent effects, suggesting diverse regulatory mechanisms. Despite their relatively low abundance, these peptides strongly promoted IAA production in the bacterial culture system across multiple concentrations. These findings reveal an unrecognized mechanism whereby free-living nematodes regulate rhizobacterial metabolism via secreted peptides, offering new insights into nematode-mediated chemical signaling. Therefore, this study advances understanding of plant–microbe–nematode interactions and highlights strategies for manipulating rhizosphere microbiota in sustainable agriculture. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

15 pages, 1709 KiB  
Article
N-Lactoyl Phenylalanine Disrupts Insulin Signaling, Induces Inflammation, and Impairs Mitochondrial Respiration in Cell Models
by Laila Hedaya, Khaled Naja, Shamma Almuraikhy, Najeha Anwardeen, Asma A. Elashi, Maha Al-Asmakh, Susu M. Zughaier, Meritxell Espino-Guarch, Osama Y. Aldirbashi, Gavin P. Davey and Mohamed A. Elrayess
Cells 2025, 14(16), 1296; https://doi.org/10.3390/cells14161296 - 20 Aug 2025
Viewed by 207
Abstract
N-lactoyl amino acids (Lac-AAs) are key players that regulate appetite and body weight. The most prominent and well-studied member is N-lactoyl phenylalanine (Lac-Phe), which can be induced by food intake, exercise and metformin treatment. However, its broader metabolic impact remains insufficiently characterized. This [...] Read more.
N-lactoyl amino acids (Lac-AAs) are key players that regulate appetite and body weight. The most prominent and well-studied member is N-lactoyl phenylalanine (Lac-Phe), which can be induced by food intake, exercise and metformin treatment. However, its broader metabolic impact remains insufficiently characterized. This study investigates the effects of Lac-Phe on insulin signaling, inflammation, and mitochondrial respiration using HepG2 and differentiated C2C12 cell models, as well as isolated rat brain mitochondria and synaptosomes. Our results demonstrate that Lac-Phe significantly impairs insulin-stimulated phosphorylation of key proteins in the insulin signaling pathway, particularly in skeletal muscle cells, indicating disrupted insulin signaling. Additionally, Lac-Phe exposure increases the secretion of pro-inflammatory cytokines in C2C12 skeletal muscle cells and markedly impairs mitochondrial respiration in HepG2 liver cells and rat brain-derived synaptosomes, but not in isolated mitochondria. These findings highlight potential adverse metabolic effects of Lac-Phe, especially when administered at high concentrations, and underscore the necessity of conducting a comprehensive risk assessment and dose optimization before considering Lac-Phe or related Lac-AAs as therapeutic agents. Our work provides important insights into the molecular liabilities associated with Lac-Phe and calls for further studies to balance its therapeutic promise against possible metabolic risks. Full article
(This article belongs to the Special Issue Biomarkers and Therapeutic Targets in Insulin Resistance)
Show Figures

Figure 1

12 pages, 793 KiB  
Article
Protein Translocation Control in E. coli via Temperature-Dependent Aggregation: Application to a Conditionally Lethal Enzyme, Levansucrase
by Young Kee Chae
Biomolecules 2025, 15(8), 1199; https://doi.org/10.3390/biom15081199 - 20 Aug 2025
Viewed by 155
Abstract
Precise control of protein translocation is essential for synthetic biology and protein engineering. Here, we present a temperature-responsive system using elastin-like polypeptides (ELPs) to regulate the translocation of a conditionally lethal enzyme in Escherichia coli. The enzyme, levansucrase, whose activity becomes lethal [...] Read more.
Precise control of protein translocation is essential for synthetic biology and protein engineering. Here, we present a temperature-responsive system using elastin-like polypeptides (ELPs) to regulate the translocation of a conditionally lethal enzyme in Escherichia coli. The enzyme, levansucrase, whose activity becomes lethal in the presence of sucrose, was engineered with an N-terminal signal peptide and a C-terminal ELP tag. At 37 °C, the ELP tag induced intracellular aggregation of the fusion protein, preventing its secretion and allowing cell survival, as indicated by translucent colony formation. In contrast, at 16 °C, the ELP remained soluble, permitting levansucrase secretion into the medium. The resulting conversion of sucrose into levan by the secreted enzyme led to host cell death. These findings highlight ELP-mediated aggregation as a reversible and tunable strategy for regulating protein localization and secretion in E. coli, with potential applications in synthetic biology, metabolic engineering, and biocontainment systems. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

23 pages, 3101 KiB  
Review
Hydroxytyrosol and Brain Tumors: Mechanisms of Action and Therapeutic Potential
by Cristina Cueto-Ureña, María Jesús Ramírez-Expósito, María Pilar Carrera-González and José Manuel Martínez-Martos
Curr. Issues Mol. Biol. 2025, 47(8), 667; https://doi.org/10.3390/cimb47080667 - 18 Aug 2025
Viewed by 228
Abstract
Central nervous system (CNS) tumors, especially gliomas and IDH-wildtype glioblastoma, present high aggressiveness, low response to current treatments and limited survival. Several biological processes such as oxidative stress, inflammation, apoptosis, and autophagy are involved in their development. Hydroxytyrosol (HTX), a phenolic compound present [...] Read more.
Central nervous system (CNS) tumors, especially gliomas and IDH-wildtype glioblastoma, present high aggressiveness, low response to current treatments and limited survival. Several biological processes such as oxidative stress, inflammation, apoptosis, and autophagy are involved in their development. Hydroxytyrosol (HTX), a phenolic compound present in olives, has shown relevant effects on these processes in experimental models. This review analyzes its chemical characteristics, bioavailability, and ability to cross the blood–brain barrier, as well as its mechanisms of action. Despite its rapid metabolism, HTX can reach the brain in small but functional amounts, and various formulation methods can enhance its delivery to nervous tissue. HTX acts on cellular pathways such as Nrf2, NF-κB, JAK/STAT, PI3K/Akt and SIRT1, regulating redox balance, inflammation, programmed cell death, and autophagy. It can also influence gene expression through epigenetic mechanisms. In cell models, it has shown inhibitory effects on tumor growth and activation of apoptosis, without affecting non-tumor cells. These results support its possible usefulness as an adjunct in the treatment of brain tumors, although further studies in animal and human models are required. Full article
Show Figures

Figure 1

16 pages, 277 KiB  
Article
Genetic Modulation of Silodosin Exposure and Efficacy: The Role of CYP3A4, CYP3A5, and UGT2B7 Polymorphisms in Benign Prostatic Hyperplasia Management
by Shokhrukh P. Abdullaev, Maksim N. Shatokhin, Pavel O. Bochkov, Svetlana N. Tuchkova, Oleg B. Loran, Sherzod P. Abdullaev, Karin B. Mirzaev and Dmitry A. Sychev
J. Pers. Med. 2025, 15(8), 386; https://doi.org/10.3390/jpm15080386 - 18 Aug 2025
Viewed by 118
Abstract
Objectives: Silodosin, a selective α1A-adrenoceptor antagonist, is used to treat lower urinary tract symptoms (LUTS) associated with benign prostatic hyperplasia (BPH). Genetic polymorphisms in drug-metabolizing enzymes and transporters may contribute to interindividual variability in its efficacy and safety. This study aimed to [...] Read more.
Objectives: Silodosin, a selective α1A-adrenoceptor antagonist, is used to treat lower urinary tract symptoms (LUTS) associated with benign prostatic hyperplasia (BPH). Genetic polymorphisms in drug-metabolizing enzymes and transporters may contribute to interindividual variability in its efficacy and safety. This study aimed to investigate the influence of CYP3A4, CYP3A5, UGT2B7, and ABCB1 polymorphisms on silodosin pharmacokinetics, efficacy, and safety in Russian patients with BPH. Methods: A prospective observational study included 103 Russian male patients with moderate-to-severe LUTS (IPSS > 8) due to BPH, treated with silodosin (8 mg daily) for 8 weeks. Genotyping for CYP3A4*1B, CYP3A4*22, CYP3A5*3, UGT2B7 (rs73823859, rs7439366, and rs7668282), and ABCB1 (rs4148738, rs1045642, rs2032582, and rs1128503) was performed using real-time PCR. The silodosin minimum steady-state plasma concentration (Css min) was measured via HPLC-MS. Efficacy was evaluated by the International Prostate Symptom Score (IPSS), quality of life scale, maximum urinary flow rate (Qmax), residual urine volume (RUV), and prostate volume at the baseline and week 8. Adverse drug reactions (ADRs) were recorded. Results: CYP3A4*22 CT carriers (n = 6) exhibited higher Css min (17.59 ± 2.98 vs. 9.0 ± 10.47 ng/mL, p = 0.049) but less absolute IPSS improvement (p < 0.05), likely due to higher baseline symptom severity. However, the change in IPSS (ΔIPSS1–4) from the baseline to week 8 did not differ significantly (−5.78 ± 5.29 vs. −6.0 ± 4.54, p = 0.939). CYP3A5*3 GG homozygotes (n = 96) showed greater ΔIPSS1–4 improvement (−6.25 ± 4.60 vs. 0.0 ± 9.53, p = 0.042) and a lower IPSS at day 28 (7.64 ± 4.50 vs. 20.0 ± 6.55, p < 0.001). UGT2B7 rs7439366 TT carriers (n = 34) had an improved Qmax (ΔQmax1–4 5.4 vs. 3.3 and 2.0 mL/s for CC and CT, p = 0.041). ABCB1 1236C>T TT homozygotes (n = 25) showed a trend toward reduced RUV (p = 0.053). No polymorphisms were associated with adverse drug reactions (15 events in 42 patients, 35.7%). Conclusions: Genetic polymorphisms CYP3A4*22, CYP3A5*3, and UGT2B7 rs7439366 may modulate silodosin pharmacokinetics and efficacy parameters in BPH patients but not safety. Larger-scale studies are warranted to validate these initial findings. Full article
(This article belongs to the Special Issue New Approaches in Pharmacogenomics)
28 pages, 5350 KiB  
Article
Galactooligosaccharides Promote Gut Barrier Integrity and Exert Anti-Inflammatory Effects in DSS-Induced Colitis Through Microbiota Modulation
by Lucila A. Godínez-Méndez, Alejandra Natali Vega-Magaña, Marcela Peña-Rodríguez, Gisela Anay Valencia-Hernández, Germán Muñoz-Sánchez, Liliana Iñiguez-Gutiérrez, Rocío López-Roa, Martha Eloisa Ramos-Márquez, Mary Fafutis-Morris and Vidal Delgado-Rizo
Int. J. Mol. Sci. 2025, 26(16), 7968; https://doi.org/10.3390/ijms26167968 - 18 Aug 2025
Viewed by 301
Abstract
Ulcerative colitis is a chronic inflammatory bowel disease characterized by persistent inflammation, immune dysregulation, gut microbiota alterations, and impaired epithelial barrier function. Lupinus albus is a legume rich in galactooligosaccharides (GOS) that functions as a prebiotic capable of modulating the gut microbiota and [...] Read more.
Ulcerative colitis is a chronic inflammatory bowel disease characterized by persistent inflammation, immune dysregulation, gut microbiota alterations, and impaired epithelial barrier function. Lupinus albus is a legume rich in galactooligosaccharides (GOS) that functions as a prebiotic capable of modulating the gut microbiota and mitigating ulcerative colitis-related damage. This study aimed to elucidate the effect of GOS on gut microbiota modulation and the molecular mechanisms involved in epithelial restoration and inflammation reduction. Fifteen C57BL/6 mice were randomly assigned to three groups (n = 5 per group): control (CTL), ulcerative colitis (UC), and ulcerative colitis + GOS (UC + GOS). UC was induced by administering 2% dextran sulfate sodium (DSS) in drinking water for seven days. The UC + GOS group received 2.5 g/kg BW of GOS via gavage for 14 days. GOS administration improved mucus layer thickness, regulated the expression of tight junction proteins, reduced pro-inflammatory cytokine levels, and modulated the gut microbiota, preventing the loss of richness and diversity. Additionally, the expression of monocarboxylate transporters (MCTs) MCT1 and MCT4 was evaluated, and significant differences were observed between the groups across colon and cecum tissues. These findings suggest that GOS supplementation may play a potential role in attenuating ulcerative colitis by regulating the gut microbiota and the metabolic state of intestinal cells. Full article
Show Figures

Figure 1

21 pages, 4127 KiB  
Article
Riboflavin as a Dual-Function Additive for Enhancing Biodegradation in Piezoelectric PLA/BT Composites
by Natalia Puszczykowska, Piotr Rytlewski, Agnieszka Mirkowska, Paweł Cyprys, Piotr Augustyn and Kacper Fiedurek
Materials 2025, 18(16), 3860; https://doi.org/10.3390/ma18163860 - 18 Aug 2025
Viewed by 260
Abstract
Poly(lactic acid)/barium titanate (PLA/BT) composites exhibit piezoelectric properties desirable for bone tissue engineering, but their low biodegradability limits implant resorption. In this study, riboflavin (RF) is introduced as a dual-function additive that enhances biodegradation in PLA/BT composites. Its addition led to significantly increased [...] Read more.
Poly(lactic acid)/barium titanate (PLA/BT) composites exhibit piezoelectric properties desirable for bone tissue engineering, but their low biodegradability limits implant resorption. In this study, riboflavin (RF) is introduced as a dual-function additive that enhances biodegradation in PLA/BT composites. Its addition led to significantly increased microbial colonization and a five-fold higher mass loss compared to unmodified samples. These observations are consistent with the known polarity of RF and its role as a cofactor in microbial metabolism. The PLA/BT/RF composites are subjected to full characterization, including thermogravimetric analysis (TG), differential scanning calorimetry (DSC), tensile testing, dynamic mechanical analysis (DMA), dielectric permittivity measurements, and determination of piezoelectric coefficient d33. Compared to PLA/BT, RF-containing composites exhibit significantly accelerated biodegradation, with mass loss reaching up to 16% after 28 days, while maintaining functional piezoelectricity (d33 ≈ 3.9 pC/N). Scanning electron microscopy (SEM) performed after biodegradation reveals intensified microbial colonization and surface deterioration in the RF-modified samples. The data confirm that riboflavin serves as an effective modifier, enabling controlled biodegradation without compromising electromechanical performance. These results support the use of PLA-based piezoelectric composites for resorbable biomedical implants. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

26 pages, 3299 KiB  
Article
Discovery of Novel 2-Substituted Aniline Pyrimidine Based Derivatives as Potent Mer/c-Met Dual Inhibitors with Improvement Bioavailability
by Jixia Yang, Daowei Huang, Ruojin Wang, Pengxin Fan, Rourou Li and Donglai Ma
Biomolecules 2025, 15(8), 1180; https://doi.org/10.3390/biom15081180 - 18 Aug 2025
Viewed by 280
Abstract
This study reports the rational design and systematic evaluation of a novel series of 2-substituted aniline pyrimidine derivatives as dual Mer/c-Met inhibitors. Among the synthesized compounds, 17c demonstrated potent dual kinase inhibition, with IC50 values of 6.4 ± 1.8 nM (Mer) and [...] Read more.
This study reports the rational design and systematic evaluation of a novel series of 2-substituted aniline pyrimidine derivatives as dual Mer/c-Met inhibitors. Among the synthesized compounds, 17c demonstrated potent dual kinase inhibition, with IC50 values of 6.4 ± 1.8 nM (Mer) and 26.1 ± 7.7 nM (c-Met). The compound exhibited significant antiproliferative activity across multiple cancer cell lines (HepG2, MDA-MB-231, and HCT116), while showing minimal hERG channel inhibition (IC50 > 40 μM), indicating favorable cardiac safety. Pharmacokinetic profiling revealed high metabolic stability in human liver microsomes (t1/2 = 53.1 min) and moderate oral bioavailability (F: 45.3%), with strong plasma protein-binding affinity (>95%). Mechanistic studies further demonstrated that 17c dose-dependently suppressed HCT116 cell migration and induced apoptosis. These integrated pharmacological properties position 17c as a promising therapeutic candidate for dual Mer/c-Met drive malignancies. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

17 pages, 1150 KiB  
Article
Substrate Optimization for PHB Production from Ricotta Cheese Exhausted Whey Using Azohydromonas lata DSM 1123
by Angela Longo, Luca Sconosciuto, Michela Verni, Vito Emanuele Carofiglio, Domenico Centrone, Marianna Villano, Gaia Salvatori, Erica Pontonio, Marco Montemurro and Carlo Giuseppe Rizzello
Microorganisms 2025, 13(8), 1917; https://doi.org/10.3390/microorganisms13081917 - 17 Aug 2025
Viewed by 259
Abstract
Valorization of ricotta cheese exhausted whey (RCEW), a dairy by-product generated in large quantities worldwide, is essential to mitigate its environmental impact and unlock its economic potential. This study explores the use of RCEW as a substrate for polyhydroxyalkanoate (PHA) production by Azohydromonas [...] Read more.
Valorization of ricotta cheese exhausted whey (RCEW), a dairy by-product generated in large quantities worldwide, is essential to mitigate its environmental impact and unlock its economic potential. This study explores the use of RCEW as a substrate for polyhydroxyalkanoate (PHA) production by Azohydromonas lata DSM 1123. The substrate was characterized by low protein and fat contents and a relevant lactose concentration (3.81%, w/v). Due to A. lata’s inability to directly metabolize lactose, β-galactosidase supplementation was necessary. Mineral supplementation of pasteurized RCEW significantly improved both microbial biomass and PHA synthesis, achieving up to 25.94% intracellular PHA content, whereas pre-adaptation trials failed to enhance strain performance. Moderate nitrogen limitation in the substrate (C/N ratio 44) favored PHA synthesis (0.55 g/L) and 32.74% intracellular accumulation. Thermal treatments decreased initial microbial contamination, hence a balanced mixture of pasteurized–sterilized (75:25) substrate was used to modulate RCEW protein content without the inclusion of additional technological or chemical processing steps and without lactose loss or dilution. Bioreactor trials using optimized RCEW pre-treatment conditions led to a further increase in biomass (2.36 g/L) and PHA production (0.88 g/L), especially under fed-batch conditions. The extracted polymer was confirmed to be polyhydroxybutyrate (PHB), with high thermal stability and a molecular weight of 5.9 KDa. Full article
Show Figures

Figure 1

45 pages, 1602 KiB  
Review
Mechanisms and Genetic Drivers of Resistance of Insect Pests to Insecticides and Approaches to Its Control
by Yahya Al Naggar, Nedal M. Fahmy, Abeer M. Alkhaibari, Rasha K. Al-Akeel, Hend M. Alharbi, Amr Mohamed, Ioannis Eleftherianos, Hesham R. El-Seedi, John P. Giesy and Hattan A. Alharbi
Toxics 2025, 13(8), 681; https://doi.org/10.3390/toxics13080681 - 16 Aug 2025
Viewed by 602
Abstract
The escalating challenge of resistance to insecticides among agricultural and public health pests poses a significant threat to global food security and vector-borne disease control. This review synthesizes current understanding of the molecular mechanisms underpinning resistance, including well-characterized pathways such as target-site mutations [...] Read more.
The escalating challenge of resistance to insecticides among agricultural and public health pests poses a significant threat to global food security and vector-borne disease control. This review synthesizes current understanding of the molecular mechanisms underpinning resistance, including well-characterized pathways such as target-site mutations affecting nicotinic acetylcholine receptors (nAChRs), acetylcholinesterase (AChE), voltage-gated sodium channels (VGSCs), and γ-aminobutyric acid (GABA) receptors, and metabolic detoxification mediated by cytochrome P450 monooxygenases (CYPs), esterases, and glutathione S-transferases (GSTs). Emerging resistance mechanisms are also explored, including protein sequestration by odorant-binding proteins and post-transcriptional regulation via non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Focused case studies on Aedes aegypti and Spodoptera frugiperda illustrate the complex interplay of genetic and biochemical adaptations driving resistance. In Ae. aegypti, voltage-gated sodium channel (VGSCs) mutations (V410L, V1016I, F1534C) combined with metabolic enzyme amplification confer resistance to pyrethroids, accompanied by notable fitness costs and ecological impacts on vector populations. In S. frugiperda, multiple resistance mechanisms, including overexpression of cytochrome P450 genes (e.g., CYP6AE43, CYP321A8), target-site mutations in ryanodine receptors (e.g., I4790K), and behavioral avoidance, have rapidly evolved across global populations, undermining the efficacy of diamide, organophosphate, and pyrethroid insecticides. The review further evaluates integrated pest management (IPM) strategies, emphasizing the role of biopesticides, biological control agents, including entomopathogenic fungi and parasitoids, and molecular diagnostics for resistance management. Taken together, this analysis underscores the urgent need for continuous molecular surveillance, the development of resistance-breaking technologies, and the implementation of sustainable, multifaceted interventions to safeguard the long-term efficacy of insecticides in both agricultural and public health contexts. Full article
(This article belongs to the Special Issue Impacts of Agrochemicals on Insects and Soil Organisms)
Show Figures

Graphical abstract

Back to TopTop