Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = BmIPA48

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3755 KiB  
Article
FABP4 Is an Indispensable Factor for Regulating Cellular Metabolic Functions of the Human Retinal Choroid
by Hiroshi Ohguro, Megumi Watanabe, Tatsuya Sato, Nami Nishikiori, Araya Umetsu, Megumi Higashide, Toshifumi Ogawa and Masato Furuhashi
Bioengineering 2024, 11(6), 584; https://doi.org/10.3390/bioengineering11060584 - 7 Jun 2024
Cited by 3 | Viewed by 2020
Abstract
The purpose of the current study was to elucidate the physiological roles of intraocularly present fatty acid-binding protein 4 (FABP4). Using four representative intraocular tissue-derived cell types, including human non-pigmented ciliary epithelium (HNPCE) cells, retinoblastoma (RB) cells, adult retinal pigment epithelial19 (ARPE19) cells [...] Read more.
The purpose of the current study was to elucidate the physiological roles of intraocularly present fatty acid-binding protein 4 (FABP4). Using four representative intraocular tissue-derived cell types, including human non-pigmented ciliary epithelium (HNPCE) cells, retinoblastoma (RB) cells, adult retinal pigment epithelial19 (ARPE19) cells and human ocular choroidal fibroblast (HOCF) cells, the intraocular origins of FABP4 were determined by qPCR analysis, and the intracellular functions of FABP4 were investigated by seahorse cellular metabolic measurements and RNA sequencing analysis using a specific inhibitor for FABP4, BMS309403. Among these four different cell types, FABP4 was exclusively expressed in HOCF cells. In HOCF cells, both mitochondrial and glycolytic functions were significantly decreased to trace levels by BMS309403 in a dose-dependent manner. In the RNA sequencing analysis, 67 substantially up-regulated and 94 significantly down-regulated differentially expressed genes (DEGs) were identified in HOCF cells treated with BMS309403 and those not treated with BMS309403. The results of Gene Ontology enrichment analysis and ingenuity pathway analysis (IPA) revealed that the DEGs were most likely involved in G-alpha (i) signaling, cAMP-response element-binding protein (CREB) signaling in neurons, the S100 family signaling pathway, visual phototransduction and adrenergic receptor signaling. Furthermore, upstream analysis using IPA suggested that NKX2-1 (thyroid transcription factor1), HOXA10 (homeobox A10), GATA2 (gata2 protein), and CCAAT enhancer-binding protein A (CEBPA) were upstream regulators and that NKX homeobox-1 (NKX2-1), SFRP1 (Secreted frizzled-related protein 1) and TREM2 (triggering receptor expressed on myeloid cells 2) were causal network master regulators. The findings in this study suggest that intraocularly present FABP4 originates from the ocular choroid and may be a critical regulator for the cellular homeostasis of non-adipocyte HOCF cells. Full article
(This article belongs to the Special Issue Pathophysiology and Translational Research of Retinal Diseases)
Show Figures

Figure 1

15 pages, 5205 KiB  
Article
Transcriptome Analysis in Mexican Adults with Acute Lymphoblastic Leukemia
by Gabriela Marisol Cruz-Miranda, Irma Olarte-Carrillo, Diego Alberto Bárcenas-López, Adolfo Martínez-Tovar, Julian Ramírez-Bello, Christian Omar Ramos-Peñafiel, Anel Irais García-Laguna, Rafael Cerón-Maldonado, Didier May-Hau and Silvia Jiménez-Morales
Int. J. Mol. Sci. 2024, 25(3), 1750; https://doi.org/10.3390/ijms25031750 - 1 Feb 2024
Cited by 4 | Viewed by 2366
Abstract
Acute lymphoblastic leukemia (ALL) represents around 25% of adult acute leukemias. Despite the increasing improvement in the survival rate of ALL patients during the last decade, the heterogeneous clinical and molecular features of this malignancy still represent a major challenge for treatment and [...] Read more.
Acute lymphoblastic leukemia (ALL) represents around 25% of adult acute leukemias. Despite the increasing improvement in the survival rate of ALL patients during the last decade, the heterogeneous clinical and molecular features of this malignancy still represent a major challenge for treatment and achieving better outcomes. To identify aberrantly expressed genes in bone marrow (BM) samples from adults with ALL, transcriptomic analysis was performed using Affymetrix Human Transcriptome Array 2.0 (HTA 2.0). Differentially expressed genes (DEGs) (±2-fold change, p-value < 0.05, and FDR < 0.05) were detected using the Transcriptome Analysis Console. Gene Ontology (GO), Database for Annotation, Visualization, and Integrated Discovery (DAVID), and Ingenuity Pathway Analysis (IPA) were employed to identify gene function and define the enriched pathways of DEGs. The protein–protein interactions (PPIs) of DEGs were constructed. A total of 871 genes were differentially expressed, and DNTT, MYB, EBF1, SOX4, and ERG were the top five up-regulated genes. Meanwhile, the top five down-regulated genes were PTGS2, PPBP, ADGRE3, LUCAT1, and VCAN. An association between ERG, CDK6, and SOX4 expression levels and the probability of relapse and death was observed. Regulation of the immune system, immune response, cellular response to stimulus, as well as apoptosis signaling, inflammation mediated by chemokines and cytokines, and T cell activation were among the most altered biological processes and pathways, respectively. Transcriptome analysis of ALL in adults reveals a group of genes consistently associated with hematological malignancies and underscores their relevance in the development of ALL in adults. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 2885 KiB  
Article
Hematotoxic Effect of Respiratory Exposure to PHMG-p and Its Integrated Genetic Analysis
by Hwa Jung Sung, Sang Hoon Jeong, Ja Young Kang, Cherry Kim, Yoon Jeong Nam, Jae Young Kim, Jin Young Choi, Hye Jin Lee, Yu Seon Lee, Eun Yeob Kim, Yong Wook Baek, Hong Lee and Ju Han Lee
Toxics 2022, 10(11), 694; https://doi.org/10.3390/toxics10110694 - 16 Nov 2022
Cited by 2 | Viewed by 2854
Abstract
Polyhexamethylene guanidine phosphate (PHMG-p), the main ingredient of humidifier disinfectants, circulates systemically through the lungs; however, its toxicological assessment has been primarily limited to pulmonary disease. Herein, we investigated the possible abnormalities in hematopoietic function 20 weeks after intratracheal instillation of PHMG-p in [...] Read more.
Polyhexamethylene guanidine phosphate (PHMG-p), the main ingredient of humidifier disinfectants, circulates systemically through the lungs; however, its toxicological assessment has been primarily limited to pulmonary disease. Herein, we investigated the possible abnormalities in hematopoietic function 20 weeks after intratracheal instillation of PHMG-p in a rat model. Notable abnormalities were found out in the peripheral blood cell count and bone marrow (BM) biopsy, while RNA sequencing of BM tissue revealed markedly altered gene expression. Furthermore, signaling involved in hematopoietic dysfunction was predicted by analyzing candidate genes through Ingenuity Pathway Analysis (IPA) program. Respiratory PHMG-p exposure significantly decreased monocyte and platelet (PLT) counts and total protein, while significantly increasing hemoglobin and hematocrit levels in peripheral blood. Histopathological analysis of the BM revealed a reduced number of megakaryocytes, with no significant differences in spleen and liver weight to body weight. Moreover, PHMG-p exposure significantly activated estrogen receptor signaling and RHOA signaling, and inhibited RHOGDI signaling. In IPA analysis, candidate genes were found to be strongly related to ‘hematological system development and function’ and ‘hematological disease.’ Accordingly, our results suggest that PHMG-p could affect hematopoiesis, which participates in monocyte differentiation and PLT production, and may induce hematologic diseases via the respiratory tract. Full article
Show Figures

Figure 1

21 pages, 3897 KiB  
Article
Model to Determine the Best Modifications of Products with Consideration Customers’ Expectations
by Grzegorz Ostasz, Dominika Siwiec and Andrzej Pacana
Energies 2022, 15(21), 8102; https://doi.org/10.3390/en15218102 - 31 Oct 2022
Cited by 24 | Viewed by 1759
Abstract
The current situation in the energy market contributes not only to the sales growth of photovoltaic panels (PV) but also to the intense search for possibilities for its improvement. The purpose of this research was to develop a model to determine, where possible, [...] Read more.
The current situation in the energy market contributes not only to the sales growth of photovoltaic panels (PV) but also to the intense search for possibilities for its improvement. The purpose of this research was to develop a model to determine, where possible, the most beneficial modifications to improve products. The model used combination techniques, i.e., the SMARTER method, brainstorming (BM), the 7 ± 2 rule, questionnaire, ant colony optimization (ACO), and importance-performance analysis (IPA). In addition, an algorithm supporting ACO was proposed in the MATLAB program. The test was carried out on PV and showed that it is possible to determine the way of product (PV) improvement by determining a sequence of modifications for product criteria states while simultaneously considering customers’ expectations. It was shown that each state of the short-circuit electricity and peak power was satisfactory for customers. It was necessary to modify the maximum current and idle voltage. In addition, the selected modification states of the weight and dimensions will be more satisfactory compared to the current states. The proposed model is based on searching for the best changes in product criteria to achieve the highest possible customer satisfaction (i.e., product quality level). Originality is the ability to define a product improvement method (PV) depending on customer expectations but also taking into account the requirements of the company. Full article
(This article belongs to the Collection Feature Papers in Energy, Environment and Well-Being)
Show Figures

Graphical abstract

15 pages, 4677 KiB  
Article
Babesia microti Immunoreactive Rhoptry-Associated Protein-1 Paralogs Are Ancestral Members of the Piroplasmid-Confined RAP-1 Family
by Reginaldo G. Bastos, Jose Thekkiniath, Choukri Ben Mamoun, Lee Fuller, Robert E. Molestina, Monica Florin-Christensen, Leonhard Schnittger, Heba F. Alzan and Carlos E. Suarez
Pathogens 2021, 10(11), 1384; https://doi.org/10.3390/pathogens10111384 - 26 Oct 2021
Cited by 8 | Viewed by 3198
Abstract
Babesia, Cytauxzoon and Theileria are tick-borne apicomplexan parasites of the order Piroplasmida, responsible for diseases in humans and animals. Members of the piroplasmid rhoptry-associated protein-1 (pRAP-1) family have a signature cysteine-rich domain and are important for parasite development. We propose that the [...] Read more.
Babesia, Cytauxzoon and Theileria are tick-borne apicomplexan parasites of the order Piroplasmida, responsible for diseases in humans and animals. Members of the piroplasmid rhoptry-associated protein-1 (pRAP-1) family have a signature cysteine-rich domain and are important for parasite development. We propose that the closely linked B. microti genes annotated as BMR1_03g00947 and BMR1_03g00960 encode two paralogue pRAP-1-like proteins named BmIPA48 and Bm960. The two genes are tandemly arranged head to tail, highly expressed in blood stage parasites, syntenic to rap-1 genes of other piroplasmids, and share large portions of an almost identical ~225 bp sequence located in their 5′ putative regulatory regions. BmIPA48 and Bm960 proteins contain a N-terminal signal peptide, share very low sequence identity (<13%) with pRAP-1 from other species, and harbor one or more transmembrane domains. Diversification of the piroplasmid-confined prap-1 family is characterized by amplification of genes, protein domains, and a high sequence polymorphism. This suggests a functional involvement of pRAP-1 at the parasite-host interface, possibly in parasite adhesion, attachment, and/or evasion of the host immune defenses. Both BmIPA48 and Bm960 are recognized by antibodies in sera from humans infected with B. microti and might be promising candidates for developing novel serodiagnosis and vaccines. Full article
(This article belongs to the Special Issue Babesia and Human Babesiosis)
Show Figures

Figure 1

20 pages, 3179 KiB  
Article
Small Extracellular Vesicles Isolated from Serum May Serve as Signal-Enhancers for the Monitoring of CNS Tumors
by Gabriella Dobra, Matyas Bukva, Zoltan Szabo, Bella Bruszel, Maria Harmati, Edina Gyukity-Sebestyen, Adrienn Jenei, Monika Szucs, Peter Horvath, Tamas Biro, Almos Klekner and Krisztina Buzas
Int. J. Mol. Sci. 2020, 21(15), 5359; https://doi.org/10.3390/ijms21155359 - 28 Jul 2020
Cited by 30 | Viewed by 5517
Abstract
Liquid biopsy-based methods to test biomarkers (e.g., serum proteins and extracellular vesicles) may help to monitor brain tumors. In this proteomics-based study, we aimed to identify a characteristic protein fingerprint associated with central nervous system (CNS) tumors. Overall, 96 human serum samples were [...] Read more.
Liquid biopsy-based methods to test biomarkers (e.g., serum proteins and extracellular vesicles) may help to monitor brain tumors. In this proteomics-based study, we aimed to identify a characteristic protein fingerprint associated with central nervous system (CNS) tumors. Overall, 96 human serum samples were obtained from four patient groups, namely glioblastoma multiforme (GBM), non-small-cell lung cancer brain metastasis (BM), meningioma (M) and lumbar disc hernia patients (CTRL). After the isolation and characterization of small extracellular vesicles (sEVs) by nanoparticle tracking analysis (NTA) and atomic force microscopy (AFM), liquid chromatography -mass spectrometry (LC-MS) was performed on two different sample types (whole serum and serum sEVs). Statistical analyses (ratio, Cohen’s d, receiver operating characteristic; ROC) were carried out to compare patient groups. To recognize differences between the two sample types, pairwise comparisons (Welch’s test) and ingenuity pathway analysis (IPA) were performed. According to our knowledge, this is the first study that compares the proteome of whole serum and serum-derived sEVs. From the 311 proteins identified, 10 whole serum proteins and 17 sEV proteins showed the highest intergroup differences. Sixty-five proteins were significantly enriched in sEV samples, while 129 proteins were significantly depleted compared to whole serum. Based on principal component analysis (PCA) analyses, sEVs are more suitable to discriminate between the patient groups. Our results support that sEVs have greater potential to monitor CNS tumors, than whole serum. Full article
(This article belongs to the Special Issue Extracellular Vesicles: Biology and Potentials in Cancer Therapeutics)
Show Figures

Figure 1

15 pages, 2705 KiB  
Article
Distal-Less Homeobox 5 Is a Therapeutic Target for Attenuating Hypertrophy and Apoptosis of Mesenchymal Progenitor Cells
by John Twomey-Kozak, Salomi Desai, Wenguang Liu, Neill Y. Li, Nicholas Lemme, Qian Chen, Brett D. Owens and Chathuraka T. Jayasuriya
Int. J. Mol. Sci. 2020, 21(14), 4823; https://doi.org/10.3390/ijms21144823 - 8 Jul 2020
Cited by 10 | Viewed by 3198
Abstract
Chondrocyte hypertrophy is a hallmark of osteoarthritis (OA) pathology. In the present study, we elucidated the mechanism underlying the relationship between the hypertrophy/apoptotic phenotype and OA pathogenesis in bone marrow-derived mesenchymal stem cells (BM-MSCs) via gene targeting of distal-less homeobox 5 (DLX5). Our [...] Read more.
Chondrocyte hypertrophy is a hallmark of osteoarthritis (OA) pathology. In the present study, we elucidated the mechanism underlying the relationship between the hypertrophy/apoptotic phenotype and OA pathogenesis in bone marrow-derived mesenchymal stem cells (BM-MSCs) via gene targeting of distal-less homeobox 5 (DLX5). Our primary objectives were (1) to determine whether DLX5 is a predictive biomarker of cellular hypertrophy in human osteoarthritic tissues; (2) To determine whether modulating DLX5 activity can regulate cell hypertrophy in mesenchymal stem/progenitor cells from marrow and cartilage. Whole transcriptome sequencing was performed to identify differences in the RNA expression profile between human-cartilage-derived mesenchymal progenitors (C-PCs) and bone-marrow-derived mesenchymal progenitors (BM-MSCs). Ingenuity Pathway Analysis (IPA) software was used to compare molecular pathways known to regulate hypertrophic terminal cell differentiation. RT-qPCR was used to measure DLX5 and hypertrophy marker COL10 in healthy human chondrocytes and OA chondrocytes. DLX5 was knocked down or overexpressed in BM-MSCs and C-PCs and RT-qPCR were used to measure the expression of hypertrophy/terminal differentiation markers following DLX5 modulation. Apoptotic cell activity was characterized by immunostaining for cleaved caspase 3/7. We demonstrate that DLX5 and downstream hypertrophy markers were significantly upregulated in BM-MSCs, relative to C-PCs. DLX5 and COL10 were also significantly upregulated in cells from OA knee joint tissues, relative to normal non-arthritic joint tissues. Knocking down DLX5 in BM-MSCs inhibited cell hypertrophy and apoptotic activity without attenuating their chondrogenic potential. Overexpression of DLX5 in C-PCs stimulated hypertrophy markers and increased apoptotic cell activity. Modulating DLX5 activity regulates cell hypertrophy and apoptosis in BM-MSCs and C-PCs. These findings suggest that DLX5 is a biomarker of OA changes in human knee joint tissues and confirms the DLX5 mechanism contributes to hypertrophy and apoptosis in BM-MSCs. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

14 pages, 2565 KiB  
Article
Evaluation of the Effects of Airborne Particulate Matter on Bone Marrow-Mesenchymal Stem Cells (BM-MSCs): Cellular, Molecular and Systems Biological Approaches
by Muhammad Abu-Elmagd, Mansour A. Alghamdi, Magdy Shamy, Mamdouh I. Khoder, Max Costa, Mourad Assidi, Roaa Kadam, Haneen Alsehli, Mamdooh Gari, Peter Natesan Pushparaj, Gauthaman Kalamegam and Mohammed H. Al-Qahtani
Int. J. Environ. Res. Public Health 2017, 14(4), 440; https://doi.org/10.3390/ijerph14040440 - 20 Apr 2017
Cited by 21 | Viewed by 5782
Abstract
Particulate matter (PM) contains heavy metals that affect various cellular functions and gene expression associated with a range of acute and chronic diseases in humans. However, the specific effects they exert on the stem cells remain unclear. Here, we report the effects of [...] Read more.
Particulate matter (PM) contains heavy metals that affect various cellular functions and gene expression associated with a range of acute and chronic diseases in humans. However, the specific effects they exert on the stem cells remain unclear. Here, we report the effects of PM collected from the city of Jeddah on proliferation, cell death, related gene expression and systems of biological analysis in bone marrow mesenchymal stem cells (BM-MSCs), with the aim of understanding the underlying mechanisms. PM2.5 and PM10 were tested in vitro at various concentrations (15 to 300 µg/mL) and durations (24 to 72 h). PMs induced cellular stress including membrane damage, shrinkage and death. Lower concentrations of PM2.5 increased proliferation of BM-MSCs, while higher concentrations served to decrease it. PM10 decreased BM-MSCs proliferation in a concentration-dependent manner. The X-ray fluorescence spectrometric analysis showed that PM contains high levels of heavy metals. Ingenuity Pathway Analysis (IPA) and hierarchical clustering analyses demonstrated that heavy metals were associated with signaling pathways involving cell stress/death, cancer and chronic diseases. qRT-PCR results showed differential expression of the apoptosis genes (BCL2, BAX); inflammation associated genes (TNF-α and IL-6) and the cell cycle regulation gene (p53). We conclude that PM causes inflammation and cell death, and thereby predisposes to chronic debilitating diseases. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

Back to TopTop