Model to Determine the Best Modifications of Products with Consideration Customers’ Expectations
Abstract
:1. Introduction
2. Model
2.1. General Concept and Choice Tools Supporting Model
2.2. Assumptions of the Model
- Each customer distributes 100 points between the states of the criteria of the product, where less is better, and the arithmetic mean of all the points is calculated, which determines the importance of the criteria [38];
- Each customer distributes 100 points between the product criteria states, where less is better, then the arithmetic mean of all the points calculated, which determine the quality of the criteria [22];
- The number of ants in ACO is equal to 20;
- The number of iterations in ACO is equal to 50;
- The improvement of the product should be the beginning of the change in criterion states, as the most important for customers.
2.3. Algorithm and Characteristics of the Model
2.4. Stage 1. Choice of Product to Verification and Determine Purpose of Research
2.5. Stage 2. Characteristic of Product and Obtain Customers’ Expectations
2.5.1. Step 2.1. Choice of Product Criteria
2.5.2. Step 2.2. Determine Product Criterion States
2.5.3. Step 2.3. Obtain Customers’ Expectations
2.5.4. Stage 3. Processing Customers’ Expectations
2.5.5. Stage 4. Determining Solution Variants of Criteria Qualitative
2.5.6. Stage 5. Determining Product Criterion States Prioritize for Customers
3. Test of Model
3.1. Stage 1. Choice of Product to Verification and Determine Purpose of Research
3.2. Stage 2. Characteristic of Product and Obtain Customers’ Expectations
- Short-circuit electricity (A)—this refers to electricity at a maximum load, so the intensity of electricity is achieved at the moment of a short circuit of the cell;
- Peak power (W)—this is the highest average load measured or calculated over a specified time period;
- Maximum electricity (A)—this is the electricity that powers the PV panel during the load;
- Idle voltage (V)—this is the maximum (critical) voltage reached at the moment of maximum power that occurs under standard photovoltaic operating conditions;
- Weight (kg)—total weight of the solar panel;
- Dimensions (mm)—this refers to the length, width, and thickness of the solar panel.
3.3. Stage 3. Processing Customers’ Expectations
3.4. Stage 4. Determining Solution Variants of Criteria Qualitative
3.5. Stage 5. Determining Product Criterion States Prioritize for Customers
- There is no difference in how the PV short-circuit electricity will be modified because the current state is sufficient for the customers and all proposed modifications are fully satisfactory for the customers;
- There is no difference in how the PV peak power will be modified because the current status is sufficient for customers and all proposed modifications are fully satisfactory for customers;
- To modification of the current state to the maximum current should be undertaken, where all proposed modifications will surely be more satisfactory for customers;
- The third state of the idle voltage should be a priority in modifying this criterion, where the remaining states of this criterion will be comparatively satisfactory for customers;
- State 7, state 6, state 5, and state 4 for the PV weight should be the priority in modifying this criterion;
- State 2, state 3, and state 5 for the PV dimensions should be the priority in modifying this criterion.
4. Discussion
- A way of modifying the current state of the product criteria to achieve customers’ satisfaction;
- A product criteria necessary to improve at first to achieve the expected quality product level;
- Benefit modifications to the product criteria even for slight differences between the customers satisfaction from states of these criteria.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calì, M.; Hajji, B.; Nitto, G.; Acri, A. The Design Value for Recycling End-of-Life Photovoltaic Panels. Appl. Sci. 2022, 12, 9092. [Google Scholar] [CrossRef]
- Armendáriz-Ontiveros, M.M.; Dévora-Isiordia, G.E.; Rodríguez-López, J.; Sánchez-Duarte, R.G.; Álvarez-Sánchez, J.; Villegas-Peralta, Y.; Martínez-Macias, M.d.R. Effect of Temperature on Energy Consumption and Polarization in Reverse Osmosis Desalination Using a Spray-Cooled Photovoltaic System. Energies 2022, 15, 7787. [Google Scholar] [CrossRef]
- Pacana, A.; Siwiec, D. Method of Determining Sequence Actions of Products Improvement. Materials 2022, 15, 6321. [Google Scholar] [CrossRef] [PubMed]
- Barakat, S.; Emam, A.; Samy, M. Investigating grid-connected green power systems’ energy storage solutions in the event of frequent blackouts. Energy Rep. J. 2022, 8, 5177–5191. [Google Scholar] [CrossRef]
- Pérez, C.; Ponce, P.; Meier, A.; Dorantes, L.; Sandoval, J.O.; Palma, J.; Molina, A. S4 Framework for the Integration of Solar Energy Systems in Small and Medium-Sized Manufacturing Companies in Mexico. Energies 2022, 15, 6882. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Sci. Total Environ. 2021, 759, 143528. [Google Scholar] [CrossRef]
- Olczak, P. Energy Productivity of Microinverter Photovoltaic Microinstallation: Comparison of Simulation and Measured Results—Poland Case Study. Energies 2022, 15, 7582. [Google Scholar] [CrossRef]
- Amaral, T.G.; Pires, V.F.; Pires, A.J. Fault Detection in PV Tracking Systems Using an Image Processing Algorithm Based on PCA. Energies 2021, 14, 7278. [Google Scholar] [CrossRef]
- Deshpande, K.; Möhl, P.; Hämmerle, A.; Weichhart, G.; Zörrer, H.; Pichler, A. Energy Management Simulation with Multi-Agent Reinforcement Learning: An Approach to Achieve Reliability and Resilience. Energies 2022, 15, 7381. [Google Scholar] [CrossRef]
- Siwiec, D.; Pacana, A. A New Model Supporting Stability Quality of Materials and Industrial Products. Materials 2022, 15, 4440. [Google Scholar] [CrossRef]
- Baouche, F.Z.; Abderezzak, B.; Ladmi, A.; Arbaoui, K.; Suciu, G.; Mihaltan, T.C.; Raboaca, M.S.; Hudișteanu, S.V.; Țurcanu, F.E. Design and Simulation of a Solar Tracking System for PV. Appl. Sci. 2022, 12, 9682. [Google Scholar] [CrossRef]
- Sarbu, I.; Mirza, M.; Muntean, D. Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review. Energies 2022, 15, 6523. [Google Scholar] [CrossRef]
- Al Siyabi, I.; Al Mayasi, A.; Al Shukaili, A.; Khanna, S. Effect of Soiling on Solar Photovoltaic Performance under Desert Climatic Conditions. Energies 2021, 14, 659. [Google Scholar] [CrossRef]
- Jeremiasz, O.; Nowak, P.; Szendera, F.; Sobik, P.; Kulesza-Matlak, G.; Karasiński, P.; Filipowski, W.; Drabczyk, K. Laser Modified Glass for High-Performance Photovoltaic Module. Energies 2022, 15, 6742. [Google Scholar] [CrossRef]
- Samy, M.; Barakat, S.; Mossad, M.I. Optimal Economic Study of Hybrid PV-Wind-Fuel Cell System Integrated to Unreliable Electric Utility Using Hybrid Search Optimization Technique. Int. J. Hydrogen Energy 2021, 46, 11217–11231. [Google Scholar] [CrossRef]
- Coelho, S.; Monteiro, V.; Sousa, T.J.C.; Barros, L.A.M.; Pedrosa, D.; Couto, C.; Afonso, J.L. A Unified Power Converter for Solar PV and Energy Storage in dc Microgrids. Batteries 2022, 8, 143. [Google Scholar] [CrossRef]
- Vu, H.; Vu, N.H.; Shin, S. Static Concentrator Photovoltaics Module for Electric Vehicle Applications Based on Compound Parabolic Concentrator. Energies 2022, 15, 6951. [Google Scholar] [CrossRef]
- Alilou, M.; Gharehpetian, G.B.; Ahmadiahangar, R.; Rosin, A.; Anvari-Moghaddam, A. Day-Ahead Scheduling of Electric Vehicles and Electrical Storage Systems in Smart Homes Using a Novel Decision Vector and AHP Method. Sustainability 2022, 14, 11773. [Google Scholar] [CrossRef]
- Łakomiak, A. Civic Energy in an Orchard Farm–Prosumer and Energy Cooperative—A New Approach to Electricity Generation. Energies 2022, 15, 6918. [Google Scholar] [CrossRef]
- Ostasz, G.; Siwiec, D.; Pacana, A. Universal Model to Predict Expected Direction of Products Quality Improvement. Energies 2022, 15, 1751. [Google Scholar] [CrossRef]
- Pacana, A.; Siwiec, D. Model to Predict Quality of Photovoltaic Panels Considering Customers’ Expectations. Energies 2022, 15, 1101. [Google Scholar] [CrossRef]
- Siwiec, D.; Pacana, A. Model of Choice Photovoltaic Panels Considering Customers’ Expectations. Energies 2021, 14, 5977. [Google Scholar] [CrossRef]
- Lawlor, K.B.; Hornyak, M.J. Smart Goals: How The Application Of Smart Goals Can Contribute To Achievement Of Student Learning Outcomes. Dev. Bus. Simul. Exp. Learn. 2012, 39, 259–267. [Google Scholar]
- Putman, V.; Paulus, P. Brainstorming, Brainstorming. Rules and Decision Making. J. Creat. Behav. 2009, 43, 29–40. [Google Scholar] [CrossRef]
- Mu, E.; Pereyra-Rojas, M. Practical Decision Making. In Springer Briefs in Operations Research, Appendix A: Practical Questions Related to AHP Modeling; Springer Nature: Basel, Switzerland, 2017; pp. 105–106. [Google Scholar]
- Kohr, R.; Suydam, N. An instrument for evaluating survey research. J. Educ. Res. 1970, 64, 78–85. [Google Scholar] [CrossRef]
- Guven, A.; Yorukeren, N.; Samy, M. Design Optimization of a Stand-Alone Green Energy System of University Campus Based on JAYA-Harmony Search and Ant Colony Optimization Algorithms Approaches. Energy 2022, 253, 124089. [Google Scholar] [CrossRef]
- Optimization of an Ant Colony as Applied to the Traveling Salesman Problem [Optymalizacja Kolonii Mrówej w Zastosowaniu do Problemu Komiwojażera]. Available online: https://www.ii.pwr.edu.pl/~kwasnicka/tekstystudenckie/algorytmymrowkowe.pdf (accessed on 4 September 2022).
- Palma-Heredia, D.; Verdaguer, M.; Puig, V.; Poch, M.; Cugueró-Escofet, M.À. Comparison of Optimisation Algorithms for Centralised Anaerobic Co-Digestion in a Real River Basin Case Study in Catalonia. Sensors 2022, 22, 1857. [Google Scholar] [CrossRef]
- Szmygelska, A.; Hoos, H. An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinform. 2005, 6, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Abalo, J.; Varela, J.; Manzano, V. Importance values for Importance-Performance Analysis: A formula for spreading out values derived from preference rankings. J. Bus. Res. 2007, 60, 115–121. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Z.; Qiu, H.; Zhao, J.; Xu, X. Enhanced Hybrid Ant Colony Optimization for Machining Line Balancing Problem with Compound and Complex Constraints. Appl. Sci. 2022, 12, 4200. [Google Scholar] [CrossRef]
- Ahmed, A.A.M.; Sharma, E.; Jui, S.J.J.; Deo, R.C.; Nguyen-Huy, T.; Ali, M. Kernel Ridge Regression Hybrid Method for Wheat Yield Prediction with Satellite-Derived Predictors. Remote Sens. 2022, 14, 1136. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Oh, H. An extended application of Importance-Performance Analysis. J. Hosp. Leis. Mark. 2001, 9, 107–125. [Google Scholar] [CrossRef]
- Choi, J.; Boher, C. Association Planners’ Satisfaction An Application of Importance-Performance Analysis. J. Conv. Exhib. Manag. 2000, 2, 113–129. [Google Scholar] [CrossRef]
- Ulewicz, R.; Siwiec, D.; Pacana, A.; Tutak, M.; Brodny, J. Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector. Energies 2021, 14, 2386. [Google Scholar] [CrossRef]
- Siwiec, D.; Pacana, A. A Pro-Environmental Method of Sample Size Determination to Predict the Quality Level of Products Considering Current Customers’ Expectations. Sustainability 2021, 13, 5542. [Google Scholar] [CrossRef]
- Wolniak, R. The use of QFD method advantages and limitation. Prod. Eng. Arch. 2018, 18, 14–17. [Google Scholar] [CrossRef] [Green Version]
- Jakubowska, A.; Piechocka, K. In Search Of The Optimal Route -Selected Algorithms Applicable To The Traveling Salesman Problem [W poszukiwaniu optymalnej trasy–wybrane algorytmy w zastosowaniu do problemu Komiwojażera]. J. Translogistics 2015, 1, 7–23. [Google Scholar]
- Wakita, T.; Ueshima, N.; Noguchi, H. Psychological Distance Between Categories in the Likert Scale: Comparing Different Numbers of Options. Educ. Psychol. Meas. 2012, 72, 533–546. [Google Scholar] [CrossRef]
- Sullivan, G.; Artino, A. Analyzing and Interpreting Data From Likert-Type Scales. J. Grad. Med. Educ. 2013, 5, 541–542. [Google Scholar] [CrossRef] [Green Version]
- Joshi, A.; Kale, S.; Chandel, S.; Pal, D. Likert Scale: Explored and Explained. Curr. J. Appl. Sci. Technol. 2015, 7, 396–403. [Google Scholar] [CrossRef]
- Tadeusiewicz, R.; Izworski, A.; Majewski, J. Biometria; AGH: Cracow, Poland, 1993; pp. 1–379. Available online: https://winntbg.bg.agh.edu.pl/skrypty2/0086/main.html (accessed on 2 September 2022).
- SoonHu, S. A decision model for evaluating third-party logistics providers using fuzzy analytic hierarchy process. Afr. J. Bus. Manag. 2010, 4, 339–349. [Google Scholar]
- Gawilk, R. Stratification of research target group and selection of experts for AHP-based decision making model. In The Application of Analytic Hierarchy Process for Analyzing Material and Non-material Determinants of Life Quality of Young Europeans. Misc. Oeconomicae 2016, 3, 193–200. [Google Scholar]
- Winiarski, J. The Risk In It Projects—Statistical Evaluation Tools [Ryzyko w projektach artystycznych–statystycznych narzędzi oceny]. Współczesna gospodarka. Elektron. Nauka. J. 2012, 3, 35–42. [Google Scholar]
- Jinturkar, A.; Deshmukh, S.; Sarode, A.; Sunapwar, V.; Khodke, P. Fuzzy-AHP Approach to Improve Effectivness of Supply Chain. In Supply Chain Management Under Fuzziness; Springer: Berlin/Heidelberg, Germany, 2014; pp. 35–59. [Google Scholar] [CrossRef]
- Liu, Y.; Eckert, C.; Earl, C. A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Syst. Appl. 2020, 161, 113738. [Google Scholar] [CrossRef]
- Santosa, B. Tutorial on Ant Colony Optimization. Available online: https://bsantosa.files.wordpress.com/2015/03/aco-tutorial-english2.pdf (accessed on 25 September 2022).
- Jie, Y.; Ji, X.; Yue, A.; Chen, J.; Deng, Y.; Chen, J.; Zhang, Y. Combined Multi-Layer Feature Fusion and Edge Detection Method for Distributed Photovoltaic Power Station Identification. Energies 2020, 13, 6742. [Google Scholar] [CrossRef]
- Jastrzębska, M. Installation’s Conception in the Field of Renewable Energy Sources for the Needs of the Silesian Botanical Garden. Energies 2022, 15, 6598. [Google Scholar] [CrossRef]
- Lucchi, E.; Polo, C.S.; Franco, G. A conceptual framework on the integration of solar energy systems in heritage sites and buildings. In Proceedings of the IOP Conference Series: Materials Science and Engineering International Conference Florence Heri-tech: The Future of Heritage Science and Technologies, Florence, Italy, 14–16 October 2020; Volume 949. [Google Scholar]
- Sánchez-Pantoja, N.; Vidal, R.; Pastor, M.C. EU-Funded Projects with Actual Implementation of Renewable Energies in Cities. Analysis of Their Concern for Aesthetic Impact. Energies 2021, 14, 1627. [Google Scholar] [CrossRef]
- Yildirim, M.A.; Nowak-Ocłoń, M. Modified Maximum Power Point Tracking Algorithm under Time-Varying Solar Irradiation. Energies 2020, 13, 6722. [Google Scholar] [CrossRef]
- Wilkins, H. Using Importance-Performance Analysis to Appreciate Satisfaction in Hotels. J. Hosp. Mark. Manag. 2010, 19, 866–888. [Google Scholar] [CrossRef]
Criteria of PV | State 1 | State 2 | State 3 | State 4 | State 5 | State 6 | State 7 |
---|---|---|---|---|---|---|---|
Short circuit electricity (A) | 0.62 | 1.11 | 1.84 | 2.6 | 3.27 | 3.06 | 7.94 |
Peak power (W) | 10 | 20 | 30 | 45 | 55 | 50 | 130 |
Maximum electricity (A) | 0.56 | 1.11 | 1.67 | 2.43 | 2.97 | 2.78 | 7.22 |
Idle voltage (V) | 21.6 | 21 | 21.7 | 22.2 | 22.2 | 21.6 | 21.6 |
Weight (kg) | 1.1 | 1.7 | 2.2 | 4.2 | 3.6 | 3.4 | 8.5 |
Dimensions (mm) | 430 × 190 × 25 | 430 × 345 × 25 | 545 × 345 × 25 | 450 × 660 × 25 | 640 × 540 × 30 | 636 × 505 × 30 | 1190 × 669 × 35 |
Criteria of PV | Weight (w) |
---|---|
Short circuit electricity (A) | 25.43 |
Peak power (W) | 18.71 |
Maximum electricity (A) | 20.71 |
Idle voltage (V) | 12.14 |
Weight (kg) | 9.14 |
Dimensions (mm) | 6.57 |
Criteria of PV | State 1 | State 2 | State 3 | State 4 | State 5 | State 6 | State 7 |
---|---|---|---|---|---|---|---|
Short circuit electricity (A) | 32 | 23 | 15 | 8 | 11 | 6 | 5 |
Peak power (W) | 31 | 18 | 15 | 12 | 10 | 8 | 6 |
Maximum electricity (A) | 42 | 16 | 14 | 9 | 8 | 6 | 3 |
Idle voltage (V) | 18 | 59 | 13 | 10 | - | - | - |
Weight (kg) | 6 | 9 | 10 | 19 | 14 | 12 | 29 |
Dimensions (mm) | 21 | 16 | 18 | 14 | 15 | 7 | 9 |
Short Circuit Electricity (A) | State 1 (32) | State 2 (23) | State 3 (15) | State 4 (8) | State 5 (11) | State 6 (6) | State 7 (5) |
---|---|---|---|---|---|---|---|
State 1 (32) | 0.00 | 9.57 | 16.71 | 23.86 | 21.43 | 26.14 | 27.29 |
State 2 (23) | 9.57 | 0.00 | 7.14 | 14.29 | 11.86 | 16.57 | 17.71 |
State 3 (15) | 16.71 | 7.14 | 0.00 | 7.14 | 4.71 | 9.43 | 10.57 |
State 4 (8) | 23.86 | 14.29 | 7.14 | 0.00 | 2.43 | 2.29 | 3.43 |
State 5 (11) | 21.43 | 11.86 | 4.71 | 2.43 | 0.00 | 4.71 | 5.86 |
State 6 (6) | 26.14 | 16.57 | 9.43 | 2.29 | 4.71 | 0.00 | 1.14 |
State 7 (5) | 27.29 | 17.71 | 10.57 | 3.43 | 5.86 | 1.14 | 0.00 |
Short Circuit Electricity (A) | State 1 | State 2 | State 3 | State 4 | State 5 | State 6 | State 7 |
---|---|---|---|---|---|---|---|
State 1 | 0.00 | 0.10 | 0.06 | 0.04 | 0.05 | 0.04 | 0.04 |
State 2 | 0.10 | 0.00 | 0.14 | 0.07 | 0.08 | 0.06 | 0.06 |
State 3 | 0.06 | 0.14 | 0.00 | 0.14 | 0.21 | 0.11 | 0.09 |
State 4 | 0.04 | 0.07 | 0.14 | 0.00 | 0.41 | 0.44 | 0.29 |
State 5 | 0.05 | 0.08 | 0.21 | 0.41 | 0.00 | 0.21 | 0.17 |
State 6 | 0.04 | 0.06 | 0.11 | 0.44 | 0.21 | 0.00 | 0.88 |
State 7 | 0.04 | 0.06 | 0.09 | 0.29 | 0.17 | 0.88 | 0.00 |
Short Circuit Electricity (A) | Peak Power (W) | Maximum Current (A) | Idle Voltage (V) | Weight (kg) | Dimensions (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
State 1 | 32.14 | State 1 | 30.71 | State 1 | 42.29 | State 1 | 17.71 | State 1 | 6.29 | State 1 | 21.14 |
State 2 | 22.57 | State 2 | 18.14 | State 2 | 16.43 | State 3 | 58.71 | State 2 | 9.14 | State 3 | 18.00 |
State 3 | 15.43 | State 3 | 14.71 | State 3 | 14.29 | State 4 | 13.14 | State 3 | 10.43 | State 4 | 7.14 |
State 5 | 10.71 | State 4 | 10.43 | State 4 | 9.29 | State 2 | 10.43 | State 6 | 12.43 | State 5 | 15.14 |
State 4 | 8.29 | State 5 | 11.57 | State 5 | 8.14 | State 1 | 17.71 | State 5 | 13.71 | State 2 | 15.71 |
State 6 | 4.86 | State 6 | 6.43 | State 6 | 6.14 | State 4 | 19.43 | State 6 | 14.00 | ||
State 7 | 6.00 | State 7 | 8.00 | State 7 | 3.43 | State 7 | 28.57 | State 7 | 8.86 | ||
State 1 | 32.14 | State 1 | 30.71 | State 1 | 42.29 | State 1 | 6.29 | State 1 | 21.14 | ||
The length of the best tour of modification for PV criterion states | |||||||||||
54.56 | 48.48 | 77.71 | 96.57 | 44.58 | 31.42 |
Criteria of PV | Results from ACO | Results from IPA | Conclusion (Decision) after Confrontation Results from ACO and IPA | |
---|---|---|---|---|
maximum current (A) | State 1 | 42.29 | It is necessary to modify the current state, all proposed modifications will definitely be satisfactory for customers; where state 1—current state, states 2–7—modified states. | Choice of the modification state according to the result of ACO, where the decision depends on the need of the entity (expert), e.g., production possibilities, the possibilities of implementation due to the state of other criteria, and financial possibilities. |
State 2 | 16.43 | |||
State 3 | 14.29 | |||
State 4 | 9.29 | |||
State 5 | 8.14 | |||
State 6 | 6.14 | |||
State 7 | 3.43 | |||
State 1 | 42.29 | |||
dimensions (mm) | State 1 | 21.14 | State 2, state 3, and state 5 for the dimensions of PV should be the priority during modification of this criterion; where state 1—current state, states 2–7—modified states. | The modification of the current state of criteria to achieve state 3, if this is not possible try to achieve state 5 and if this is not possible try to achieve state 2, in another case make a decision according to ACO. |
State 3 | 18.00 | |||
State 4 | 7.14 | |||
State 5 | 15.14 | |||
State 2 | 15.71 | |||
State 6 | 14.00 | |||
State 7 | 8.86 | |||
State 1 | 21.14 | |||
idle voltage (V) | State 1 | 17.71 | State 3 should be a priority in modification of this criterion, whereas other states for this criterion should be comparably satisfactory for customers; where state 1—current state, states 2–7—modified states. | The modification of the current state of criteria to achieve state 3, in another case make a decision according to ACO. |
State 3 | 58.71 | |||
State 4 | 13.14 | |||
State 2 | 10.43 | |||
State 1 | 17.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostasz, G.; Siwiec, D.; Pacana, A. Model to Determine the Best Modifications of Products with Consideration Customers’ Expectations. Energies 2022, 15, 8102. https://doi.org/10.3390/en15218102
Ostasz G, Siwiec D, Pacana A. Model to Determine the Best Modifications of Products with Consideration Customers’ Expectations. Energies. 2022; 15(21):8102. https://doi.org/10.3390/en15218102
Chicago/Turabian StyleOstasz, Grzegorz, Dominika Siwiec, and Andrzej Pacana. 2022. "Model to Determine the Best Modifications of Products with Consideration Customers’ Expectations" Energies 15, no. 21: 8102. https://doi.org/10.3390/en15218102