Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Black-Scholes-Merton equation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1378 KiB  
Article
A General Conformable Black–Scholes Equation for Option Pricing
by Paula Morales-Bañuelos, Sebastian Elias Rodríguez Bojalil, Luis Alberto Quezada-Téllez and Guillermo Fernández-Anaya
Mathematics 2025, 13(10), 1576; https://doi.org/10.3390/math13101576 - 10 May 2025
Viewed by 560
Abstract
Since the emergence of the Black–Scholes model (BSM) in the early 1970s, models for the pricing of financial options have been developed and evolved with mathematical tools that provide greater efficiency and accuracy in the valuation of these assets. In this research, we [...] Read more.
Since the emergence of the Black–Scholes model (BSM) in the early 1970s, models for the pricing of financial options have been developed and evolved with mathematical tools that provide greater efficiency and accuracy in the valuation of these assets. In this research, we have used the generalized conformable derivatives associated with seven obtained conformable models with a closed-form solution that is similar to the traditional Black and Scholes. In addition, an empirical analysis was carried out to test the models with Mexican options contracts listed in 2023. Six foreign options were also tested, in particular three London options and three US options. With this sample, in addition to applying the seven generalized conformable models, we compared the results with the Heston model. We obtained much better results with the conformable models. Similarly, we decided to apply the seven conformable models to the data of the Morales et al. article, and we again determined that the conformable models greatly outperform the approximation of the Black, Scholes (BS), and Merton model with time-varying parameters and the basic Khalil conformable equation. In addition to the base sample, it was decided to test the strength of the seven generalized conformable models on 10 stock options that were out-sampled. In addition to the MSE results, for the sample of six options whose shares were traded in the London and New York stock markets, we tested the positivity and stability of the results. We plotted the values of the option contracts obtained by applying each of the seven generalized conformable models, the values of the contracts obtained by applying the traditional Heston model, and the market value of the contracts. Full article
Show Figures

Figure 1

29 pages, 841 KiB  
Article
Fuzzy Amplitudes and Kernels in Fractional Brownian Motion: Theoretical Foundations
by Georgy Urumov, Panagiotis Chountas and Thierry Chaussalet
Symmetry 2025, 17(4), 550; https://doi.org/10.3390/sym17040550 - 3 Apr 2025
Viewed by 395
Abstract
In this study, we present a novel mathematical framework for pricing financial derivates and modelling asset behaviour by bringing together fractional Brownian motion (fBm), fuzzy logic, and jump processes, all aligned with no-arbitrage principle. In particular, our mathematical developments include fBm defined through [...] Read more.
In this study, we present a novel mathematical framework for pricing financial derivates and modelling asset behaviour by bringing together fractional Brownian motion (fBm), fuzzy logic, and jump processes, all aligned with no-arbitrage principle. In particular, our mathematical developments include fBm defined through Mandelbrot-Van Ness kernels, and advanced mathematical tools such Molchan martingale and BDG inequalities ensuring rigorous theoretical validity. We bring together these different concepts to model uncertainties like sudden market shocks and investor sentiment, providing a fresh perspective in financial mathematics and derivatives pricing. By using fuzzy logic, we incorporate subject factors such as market optimism or pessimism, adjusting volatility dynamically according to the current market environment. Fractal mathematics with the Hurst exponent close to zero reflecting rough market conditions and fuzzy set theory are combined with jumps, representing sudden market changes to capture more realistic asset price movements. We also bridge the gap between complex stochastic equations and solvable differential equations using tools like Feynman-Kac approach and Girsanov transformation. We present simulations illustrating plausible scenarios ranging from pessimistic to optimistic to demonstrate how this model can behave in practice, highlighting potential advantages over classical models like the Merton jump diffusion and Black-Scholes. Overall, our proposed model represents an advancement in mathematical finance by integrating fractional stochastic processes with fuzzy set theory, thus revealing new perspectives on derivative pricing and risk-free valuation in uncertain environments. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

20 pages, 503 KiB  
Article
Local Equivalence of the Black–Scholes and Merton–Garman Equations
by Ivan Arraut
Axioms 2025, 14(3), 215; https://doi.org/10.3390/axioms14030215 - 15 Mar 2025
Viewed by 337
Abstract
It has been previously demonstrated that stochastic volatility emerges as the gauge field necessary to restore local symmetry under changes in stock prices in the Black–Scholes (BS) equation. When this occurs, a Merton–Garman-like equation emerges. From the perspective of manifolds, this means that [...] Read more.
It has been previously demonstrated that stochastic volatility emerges as the gauge field necessary to restore local symmetry under changes in stock prices in the Black–Scholes (BS) equation. When this occurs, a Merton–Garman-like equation emerges. From the perspective of manifolds, this means that the Black–Scholes and Merton–Garman (MG) equations can be considered locally equivalent. In this scenario, the MG Hamiltonian is a special case of a more general Hamiltonian, here referred to as the gauge Hamiltonian. We then show that the gauge character of volatility implies a specific functional relationship between stock prices and volatility. The connection between stock prices and volatility is a powerful tool for improving volatility estimations in the stock market, which is a key ingredient for investors to make good decisions. Finally, we define an extended version of the martingale condition, defined for the gauge Hamiltonian. Full article
Show Figures

Figure 1

16 pages, 278 KiB  
Article
Exploring Optimisation Strategies Under Jump-Diffusion Dynamics
by Luca Di Persio and Nicola Fraccarolo
Mathematics 2025, 13(3), 535; https://doi.org/10.3390/math13030535 - 6 Feb 2025
Viewed by 716
Abstract
This paper addresses the portfolio optimisation problem within the jump-diffusion stochastic differential equations (SDEs) framework. We begin by recalling a fundamental theoretical result concerning the existence of solutions to the Black–Scholes–Merton partial differential equation (PDE), which serves as the cornerstone for subsequent analysis. [...] Read more.
This paper addresses the portfolio optimisation problem within the jump-diffusion stochastic differential equations (SDEs) framework. We begin by recalling a fundamental theoretical result concerning the existence of solutions to the Black–Scholes–Merton partial differential equation (PDE), which serves as the cornerstone for subsequent analysis. Then, we explore a range of financial applications, spanning scenarios characterised by the absence of jumps, the presence of jumps following a log-normal distribution, and jumps following a distribution of greater generality. Additionally, we delve into optimising more complex portfolios composed of multiple risky assets alongside a risk-free asset, shedding new light on optimal allocation strategies in these settings. Our investigation yields novel insights and potentially groundbreaking results, offering fresh perspectives on portfolio management strategies under jump-diffusion dynamics. Full article
27 pages, 480 KiB  
Review
Review of the Fractional Black-Scholes Equations and Their Solution Techniques
by Hongmei Zhang, Mengchen Zhang, Fawang Liu and Ming Shen
Fractal Fract. 2024, 8(2), 101; https://doi.org/10.3390/fractalfract8020101 - 7 Feb 2024
Cited by 20 | Viewed by 4623
Abstract
The pioneering work in finance by Black, Scholes and Merton during the 1970s led to the emergence of the Black-Scholes (B-S) equation, which offers a concise and transparent formula for determining the theoretical price of an option. The establishment of the B-S equation, [...] Read more.
The pioneering work in finance by Black, Scholes and Merton during the 1970s led to the emergence of the Black-Scholes (B-S) equation, which offers a concise and transparent formula for determining the theoretical price of an option. The establishment of the B-S equation, however, relies on a set of rigorous assumptions that give rise to several limitations. The non-local property of the fractional derivative (FD) and the identification of fractal characteristics in financial markets have paved the way for the introduction and rapid development of fractional calculus in finance. In comparison to the classical B-S equation, the fractional B-S equations (FBSEs) offer a more flexible representation of market behavior by incorporating long-range dependence, heavy-tailed and leptokurtic distributions, as well as multifractality. This enables better modeling of extreme events and complex market phenomena, The fractional B-S equations can more accurately depict the price fluctuations in actual financial markets, thereby providing a more reliable basis for derivative pricing and risk management. This paper aims to offer a comprehensive review of various FBSEs for pricing European options, including associated solution techniques. It contributes to a deeper understanding of financial model development and its practical implications, thereby assisting researchers in making informed decisions about the most suitable approach for their needs. Full article
27 pages, 542 KiB  
Review
The Role of the Volatility in the Option Market
by Ivan Arraut and Ka-I Lei
AppliedMath 2023, 3(4), 882-908; https://doi.org/10.3390/appliedmath3040047 - 1 Dec 2023
Viewed by 1519
Abstract
We review some general aspects about the Black–Scholes equation, which is used for predicting the fair price of an option inside the stock market. Our analysis includes the symmetry properties of the equation and its solutions. We use the Hamiltonian formulation for this [...] Read more.
We review some general aspects about the Black–Scholes equation, which is used for predicting the fair price of an option inside the stock market. Our analysis includes the symmetry properties of the equation and its solutions. We use the Hamiltonian formulation for this purpose. Taking into account that the volatility inside the Black–Scholes equation is a parameter, we then introduce the Merton–Garman equation, where the volatility is stochastic, and then it can be perceived as a field. We then show how the Black–Scholes equation and the Merton–Garman one are locally equivalent by imposing a gauge symmetry under changes in the prices over the Black–Scholes equation. This demonstrates that the stochastic volatility emerges naturally from symmetry arguments. Finally, we analyze the role of the volatility on the decisions taken by the holders of the options when they use the solution of the Black–Scholes equation as a tool for making investment decisions. Full article
Show Figures

Figure 1

12 pages, 269 KiB  
Article
Entropic Dynamics of Stocks and European Options
by Mohammad Abedi and Daniel Bartolomeo
Entropy 2019, 21(8), 765; https://doi.org/10.3390/e21080765 - 6 Aug 2019
Cited by 3 | Viewed by 4343
Abstract
We develop an entropic framework to model the dynamics of stocks and European Options. Entropic inference is an inductive inference framework equipped with proper tools to handle situations where incomplete information is available. The objective of the paper is to lay down an [...] Read more.
We develop an entropic framework to model the dynamics of stocks and European Options. Entropic inference is an inductive inference framework equipped with proper tools to handle situations where incomplete information is available. The objective of the paper is to lay down an alternative framework for modeling dynamics. An important information about the dynamics of a stock’s price is scale invariance. By imposing the scale invariant symmetry, we arrive at choosing the logarithm of the stock’s price as the proper variable to model. The dynamics of stock log price is derived using two pieces of information, the continuity of motion and the directionality constraint. The resulting model is the same as the Geometric Brownian Motion, GBM, of the stock price which is manifestly scale invariant. Furthermore, we come up with the dynamics of probability density function, which is a Fokker–Planck equation. Next, we extend the model to value the European Options on a stock. Derivative securities ought to be prices such that there is no arbitrage. To ensure the no-arbitrage pricing, we derive the risk-neutral measure by incorporating the risk-neutral information. Consequently, the Black–Scholes model and the Black–Scholes-Merton differential equation are derived. Full article
12 pages, 239 KiB  
Article
Entropic Dynamics of Exchange Rates and Options
by Mohammad Abedi and Daniel Bartolomeo
Entropy 2019, 21(6), 586; https://doi.org/10.3390/e21060586 - 13 Jun 2019
Cited by 4 | Viewed by 4848
Abstract
An Entropic Dynamics of exchange rates is laid down to model the dynamics of foreign exchange rates, FX, and European Options on FX. The main objective is to represent an alternative framework to model dynamics. Entropic inference is an inductive inference framework equipped [...] Read more.
An Entropic Dynamics of exchange rates is laid down to model the dynamics of foreign exchange rates, FX, and European Options on FX. The main objective is to represent an alternative framework to model dynamics. Entropic inference is an inductive inference framework equipped with proper tools to handle situations where incomplete information is available. Entropic Dynamics is an application of entropic inference, which is equipped with the entropic notion of time to model dynamics. The scale invariance is a symmetry of the dynamics of exchange rates, which is manifested in our formalism. To make the formalism manifestly invariant under this symmetry, we arrive at choosing the logarithm of the exchange rate as the proper variable to model. By taking into account the relevant information about the exchange rates, we derive the Geometric Brownian Motion, GBM, of the exchange rate, which is manifestly invariant under the scale transformation. Securities should be valued such that there is no arbitrage opportunity. To this end, we derive a risk-neutral measure to value European Options on FX. The resulting model is the celebrated Garman–Kohlhagen model. Full article
14 pages, 832 KiB  
Article
Lie Symmetry Analysis of the Black-Scholes-Merton Model for European Options with Stochastic Volatility
by Andronikos Paliathanasis, K. Krishnakumar, K.M. Tamizhmani and Peter G.L. Leach
Mathematics 2016, 4(2), 28; https://doi.org/10.3390/math4020028 - 3 May 2016
Cited by 17 | Viewed by 6215
Abstract
We perform a classification of the Lie point symmetries for the Black-Scholes-Merton Model for European options with stochastic volatility, σ, in which the last is defined by a stochastic differential equation with an Orstein-Uhlenbeck term. In this model, the value of the [...] Read more.
We perform a classification of the Lie point symmetries for the Black-Scholes-Merton Model for European options with stochastic volatility, σ, in which the last is defined by a stochastic differential equation with an Orstein-Uhlenbeck term. In this model, the value of the option is given by a linear (1 + 2) evolution partial differential equation in which the price of the option depends upon two independent variables, the value of the underlying asset, S, and a new variable, y. We find that for arbitrary functional form of the volatility, σ ( y ) , the (1 + 2) evolution equation always admits two Lie point symmetries in addition to the automatic linear symmetry and the infinite number of solution symmetries. However, when σ ( y ) = σ 0 and as the price of the option depends upon the second Brownian motion in which the volatility is defined, the (1 + 2) evolution is not reduced to the Black-Scholes-Merton Equation, the model admits five Lie point symmetries in addition to the linear symmetry and the infinite number of solution symmetries. We apply the zeroth-order invariants of the Lie symmetries and we reduce the (1 + 2) evolution equation to a linear second-order ordinary differential equation. Finally, we study two models of special interest, the Heston model and the Stein-Stein model. Full article
(This article belongs to the Special Issue Mathematical Finance)
Show Figures

Figure 1

25 pages, 286 KiB  
Article
Some Divergence Properties of Asset Price Models
by Wolfgang Stummer
Entropy 2001, 3(5), 300-324; https://doi.org/10.3390/e3050300 - 20 Dec 2001
Cited by 1 | Viewed by 5735
Abstract
We consider asset price processes Xt which are weak solutions of one-dimensional stochastic differential equations of the form (equation (2)) Such price models can be interpreted as non-lognormally-distributed generalizations of the geometric Brownian motion. We study properties of the Iα-divergence [...] Read more.
We consider asset price processes Xt which are weak solutions of one-dimensional stochastic differential equations of the form (equation (2)) Such price models can be interpreted as non-lognormally-distributed generalizations of the geometric Brownian motion. We study properties of the Iα-divergence between the law of the solution Xt and the corresponding drift-less measure (the special case α=1 is the relative entropy). This will be applied to some context in statistical information theory as well as to arbitrage theory and contingent claim valuation. For instance, the seminal option pricing theorems of Black-Scholes and Merton appear as a special case. Full article
Back to TopTop