Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = BRANCHED1 (BRC1)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4120 KiB  
Article
The WRKY28-BRC1 Transcription Factor Module Controls Shoot Branching in Brassica napus
by Ka Zhang, Jinfang Zhang, Cheng Cui, Liang Chai, Benchuan Zheng, Liangcai Jiang and Haojie Li
Plants 2025, 14(3), 486; https://doi.org/10.3390/plants14030486 - 6 Feb 2025
Viewed by 961
Abstract
The trade-off between growth and defense is common in plants. We previously demonstrated that BnaA03.WRKY28 weakened resistance strength but promoted shoot branching in Brassica napus (rapeseed). However, the molecular mechanism by which WRKY28 promotes branching formation is still obscure. In this study, we [...] Read more.
The trade-off between growth and defense is common in plants. We previously demonstrated that BnaA03.WRKY28 weakened resistance strength but promoted shoot branching in Brassica napus (rapeseed). However, the molecular mechanism by which WRKY28 promotes branching formation is still obscure. In this study, we found that BnaA01.BRC1, BnaC01.BRC1, and BnaC03.BRC1 are mainly expressed in the leaf axils and contained W-box cis-acting elements in the promoter regions. BnaA03.WRKY28 directly bound to the promoter regions of these three copies and inhibited their expression. The brc1 mutants, the BnaA01.BRC1, BnaC01.BRC1 BnaA03.BRC1 and BnaC03.BRC1 were simultaneously knocked out, mediated by CRISPR/Cas9, and exhibited excessive branching. The expression level of the ABA biosynthesis encoding gene NCED3 was significantly reduced in the mutant compared to that in the WT. Instead, the expression level of the ABA catabolism encoding gene CYP707A3 was significantly higher than that in WT. These results suggest that the excessive branching of the brc1 mutant may be caused by the release of ABA-mediated bud dormancy. This study provides direct evidence for the potential mechanism of the WRKY28-BRC1 transcription factor module contributing to shoot branching in rapeseed. Full article
Show Figures

Figure 1

14 pages, 5397 KiB  
Article
The Functional Verification of CmSMXL6 from Chrysanthemum in the Regulation of Branching in Arabidopsis thaliana
by Fenglan Wang, Zhiren Hu, Honghui Luo, Qing Wu, Xiuzhe Chen, Shuang Wen, Zihang Xiao, Xiaoxiao Ai and Yanhong Guo
Horticulturae 2024, 10(7), 718; https://doi.org/10.3390/horticulturae10070718 - 6 Jul 2024
Cited by 2 | Viewed by 1111
Abstract
The development of branching plays a pivotal role in the cultivation of ornamental chrysanthemums, as it dictates the ultimate morphology and quality of the plants. Strigolactones (SLs) are associated with apical dominance to indirectly inhibit shoot branching. Chrysanthemum morifolium ‘Baltasar’ in this study [...] Read more.
The development of branching plays a pivotal role in the cultivation of ornamental chrysanthemums, as it dictates the ultimate morphology and quality of the plants. Strigolactones (SLs) are associated with apical dominance to indirectly inhibit shoot branching. Chrysanthemum morifolium ‘Baltasar’ in this study was subjected to treatment with three hormones: auxin (IAA), 6-BA, and GR24. Following the exogenous application of GR24 and IAA, a significant reduction in both the length and quantity of lateral buds on chrysanthemums was observed. Additionally, there was a notable down-regulation in the expression levels of CmPIN1 (associated with auxin transport) and CmIPT3, which is involved in cytokinin (CK) synthesis. After the application of 6-BA, there was a significant increase in both the length and quantity of lateral buds on chrysanthemums. Subsequently, the separate application of IAA and 6-BA to C. morifolium ‘Baltasar’ notably induced the expression of CmMAX1, a gene involved in the biosynthesis of strigolactones, and CmSMXL6, a gene associated with the signaling pathway of SLs, suggesting a negative regulatory role for SLs and auxin in chrysanthemum lateral buds, while CK demonstrated positive regulation. Cloning and expression analysis of CmSMXL6, a member of the D53/SMXL gene family in chrysanthemum, revealed its up-regulation following GR24 treatment, peaking at 9 h. The overexpression of CmSMXL6 in Arabidopsis thaliana promoted increased numbers of primary and secondary branches. In transgenic lines, genes associated with SLs synthesis (AtMAX1, AtMAX2, and AtMAX3) exhibited varying degrees of down-regulation, while the branching-inhibitory gene AtBRC1 also displayed decreased expression levels. These findings suggest that CmSMXL6 plays a role in promoting branching. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

12 pages, 6068 KiB  
Article
MtTCP18 Regulates Plant Structure in Medicago truncatula
by Xiaoyue Su, Junzan Zheng, Xiaoxuan Diao, Zhongyi Yang, Deyue Yu and Fang Huang
Plants 2024, 13(7), 1012; https://doi.org/10.3390/plants13071012 - 2 Apr 2024
Cited by 1 | Viewed by 1689
Abstract
Plant structure has a large influence on crop yield formation, with branching and plant height being the important factors that make it up. We identified a gene, MtTCP18, encoding a TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor highly conserved with Arabidopsis gene [...] Read more.
Plant structure has a large influence on crop yield formation, with branching and plant height being the important factors that make it up. We identified a gene, MtTCP18, encoding a TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor highly conserved with Arabidopsis gene BRC1 (BRANCHED1) in Medicago truncatula. Sequence analysis revealed that MtTCP18 included a conserved basic helix–loop–helix (BHLH) motif and R domain. Expression analysis showed that MtTCP18 was expressed in all organs examined, with relatively higher expression in pods and axillary buds. Subcellular localization analysis showed that MtTCP18 was localized in the nucleus and exhibited transcriptional activation activity. These results supported its role as a transcription factor. Meanwhile, we identified a homozygous mutant line (NF14875) with a mutation caused by Tnt1 insertion into MtTCP18. Mutant analysis showed that the mutation of MtTCP18 altered plant structure, with increased plant height and branch number. Moreover, we found that the expression of auxin early response genes was modulated in the mutant. Therefore, MtTCP18 may be a promising candidate gene for breeders to optimize plant structure for crop improvement. Full article
Show Figures

Figure 1

17 pages, 3178 KiB  
Article
A Study of the Molecular Regulatory Network of VcTCP18 during Blueberry Bud Dormancy
by Ruixue Li, Rui Ma, Yuling Zheng, Qi Zhao, Yu Zong, Youyin Zhu, Wenrong Chen, Yongqiang Li and Weidong Guo
Plants 2023, 12(14), 2595; https://doi.org/10.3390/plants12142595 - 9 Jul 2023
Cited by 5 | Viewed by 1867
Abstract
BRANCHED1 (BRC1) is a crucial member of the TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) gene family and is well known for playing a central role in shoot branching by controlling buds’ paradormancy. However, the expression characteristics and molecular regulatory mechanism of BRC1 during blueberry [...] Read more.
BRANCHED1 (BRC1) is a crucial member of the TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) gene family and is well known for playing a central role in shoot branching by controlling buds’ paradormancy. However, the expression characteristics and molecular regulatory mechanism of BRC1 during blueberry bud dormancy are unclear. To shed light on these topics, shoots of three blueberry cultivars with different chilling requirements (CRs) were decapitated in summer to induce paradormancy release and subjected to different levels of chilling in winter to induce endodormancy release. The results showed that the high-CR cultivar ‘Chandler’ had the strongest apical dominance among the three cultivars; additionally, the expression of VcTCP18, which is homologous to BRC1, was the highest under both the decapitation treatment and low-temperature treatment. The ‘Emerald’ cultivar, with a low CR, demonstrated the opposite trend. These findings suggest that VcTCP18 plays a negative regulatory role in bud break and that there may be a correlation between the CR and tree shape. Through yeast 1-hybrid (Y1H) assays, we finally screened 21 upstream regulatory genes, including eight transcription factors: zinc-finger homeodomain protein 1/4/5/9, MYB4, AP2-like ethylene-responsive transcription factor AINTEGUMENTA (ANT), ASIL2-like, and bHLH035. It was found that these upstream regulatory genes positively or negatively regulated the expression of VcTCP18 based on the transcriptome expression profile. In summary, this study enriched our understanding of the regulatory network of BRCl during bud dormancy and provided new insights into the function of BRC1. Full article
(This article belongs to the Special Issue Advances in Blueberry Research)
Show Figures

Figure 1

14 pages, 2711 KiB  
Article
Cucumber Strigolactone Receptor CsDAD2 and GA3 Interact to Regulate Shoot Branching in Arabidopsis thaliana L.
by Yaoliang Cao, Yanlong Dong, Runming Zhang, Qian Li, Ruonan Peng, Chao Chen, Mengdi Lu and Xiaoxia Jin
Horticulturae 2023, 9(1), 23; https://doi.org/10.3390/horticulturae9010023 - 23 Dec 2022
Cited by 3 | Viewed by 2748
Abstract
Previous studies identified that strigolactones (SLs) and gibberellins (GAs) interacted when controlling branching in plant shoots, but the underlying mechanism remains unknown. qRT-PCR analysis suggested that the SL receptor gene CsDAD2 was significantly upregulated in the leaves, stems, and nodes of cucumber after [...] Read more.
Previous studies identified that strigolactones (SLs) and gibberellins (GAs) interacted when controlling branching in plant shoots, but the underlying mechanism remains unknown. qRT-PCR analysis suggested that the SL receptor gene CsDAD2 was significantly upregulated in the leaves, stems, and nodes of cucumber after treatment with 50 mg/L of GA3. Furthermore, the CsDAD2 gene was cloned and introduced into wild-type Arabidopsis plants via Agrobacterium-mediated transformation. For the CsDAD2-OE lines, the endogenous content of GA3 was subsequently higher at the seedling stage, with the number of primary cauline branches also significantly increased at the maturity stage compared with WT. Additionally, GA-related genes were up-regulated in the first inter-nodes and the third nodes of the CsDAD2-OE lines, thus indicating that GA was metabolically active in these tissues. The expression of the branch inhibitor gene AtBRC1 decreased at the seedling stage as well as at the maturity stage of the CsDAD2-OE lines. These findings suggest that CsDAD2 might have important functions in the interactions between GAs and SLs as it can promote the accumulation of GAs in plant nodes and suppress the expression of BRC1, hence increasing primary cauline branching. Full article
Show Figures

Figure 1

16 pages, 3430 KiB  
Article
CpMAX1a, a Cytochrome P450 Monooxygenase Gene of Chimonanthus praecox Regulates Shoot Branching in Arabidopsis
by Haiyuan Zhang, Run Hua, Xia Wang, Huafeng Wu, Hua Ou, Xin Lu, Yan Huang, Daofeng Liu and Shunzhao Sui
Int. J. Mol. Sci. 2022, 23(18), 10888; https://doi.org/10.3390/ijms231810888 - 17 Sep 2022
Cited by 4 | Viewed by 2476
Abstract
Strigolactones (SLs) are a class of important hormones in the regulation of plant branching. In the model plant ArabidopsisAtMAX1 encodes a cytochrome P450 protein and is a crucial gene in the strigolactone synthesis pathway. Yet, the regulatory mechanism of MAX1 in [...] Read more.
Strigolactones (SLs) are a class of important hormones in the regulation of plant branching. In the model plant ArabidopsisAtMAX1 encodes a cytochrome P450 protein and is a crucial gene in the strigolactone synthesis pathway. Yet, the regulatory mechanism of MAX1 in the shoot branching of wintersweet (Chimonanthus praecox) remains unclear. Here we identified and isolated three MAX1 homologous genes, namely CpMAX1a, CpMAX1b, and CpMAX1c. Quantitative real-time PCR (qRT-PCR) revealed the expression of CpMAX1a in all tissues, being highest in leaves, whereas CpMAX1b was only expressed in stems, while CpMAX1c was expressed in both roots and stem tips. However, CpMAX1a’s expression decreased significantly after decapitation; hence, we verified its gene function. CpMAX1a was located in Arabidopsis chloroplasts. Overexpressing CpMAX1a restored the phenotype of the branching mutant max1–3, and reduced the rosette branch number, but resulted in no significant phenotypic differences from the wild type. Additionally, expression of AtBRC1 was significantly upregulated in transgenic lines, indicating that the CpMAX1a gene has a function similar to the homologous gene of Arabidopsis. In conclusion, our study shows that CpMAX1a plays a conserved role in regulating the branch development of wintersweet. This work provides a molecular and theoretical basis for better understanding the branch development of wintersweet. Full article
Show Figures

Figure 1

13 pages, 2375 KiB  
Article
Reaction Center of Rhodobacter Sphaeroides, a Photoactive Protein for pH Sensing: A Theoretical Investigation of Charge Transport Properties
by Eleonora Alfinito and Lino Reggiani
Appl. Sci. 2022, 12(3), 1738; https://doi.org/10.3390/app12031738 - 8 Feb 2022
Viewed by 1852
Abstract
In the perspective of an increasing attention to ecological aspects of science and technology, it is of interest to design devices based on architectures of modular, low cost, and low-pollutant elements, each of them able to perform simple duties. Elemental devices may be [...] Read more.
In the perspective of an increasing attention to ecological aspects of science and technology, it is of interest to design devices based on architectures of modular, low cost, and low-pollutant elements, each of them able to perform simple duties. Elemental devices may be themselves green as, for example, proteins able to make simple actions, like sensing. To this aim, photosensitive proteins are often considered because of the possibility of transferring their specific reaction to visible light into electronic signals. Here, we investigate the expected electrical response of the photoactive protein Reaction Center (bRC) of Rhodobacter Sphaeroides within the proteotronics, a recent branch of molecular electronics that evaluates the electrical properties of a protein by using an impedance network protein analog based on the protein tertiary structure and the degree of electrical connectivity between neighboring amino acids. To this purpose, the linear and nonlinear regimes of the electrical response to an applied bias are studied when the protein is in its native state or in an active state. In the linear response regime, results evidence a significant difference in the electrical properties of bRC when the pH value of the solution in which the protein is embedded changes from acid to basic. In the non-linear response regime, the current-voltage characteristics experimentally reported in the recent literature are interpreted in terms of a sequential tunneling mechanism of charge transfer. The qualitative agreement of present findings with available experiments strongly suggests the use of this protein as a bio-rheostat or a pH sensor. Full article
(This article belongs to the Special Issue Frontiers in Optical Materials)
Show Figures

Figure 1

21 pages, 5088 KiB  
Article
Phytoplasma Infection Blocks Starch Breakdown and Triggers Chloroplast Degradation, Leading to Premature Leaf Senescence, Sucrose Reallocation, and Spatiotemporal Redistribution of Phytohormones
by Wei Wei, Junichi Inaba, Yan Zhao, Joseph D. Mowery and Rosemarie Hammond
Int. J. Mol. Sci. 2022, 23(3), 1810; https://doi.org/10.3390/ijms23031810 - 5 Feb 2022
Cited by 24 | Viewed by 4687
Abstract
Witches’-broom (WB, excessive initiation, and outgrowth of axillary buds) is one of the remarkable symptoms in plants caused by phytoplasmas, minute wall-less intracellular bacteria. In healthy plants, axillary bud initiation and outgrowth are regulated by an intricate interplay of nutrients (such as sugars), [...] Read more.
Witches’-broom (WB, excessive initiation, and outgrowth of axillary buds) is one of the remarkable symptoms in plants caused by phytoplasmas, minute wall-less intracellular bacteria. In healthy plants, axillary bud initiation and outgrowth are regulated by an intricate interplay of nutrients (such as sugars), hormones, and environmental factors. However, how these factors are involved in the induction of WB by phytoplasma is poorly understood. We postulated that the WB symptom is a manifestation of the pathologically induced redistribution of sugar and phytohormones. Employing potato purple top phytoplasma and its alternative host tomato (Solanum lycopersicum), sugar metabolism and transportation, and the spatiotemporal distribution of phytohormones were investigated. A transmission electron microscopy (TEM) analysis revealed that starch breakdown was inhibited, resulting in the degradation of damaged chloroplasts, and in turn, premature leaf senescence. In the infected source leaves, two marker genes encoding asparagine synthetase (Sl-ASN) and trehalose-6-phosphate synthase (Sl-TPS) that induce early leaf senescence were significantly up-regulated. However, the key gibberellin biosynthesis gene that encodes ent-kaurene synthase (Sl-KS) was suppressed. The assessment of sugar content in various infected tissues (mature leaves, stems, roots, and leaf axils) indicated that sucrose transportation through phloem was impeded, leading to sucrose reallocation into the leaf axils. Excessive callose deposition and the resulting reduction in sieve pore size revealed by aniline blue staining and TEM provided additional evidence to support impaired sugar transport. In addition, a spatiotemporal distribution study of cytokinin and auxin using reporter lines detected a cytokinin signal in leaf axils where the axillary buds initiated. However, the auxin responsive signal was rarely present in such leaf axils, but at the tips of the newly elongated buds. These results suggested that redistributed sucrose as well as cytokinin in leaf axils triggered the axillary bud initiation, and auxin played a role in the bud elongation. The expression profiles of genes encoding squamosa promoter-binding proteins (Sl-SBP1), and BRANCHED1 (Sl-BRC1a and Sl-BRC1b) that control axillary bud release, as determined by quantitative reverse transcription (qRT)-PCR, indicated their roles in WB induction. However, their interactions with sugars and cytokinins require further study. Our findings provide a comprehensive insight into the mechanisms by which phytoplasmas induce WB along with leaf chlorosis, little leaf, and stunted growth. Full article
(This article belongs to the Special Issue Molecular Plant-Microbe Interactions)
Show Figures

Figure 1

18 pages, 4517 KiB  
Article
Carotenoid Cleavage Dioxygenase Genes of Chimonanthus praecox, CpCCD7 and CpCCD8, Regulate Shoot Branching in Arabidopsis
by Xia Wang, Daofeng Liu, Jie Lin, Ting Zhu, Ning Liu, Ximeng Yang, Jing Ma and Shunzhao Sui
Int. J. Mol. Sci. 2021, 22(16), 8750; https://doi.org/10.3390/ijms22168750 - 15 Aug 2021
Cited by 10 | Viewed by 3512
Abstract
Strigolactones (SLs) regulate plant shoot development by inhibiting axillary bud growth and branching. However, the role of SLs in wintersweet (Chimonanthus praecox) shoot branching remains unknown. Here, we identified and isolated two wintersweet genes, CCD7 and CCD8, involved in the [...] Read more.
Strigolactones (SLs) regulate plant shoot development by inhibiting axillary bud growth and branching. However, the role of SLs in wintersweet (Chimonanthus praecox) shoot branching remains unknown. Here, we identified and isolated two wintersweet genes, CCD7 and CCD8, involved in the SL biosynthetic pathway. Quantitative real-time PCR revealed that CpCCD7 and CpCCD8 were down-regulated in wintersweet during branching. When new shoots were formed, expression levels of CpCCD7 and CpCCD8 were almost the same as the control (un-decapitation). CpCCD7 was expressed in all tissues, with the highest expression in shoot tips and roots, while CpCCD8 showed the highest expression in roots. Both CpCCD7 and CpCCD8 localized to chloroplasts in Arabidopsis. CpCCD7 and CpCCD8 overexpression restored the phenotypes of branching mutant max3-9 and max4-1, respectively. CpCCD7 overexpression reduced the rosette branch number, whereas CpCCD8 overexpression lines showed no phenotypic differences compared with wild-type plants. Additionally, the expression of AtBRC1 was significantly up-regulated in transgenic lines, indicating that two CpCCD genes functioned similarly to the homologous genes of the Arabidopsis. Overall, our study demonstrates that CpCCD7 and CpCCD8 exhibit conserved functions in the CCD pathway, which controls shoot development in wintersweet. This research provides a molecular and theoretical basis for further understanding branch development in wintersweet. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 4000 KiB  
Article
Genome-Wide Identification of the TCP Gene Family in Broussonetia papyrifera and Functional Analysis of BpTCP8, 14 and 19 in Shoot Branching
by Meiling Zhao, Xianjun Peng, Naizhi Chen and Shihua Shen
Plants 2020, 9(10), 1301; https://doi.org/10.3390/plants9101301 - 1 Oct 2020
Cited by 18 | Viewed by 3043
Abstract
The plant-specific TCP family proteins play an important role in the processes of plant growth and development. Broussonetia papyrifera is a versatile perennial deciduous tree, and its genome data have been published. However, no comprehensive analysis of the TCP gene family in B. [...] Read more.
The plant-specific TCP family proteins play an important role in the processes of plant growth and development. Broussonetia papyrifera is a versatile perennial deciduous tree, and its genome data have been published. However, no comprehensive analysis of the TCP gene family in B. papyrifera has been undertaken. In this study, 20 BpTCP genes (BpTCPs) were identified in the B. papyrifera genome. Phylogenetic analysis divided BpTCPs into three subclades, the PCF subclade, the CIN subclade and the CYC/TB1 subclade. Gene structure analysis displayed that all BpTCPs except BpTCP19 contained one coding region. Conserved motif analysis showed that BpTCP proteins in the same subclade possessed similar motif structures. Segmental duplication was the primary driving force for the expansion of BpTCPs. Expression patterns showed that BpTCPs may play diverse biological functions in organ or tissue development. Transcriptional activation activity analysis of BpTCP8, BpTCP14 and BpTCP19 showed that they possessed transcriptional activation ability. The ectopic expression analysis in Arabidopsis wild-type and AtBRC1 ortholog mutant showed that BpTCP8, BpTCP14 and BpTCP19 could prevent rosette branch outgrowth. Collectively, our study not only established the first genome-wide analysis of the B. papyrifera TCP gene family, but also provided valuable information for understanding the function of BpTCPs in shoot branching. Full article
Show Figures

Figure 1

21 pages, 3722 KiB  
Article
Posttranscriptional Regulation of RhBRC1 (Rosa hybrida BRANCHED1) in Response to Sugars is Mediated via its Own 3′ Untranslated Region, with a Potential Role of RhPUF4 (Pumilio RNA-Binding Protein Family)
by Ming Wang, Laurent Ogé, Linda Voisine, Maria-Dolores Perez-Garcia, Julien Jeauffre, Laurence Hibrand Saint-Oyant, Philippe Grappin, Latifa Hamama and Soulaiman Sakr
Int. J. Mol. Sci. 2019, 20(15), 3808; https://doi.org/10.3390/ijms20153808 - 4 Aug 2019
Cited by 13 | Viewed by 4633
Abstract
The shoot branching pattern is a determining phenotypic trait throughout plant development. During shoot branching, BRANCHED1 (BRC1) plays a master regulator role in bud outgrowth, and its transcript levels are regulated by various exogenous and endogenous factors. RhBRC1 (the homologous gene [...] Read more.
The shoot branching pattern is a determining phenotypic trait throughout plant development. During shoot branching, BRANCHED1 (BRC1) plays a master regulator role in bud outgrowth, and its transcript levels are regulated by various exogenous and endogenous factors. RhBRC1 (the homologous gene of BRC1 in Rosa hybrida) is a main branching regulator whose posttranscriptional regulation in response to sugar was investigated through its 3′UTR. Transformed Rosa calluses containing a construction composed of the CaMV35S promoter, the green fluorescent protein (GFP) reporter gene, and the 3′UTR of RhBRC1 (P35S:GFP::3′UTRRhBRC1) were obtained and treated with various combinations of sugars and with sugar metabolism effectors. The results showed a major role of the 3′UTR of RhBRC1 in response to sugars, involving glycolysis/the tricarboxylic acid cycle (TCA) and the oxidative pentose phosphate pathway (OPPP). In Rosa vegetative buds, sequence analysis of the RhBRC1 3′UTR identified six binding motifs specific to the Pumilio/FBF RNA-binding protein family (PUF) and probably involved in posttranscriptional regulation. RhPUF4 was highly expressed in the buds of decapitated plants and in response to sugar availability in in-vitro-cultured buds. RhPUF4 was found to be close to AtPUM2, which encodes an Arabidopsis PUF protein. In addition, sugar-dependent upregulation of RhPUF4 was also found in Rosa calluses. RhPUF4 expression was especially dependent on the OPPP, supporting its role in OPPP-dependent posttranscriptional regulation of RhBRC1. These findings indicate that the 3′UTR sequence could be an important target in the molecular regulatory network of RhBRC1 and pave the way for investigating new aspects of RhBRC1 regulation. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Graphical abstract

15 pages, 1378 KiB  
Article
GmBRC1 is a Candidate Gene for Branching in Soybean (Glycine max (L.) Merrill)
by Sangrea Shim, Jungmin Ha, Moon Young Kim, Man Soo Choi, Sung-Taeg Kang, Soon-Chun Jeong, Jung-Kyung Moon and Suk-Ha Lee
Int. J. Mol. Sci. 2019, 20(1), 135; https://doi.org/10.3390/ijms20010135 - 1 Jan 2019
Cited by 31 | Viewed by 5184
Abstract
Branch number is one of the main factors affecting the yield of soybean (Glycine max (L.)). In this study, we conducted a genome-wide association study combined with linkage analysis for the identification of a candidate gene controlling soybean branching. Five quantitative trait [...] Read more.
Branch number is one of the main factors affecting the yield of soybean (Glycine max (L.)). In this study, we conducted a genome-wide association study combined with linkage analysis for the identification of a candidate gene controlling soybean branching. Five quantitative trait nucleotides (QTNs) were associated with branch numbers in a soybean core collection. Among these QTNs, a linkage disequilibrium (LD) block qtnBR6-1 spanning 20 genes was found to overlap a previously identified major quantitative trait locus qBR6-1. To validate and narrow down qtnBR6-1, we developed a set of near-isogenic lines (NILs) harboring high-branching (HB) and low-branching (LB) alleles of qBR6-1, with 99.96% isogenicity and different branch numbers. A cluster of single nucleotide polymorphisms (SNPs) segregating between NIL-HB and NIL-LB was located within the qtnBR6-1 LD block. Among the five genes showing differential expression between NIL-HB and NIL-LB, BRANCHED1 (BRC1; Glyma.06G210600) was down-regulated in the shoot apex of NIL-HB, and one missense mutation and two SNPs upstream of BRC1 were associated with branch numbers in 59 additional soybean accessions. BRC1 encodes TEOSINTE-BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS 1 and 2 transcription factor and functions as a regulatory repressor of branching. On the basis of these results, we propose BRC1 as a candidate gene for branching in soybean. Full article
(This article belongs to the Special Issue Plant Genetics and Molecular Breeding)
Show Figures

Figure 1

21 pages, 3729 KiB  
Article
Transcriptome Profiles Reveal the Crucial Roles of Auxin and Cytokinin in the “Shoot Branching” of Cremastra appendiculata
by Xiang Lv, Mingsheng Zhang, Xiaolan Li, Ruihua Ye and Xiaohong Wang
Int. J. Mol. Sci. 2018, 19(11), 3354; https://doi.org/10.3390/ijms19113354 - 26 Oct 2018
Cited by 21 | Viewed by 4944
Abstract
Cremastra appendiculata has become endangered due to reproductive difficulties. Specifically, vegetative reproduction is almost its only way to reproduce, and, under natural conditions, it cannot grow branches, resulting in an extremely low reproductive coefficient (reproductive percentage). Here, we performed RNA-Seq and a differentially [...] Read more.
Cremastra appendiculata has become endangered due to reproductive difficulties. Specifically, vegetative reproduction is almost its only way to reproduce, and, under natural conditions, it cannot grow branches, resulting in an extremely low reproductive coefficient (reproductive percentage). Here, we performed RNA-Seq and a differentially expressed gene (DEG) analysis of the three stages of lateral bud development in C. appendiculata after decapitation—dormancy (D2), transition (TD2), and emergence (TG2)—and the annual axillary bud natural break (G1) to gain insight into the molecular regulatory network of shoot branching in this plant. Additionally, we applied the auxin transport inhibitors N-1-naphthylphthalamic acid (NPA) and 2,3,5-triiodibenzoic acid (TIBA) to a treated pseudobulb string of C. appendiculata to verify the conclusions obtained by the transcriptome. RNA-Seq provided a wealth of valuable information. Successive pairwise comparative transcriptome analyses revealed 5988 genes as DEGs. GO (Gene Ontology) and KEGG (Kyoto encyclopedia of genes and genomes) analyses of DEGs showed significant enrichments in phytohormone biosynthesis and metabolism, regulation of hormone levels, and a hormone-mediated signaling pathway. qRT-PCR validation showed a highly significant correlation (p < 0.01) with the RNA-Seq generated data. High-performance liquid chromatography (HPLC) and qRT-PCR results showed that, after decapitation, the NPA- and TIBA-induced lateral buds germinated due to rapidly decreasing auxin levels, caused by upregulation of the dioxygenase for auxin oxidation gene (DAO). Decreased auxin levels promoted the expression of isopentenyl transferase (IPT) and cytochrome P450 monooxygenase, family 735, subfamily A (CYP735A) genes and inhibited two carotenoid cleavage dioxygenases (CCD7 and CCD8). Zeatin levels significantly increased after the treatments. The increased cytokinin levels promoted the expression of WUSCHEL (WUS) and inhibited expression of BRANCHED1 (BRC1) in the cytokinin signal transduction pathway and initiated lateral bud outgrowth. Our data suggest that our theories concerning the regulation of shoot branching and apical dominance is really similar to those observed in annual plants. Auxin inhibits bud outgrowth and tends to inhibit cytokinin levels. The pseudobulb in the plant behaves in a similar manner to that of a shoot above the ground. Full article
(This article belongs to the Special Issue Auxins and Cytokinins in Plant Development)
Show Figures

Figure 1

Back to TopTop