Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = BFT-based system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3008 KiB  
Article
Computation Offloading Strategy Based on Improved Polar Lights Optimization Algorithm and Blockchain in Internet of Vehicles
by Yubao Liu, Bocheng Yan, Benrui Wang, Quanchao Sun and Yinfei Dai
Appl. Sci. 2025, 15(13), 7341; https://doi.org/10.3390/app15137341 - 30 Jun 2025
Viewed by 201
Abstract
The rapid growth of computationally intensive tasks in the Internet of Vehicles (IoV) poses a triple challenge to the efficiency, security, and stability of Mobile Edge Computing (MEC). Aiming at the problems that traditional optimization algorithms tend to fall into, where local optimum [...] Read more.
The rapid growth of computationally intensive tasks in the Internet of Vehicles (IoV) poses a triple challenge to the efficiency, security, and stability of Mobile Edge Computing (MEC). Aiming at the problems that traditional optimization algorithms tend to fall into, where local optimum in task offloading and edge computing nodes are exposed to the risk of data tampering, this paper proposes a secure offloading strategy that integrates the Improved Polar Lights Optimization algorithm (IPLO) and blockchain. First, the truncation operation when a particle crosses the boundary is improved to dynamic rebound by introducing a rebound boundary processing mechanism, which enhances the global search capability of the algorithm; second, the blockchain framework based on the Delegated Byzantine Fault Tolerance (dBFT) consensus is designed to ensure data tampering and cross-node trustworthy sharing in the offloading process. Simulation results show that the strategy significantly reduces the average task processing latency (64.4%), the average system energy consumption (71.1%), and the average system overhead (75.2%), and at the same time effectively extends the vehicle’s power range, improves the real-time performance of the emergency accident warning and dynamic path planning, and significantly reduces the cost of edge computing usage for small and medium-sized fleets, providing an efficient, secure, and stable collaborative computing solution for IoV. Full article
Show Figures

Figure 1

18 pages, 568 KiB  
Review
Using BioFloc Technology to Improve Aquaculture Efficiency
by Gennady Matishov, Besarion Meskhi, Dmitry Rudoy, Anastasiya Olshevskaya, Victoria Shevchenko, Liliya Golovko, Tatyana Maltseva, Mary Odabashyan and Svetlana Teplyakova
Fishes 2025, 10(4), 144; https://doi.org/10.3390/fishes10040144 - 22 Mar 2025
Cited by 1 | Viewed by 2196
Abstract
In the present study, literature information on the functioning of the biofloc technology (BFT) system, its components, the state of the organism of hydrobionts, and water quality is analyzed. It is shown that this technology allows reducing financial costs for water treatment by [...] Read more.
In the present study, literature information on the functioning of the biofloc technology (BFT) system, its components, the state of the organism of hydrobionts, and water quality is analyzed. It is shown that this technology allows reducing financial costs for water treatment by 30%, increasing the efficiency of protein assimilation in the feed composition by two times, and creating a high-protein substrate, which can be further used as a component of feed for aquaculture. The BFT contains a large number of microorganisms, including photoautotrophic microorganisms (algae), chemoautotrophic microorganisms (nitrifying bacteria), and heterotrophic microorganisms (fungi, infusoria, protozoa, and zooplankton). This technology contributes to the improvement in water quality, aquaculture productivity, and hydrobionts. Despite the higher initial costs, BFT can yield higher economic profits. In this paper, the authors summarize data from many recent studies devoted to BFT. Based on the analysis of a number of studies, it can be concluded that this technology has a high potential for scaling up in industrial aquaculture. Full article
(This article belongs to the Special Issue Biofloc Technology in Aquaculture)
Show Figures

Figure 1

24 pages, 2827 KiB  
Article
RWA-BFT: Reputation-Weighted Asynchronous BFT for Large-Scale IoT
by Guanwei Jia, Zhaoyu Shen, Hongye Sun, Jingbo Xin and Dongyu Wang
Sensors 2025, 25(2), 413; https://doi.org/10.3390/s25020413 - 12 Jan 2025
Cited by 2 | Viewed by 1147
Abstract
This paper introduces RWA-BFT, a reputation-weighted asynchronous Byzantine Fault Tolerance (BFT) consensus algorithm designed to address the scalability and performance challenges of blockchain systems in large-scale IoT scenarios. Traditional centralized IoT architectures often face issues such as single points of failure and insufficient [...] Read more.
This paper introduces RWA-BFT, a reputation-weighted asynchronous Byzantine Fault Tolerance (BFT) consensus algorithm designed to address the scalability and performance challenges of blockchain systems in large-scale IoT scenarios. Traditional centralized IoT architectures often face issues such as single points of failure and insufficient reliability, while blockchain, with its decentralized and tamper-resistant properties, offers a promising solution. However, existing blockchain consensus mechanisms struggle to meet the high throughput, low latency, and scalability demands of IoT applications. To address these limitations, RWA-BFT adopts a two-layer blockchain architecture; the first layer leverages reputation-based filtering to reduce computational complexity by excluding low-reputation nodes, while the second layer employs an asynchronous consensus mechanism to ensure efficient and secure communication among high-reputation nodes, even under network delays. This dual-layer design significantly improves performance, achieving higher throughput, lower latency, and enhanced scalability, while maintaining strong fault tolerance even in the presence of a substantial proportion of malicious nodes. Experimental results demonstrate that RWA-BFT outperforms HB-BFT and PBFT algorithms, making it a scalable and secure blockchain solution for decentralized IoT applications. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

21 pages, 1172 KiB  
Review
Exploring Regenerative Aquaculture Initiatives for Climate-Resilient Food Production: Harnessing Synergies Between Technology and Agroecology
by Erick Ogello, Mavindu Muthoka and Nicholas Outa
Aquac. J. 2024, 4(4), 324-344; https://doi.org/10.3390/aquacj4040024 - 5 Dec 2024
Cited by 5 | Viewed by 4418
Abstract
This review evaluates regenerative aquaculture (RA) technologies and practices as viable pathways to foster resilient, ecologically restorative aquaculture systems. The key RA technologies examined include modern periphyton technology (PPT), biofloc technology (BFT), integrated multitrophic aquaculture (IMTA), and alternative feed sources like microalgae and [...] Read more.
This review evaluates regenerative aquaculture (RA) technologies and practices as viable pathways to foster resilient, ecologically restorative aquaculture systems. The key RA technologies examined include modern periphyton technology (PPT), biofloc technology (BFT), integrated multitrophic aquaculture (IMTA), and alternative feed sources like microalgae and insect-based diets. PPT and BFT leverage microbial pathways to enhance water quality, nutrient cycling, and fish growth while reducing environmental pollutants and reliance on conventional feed. IMTA integrates species from various trophic levels, such as seaweeds and bivalves, to recycle waste and improve ecosystem health, contributing to nutrient balance and reducing environmental impact. Microalgae and insect-based feeds present sustainable alternatives to fishmeal, promoting circular resource use and alleviating pressure on wild fish stocks. Beyond these technologies, RA emphasizes sustainable practices to maintain fish health without antibiotics or hormones. Improved disease monitoring programs, avoidance of unprocessed animal by-products, and the use of generally recognized as safe (GRAS) substances, such as essential oils, are highlighted for their role in disease prevention and immune support. Probiotics are also discussed as beneficial microbial supplements that enhance fish health by promoting gut microbiota balance and inhibiting harmful pathogens. This review, therefore, marks an important and essential step in examining the interconnectedness between technology, agroecology, and sustainable aquaculture. This review was based on an extensive search of scientific databases to retrieve relevant literature. Full article
Show Figures

Figure 1

18 pages, 2368 KiB  
Article
Improved Fast-Response Consensus Algorithm Based on HotStuff
by Rong Wang, Minfu Yuan, Zhenyu Wang and Yin Li
Sensors 2024, 24(16), 5417; https://doi.org/10.3390/s24165417 - 21 Aug 2024
Cited by 1 | Viewed by 2433
Abstract
Recent Byzantine Fault-Tolerant (BFT) State Machine Replication (SMR) protocols increasingly focus on scalability and security to meet the growing demand for Distributed Ledger Technology (DLT) applications across various domains. Current BFT consensus algorithms typically require a single leader node to receive and validate [...] Read more.
Recent Byzantine Fault-Tolerant (BFT) State Machine Replication (SMR) protocols increasingly focus on scalability and security to meet the growing demand for Distributed Ledger Technology (DLT) applications across various domains. Current BFT consensus algorithms typically require a single leader node to receive and validate votes from the majority process and broadcast the results, a design challenging to scale in large systems. We propose a fast-response consensus algorithm based on improvements to HotStuff, aimed at enhancing transaction ordering speed and overall performance of distributed systems, even in the presence of faulty copies. The algorithm introduces an optimistic response assumption, employs a message aggregation tree to collect and validate votes, and uses a dynamically adjusted threshold mechanism to reduce communication delay and improve message delivery reliability. Additionally, a dynamic channel mechanism and an asynchronous leader multi-round mechanism are introduced to address multiple points of failure in the message aggregation tree structure, minimizing dependence on a single leader. This adaptation can be flexibly applied to real-world system conditions to improve performance and responsiveness. We conduct experimental evaluations to verify the algorithm’s effectiveness and superiority. Compared to the traditional HotStuff algorithm, the improved algorithm demonstrates higher efficiency and faster response times in handling faulty copies and transaction ordering. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

27 pages, 2074 KiB  
Review
Understanding Carbon Footprint in Sustainable Land-Based Marine Aquaculture: Exploring Production Techniques
by Marta Castilla-Gavilán, José Manuel Guerra-García, Ismael Hachero-Cruzado and Marcelino Herrera
J. Mar. Sci. Eng. 2024, 12(7), 1192; https://doi.org/10.3390/jmse12071192 - 16 Jul 2024
Cited by 3 | Viewed by 4982
Abstract
In aquaculture, it is crucial to understand and mitigate the carbon footprint for sustainable production. As demand for seafood increases, various production techniques compete for an eco-friendly status. This review examines the carbon footprint of various land-based marine aquaculture systems, highlighting their environmental [...] Read more.
In aquaculture, it is crucial to understand and mitigate the carbon footprint for sustainable production. As demand for seafood increases, various production techniques compete for an eco-friendly status. This review examines the carbon footprint of various land-based marine aquaculture systems, highlighting their environmental impact. Through exploring innovations and best practices, it navigates the complexities of reducing emissions and promoting carbon sequestration. Some proposals for this purpose are based on diversification through low-trophic-level species, the preservation of high-carbon sequestration sites, polyculture, organic aquaculture and improvements in nutrition, feeding, waste and energy management. In this sense, some land-based aquaculture systems are progressively adapting and updating their zootechnical procedures. Recirculating Aquaculture Systems (RASs) offer interesting advantages such as water conservation, pollution reduction and biosecurity. Integrated Multi-Trophic Aquaculture systems (IMTAs) aim to address two major issues in aquaculture: efficient water usage and the environmental impact of effluents, which are rich in organic particles and dissolved nutrients from undigested food and feces; hence, these systems involve cultivating multiple species (polyculture). Biofloc Technology (BFT) is based on the formation of bioflocs in a culture medium. These systems can enhance feeding efficiency and waste management, thus optimizing nutrient utilization and minimizing environmental impact, achieved through reduced water and fertilizer usage. Traditional (extensive) aquaculture systems operate with minimal input of feed and chemicals, relying heavily on the natural productivity of the ecosystems; thus, the need for manufactured feed, the environmental impact associated with feed production and the transportation and overall costs are significantly reduced. Overall, while RASs, BFT and extensive systems in general offer significant sustainability benefits, IMTA’s holistic approach to ecosystem management and nutrient recycling makes it, in our estimation, the most effective method in terms of ecological footprint in aquaculture. However, its quantitative evaluation is extremely complex, and there is currently a lack of references about its global carbon footprint. Therefore, further research and development are required, as well as collaboration and knowledge-sharing among stakeholders. Full article
(This article belongs to the Special Issue New Challenges in Marine Aquaculture Research)
Show Figures

Figure 1

17 pages, 2268 KiB  
Review
Tropical Shrimp Biofloc Aquaculture within Greenhouses in the Mediterranean: Preconditions, Perspectives, and a Prototype Description
by Dimitrios K. Papadopoulos, Maria V. Alvanou, Athanasios Lattos, Kosmas Ouroulis and Ioannis A. Giantsis
Fishes 2024, 9(6), 208; https://doi.org/10.3390/fishes9060208 - 1 Jun 2024
Cited by 3 | Viewed by 3101
Abstract
Biofloc technology (BFT) offers an innovative eco-friendly approach that is particularly applicable in shrimp farming. Penaeus vannamei is the most important seafood species in terms of global economic value. Nevertheless, its increasing global demand highlights the necessity for sustainable production of P. vannamei [...] Read more.
Biofloc technology (BFT) offers an innovative eco-friendly approach that is particularly applicable in shrimp farming. Penaeus vannamei is the most important seafood species in terms of global economic value. Nevertheless, its increasing global demand highlights the necessity for sustainable production of P. vannamei shrimps outside their native range, assuring the avoidance of genetic pollution risk. Towards this direction, the present study focuses on the feasibility of tropical shrimp species aquaculture in indoor systems evaluating BFT application in temperate zones. The achievability of P. vannamei cultivation inside greenhouses in temperate latitudes is thoroughly examined and a representative experimental biofloc setup for P. vannamei within a greenhouse in Northern Greece is demonstrated. Nevertheless, there are two major limitations, related to economy and ecology, namely the energy demand for high seawater temperature and the fact that most reared shrimps are non-indigenous species setting risk for genetic pollution, respectively. To overcome the former, energy-saving measures such as tank and greenhouse insulation in combination with a microclimate chamber construction were implemented to optimize water temperature at minimal cost. Concerning the latter, there is clear evidence that P. vannamei populations cannot be established in the Mediterranean, setting aside any environmental risk. Overall, based on the developed and tested pilot prototype, employment of optimal management practices, innovative manufacturing and clean energy alternatives, and the utilization of ecosystem services could reduce the environmental impact and maximize the profitability of biofloc operations. These actions could probably permit sustainable and economically viable farming of P. vannamei employing BFT within greenhouses in the Mediterranean. Full article
(This article belongs to the Special Issue Advances in Shrimp Aquaculture)
Show Figures

Figure 1

12 pages, 2039 KiB  
Article
Enhancing Indoor Culture of Weather Loach (Misgurnus anguillicaudatus) and Caipira Lettuce (Lactuca sativa) in a Decoupled FLOCponics System
by Junseong Park, Ju-ae Hwang, Jongryeol Choe, Donggil Lee and Hyeongsu Kim
Fishes 2024, 9(5), 150; https://doi.org/10.3390/fishes9050150 - 23 Apr 2024
Cited by 1 | Viewed by 1912
Abstract
Interest in aquaponics (AP) is increasing due to its ability to minimize sewage and maximize feed efficiency in fish farming. However, owing to limitations of intensive cultures and a lack of nutrients such as NO3 for growing crops, AP requires the use [...] Read more.
Interest in aquaponics (AP) is increasing due to its ability to minimize sewage and maximize feed efficiency in fish farming. However, owing to limitations of intensive cultures and a lack of nutrients such as NO3 for growing crops, AP requires the use of artificial nutrients. Therefore, novel approaches are required to develop AP-intensive culturing methods. An AP system based on biofloc technology (BFT) called FLOCponics (FP) has been recommended. Here, the productivity of the weather loach (Misgurnus anguillicaudatus) in the FP system, BFT system, and flow-through systems (FTSs), as well as these systems’ effect on Caipira lettuce (Lactuca sativa) growth, was analyzed. To compare crop productivity, a hydroponic (HP) bed was installed. The growth rate of M. anguillicaudatus showed significant differences, at 51.1 ± 3.69% in the FP system, followed by 24.0 ± 4.16% in the BFT system and −14.3 ± 1.4% in the FTS. Its survival rates were better in the FP system (91.1 ± 2.64%) than in the BFT system (82.1 ± 10.98%) or the FTS (66.8 ± 2.75%) (p < 0.05). Total ammonia nitrogen and NO2-N concentrations were stabilized in every plot during the experimental period. However, the NO3-N concentration continuously increased in the BFT system but decreased in the FP system and was maintained. The shoot weight of the Caipira lettuce was 163.6 ± 8.65 g in the FP system and 149.6 ± 9.05 g in the HP system. In conclusion, FP system can provide a large amount of nutrients and improve the growth performance of both fish and crops in the FP system. Full article
(This article belongs to the Special Issue Advances in Sustainable Aquaculture Production Systems)
Show Figures

Figure 1

16 pages, 2259 KiB  
Article
PnV: An Efficient Parallel Consensus Protocol Integrating Proof and Voting
by Han Wang, Hui Li, Ping Fan, Jian Kang, Selwyn Deng and Xiang Zhu
Appl. Sci. 2024, 14(8), 3510; https://doi.org/10.3390/app14083510 - 22 Apr 2024
Viewed by 1742
Abstract
Consensus protocols, as crucial components of blockchain technology, play a vital role in ensuring data consistency among distributed nodes. However, the existing voting-based and proof-based consensus protocols encounter scalability issues within the blockchain system. Moreover, most consensus protocols are serialized, which further limits [...] Read more.
Consensus protocols, as crucial components of blockchain technology, play a vital role in ensuring data consistency among distributed nodes. However, the existing voting-based and proof-based consensus protocols encounter scalability issues within the blockchain system. Moreover, most consensus protocols are serialized, which further limits their scalability potential. To address this limitation, parallelization methods have been employed in both types of consensus protocols. Surprisingly, however, novel fusion consensus protocols demonstrate superior scalability compared with these two types but lack the utilization of parallelization techniques. In this paper, we present PnV, an efficient parallel fusion protocol integrating proof-based and voting-based consensus features. It enhances the data structure, consensus process, transaction allocation, and timeout handling mechanisms to enable concurrent block generation by multiple nodes within a consensus round. Experimental results demonstrate that PnV exhibits superior efficiency, excellent scalability, and acceptable delay compared with Proof of Vote (PoV) and BFT-SMART. Moreover, at the system level, the performance of the PnV-based blockchain system optimally surpasses that of the FISCO BCOS platform. Our proposed protocol contributes to advancing blockchain technology by providing a more efficient and practical solution for achieving decentralized consensus in distributed systems. Full article
(This article belongs to the Special Issue Advanced Technologies in Data and Information Security III)
Show Figures

Figure 1

15 pages, 4823 KiB  
Article
Automated Monitoring of Bluefin Tuna Growth in Cages Using a Cohort-Based Approach
by Pau Muñoz-Benavent, Gabriela Andreu-García, Joaquín Martínez-Peiró, Vicente Puig-Pons, Andrés Morillo-Faro, Patricia Ordóñez-Cebrián, Vicente Atienza-Vanacloig, Isabel Pérez-Arjona, Víctor Espinosa and Francisco Alemany
Fishes 2024, 9(2), 46; https://doi.org/10.3390/fishes9020046 - 24 Jan 2024
Cited by 2 | Viewed by 2367
Abstract
In this article, the evolution of BFT (bluefin tuna) sizes in fattening cages is studied, for which it was necessary to perform exhaustive monitoring with stereoscopic cameras and an exhaustive analysis of the data using automatic procedures. Exploring the size evolution of BFT [...] Read more.
In this article, the evolution of BFT (bluefin tuna) sizes in fattening cages is studied, for which it was necessary to perform exhaustive monitoring with stereoscopic cameras and an exhaustive analysis of the data using automatic procedures. Exploring the size evolution of BFT over a long period is an important step in inferring their growth patterns, which are essential for designing smart aquaculture and sustainable fishing, and even assessing their health status. An important objective of this work was to verify whether tuna in captivity, in addition to fattening, grow in length. To this end, our autonomous monitoring system, equipped with stereoscopic cameras, was installed from 28 July 2020 to 23 May 2021 in a fattening cage in the Mediterranean containing 724 free-swimming tuna. This system provides thousands of images that, grouped by time intervals, allow us to conduct our studies. An automatic procedure, already introduced in a previous work and capable of processing large volumes of data, is used to estimate the length and width of individuals in ventral stereoscopic images of fish, and the evolution over time is analysed for each biometric characteristic. However, verifying the evolution of length and width based only on means or medians of these measurements may be inconsistent and insufficiently accurate to support our study objectives, as individuals of different sizes and ages may grow at different rates. Therefore, a modal analysis (Bhattacharya’s method) was undertaken to identify the cohorts within the population. The results showed that each modal length surpassed the length of the next cohort and that there was accelerated growth in cages compared to the wild. In addition, we proved that using a length–width–weight relationship to estimate fish weight gives more accurate results than traditional length–weight relationships for fish fattened in cages. Full article
(This article belongs to the Special Issue Development of Sustainable Aquaculture Production)
Show Figures

Figure 1

23 pages, 933 KiB  
Article
Fermentation of Plant-Based Feeds with Lactobacillus acidophilus Improves the Survival and Intestinal Health of Juvenile Nile Tilapia (Oreochromis niloticus) Reared in a Biofloc System
by Nataly Oliveira Dos Santos Neves, Juliano De Dea Lindner, Larissa Stockhausen, Fernanda Regina Delziovo, Mariana Bender, Letícia Serzedello, Luiz Augusto Cipriani, Natalia Ha, Everton Skoronski, Enric Gisbert, Ignasi Sanahuja and Thiago El Hadi Perez Fabregat
Animals 2024, 14(2), 332; https://doi.org/10.3390/ani14020332 - 21 Jan 2024
Cited by 11 | Viewed by 3377
Abstract
This study evaluated the effect of fermentation with Lactobacillus acidophilus on the biochemical and nutritional compositions of a plant-based diet and its effects on the productive performance and intestinal health of juvenile Nile tilapia (Oreochromis niloticus) reared in a biofloc technology [...] Read more.
This study evaluated the effect of fermentation with Lactobacillus acidophilus on the biochemical and nutritional compositions of a plant-based diet and its effects on the productive performance and intestinal health of juvenile Nile tilapia (Oreochromis niloticus) reared in a biofloc technology (BFT) system. The in vitro kinetics of feed fermentation were studied to determine the L. acidophilus growth and acidification curve through counting the colony-forming units (CFUs) mL−1 and measuring the pH. Physicochemical and bromatological analyses of the feed were also performed. Based on the microbial growth kinetics results, vegetable-based Nile tilapia feeds fermented for 6 (FPB6) and 18 (FPB18) h were evaluated for 60 days. Fermented diets were compared with a positive control diet containing fishmeal (CFM) and a negative control diet without animal protein (CPB). Fermentation with L. acidophilus increased lactic acid bacteria (LAB) count and the soluble protein concentration of the plant-based feed, as well as decreasing the pH (p < 0.05). FPB treatments improved fish survival compared with CPB (p < 0.05). Fermentation increased feed intake but worsened feed efficiency (p < 0.05). The use of fermented feeds increased the LAB count and reduced pathogenic bacteria both in the BFT system’s water and in the animals’ intestines (p < 0.05). Fermented plant-based feeds showed greater villi (FPB6; FPB18) and higher goblet cell (FPB6) counts relative to the non-fermented plant-based feed, which may indicate improved intestinal health. The results obtained in this study are promising and show the sustainable potential of using fermented plant-based feeds in fish feeding rather than animal protein and, in particular, fishmeal. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

17 pages, 7925 KiB  
Article
Effects of Low Salinity on Growth, Digestive Enzyme Activity, Antioxidant and Immune Status, and the Microbial Community of Litopenaeus vannamei in Biofloc Technology Aquaculture Systems
by Lina Long, Huang Liu and Shimin Lu
J. Mar. Sci. Eng. 2023, 11(11), 2076; https://doi.org/10.3390/jmse11112076 - 30 Oct 2023
Cited by 5 | Viewed by 2250
Abstract
Biofloc technology (BFT) culture systems based on low salinity can meet the needs of shrimp growth and environmental protection, thus having potential application. To evaluate the effects of BFT on water quality, the microbial community, growth, digestive enzyme activity, and antioxidant and immune [...] Read more.
Biofloc technology (BFT) culture systems based on low salinity can meet the needs of shrimp growth and environmental protection, thus having potential application. To evaluate the effects of BFT on water quality, the microbial community, growth, digestive enzyme activity, and antioxidant and immune status of Litopenaeus vannamei under low salinity conditions, a four-week experiment was conducted in a BFT culture system (C/N ratio of 12: 1) with three salinity conditions: 5.0‰ (S5 group), 10.0‰ (S10 group), and 15.0‰. The results showed that water quality parameters were all within the range suitable for the culture of L. vannamei. There were no significant differences in growth parameters such as final weight or specific growth rate. Muscle moisture, crude protein, and crude lipid contents of L. vannamei did not differ among groups (p > 0.05). In addition, intestinal amylase and trypsin activities in the S5 group significantly increased (p < 0.05). In the S15 group, the superoxide dismutase activity and total antioxidant capacity in the serum and hepatopancreas of L. vannamei, as well as serum catalase, acid phosphatase, and alkaline phosphatase activities, markedly increased (p < 0.05). The microbial diversity (Shannon and Simpson indices) and richness (Chao1 and ACE indices) were higher in the S5 group than in the S15 group. Our findings indicated that although the shrimp in BFT systems with a salinity of 5‰ had lower antioxidant and immune levels, the digestive enzyme activity as well as the gut microbial diversity and richness improved compared to other groups, suggesting the possibility of culturing L. vannamei in low-saline areas with BFT systems. Full article
(This article belongs to the Topic Aquatic Environment Research for Sustainable Development)
Show Figures

Figure 1

13 pages, 886 KiB  
Article
The Effects of Different Carbon Sources on Water Quality, Growth Performance, Hematology, Immune, and Antioxidant Status in Cultured Nile Tilapia with Biofloc Technology
by Khalid Hussain Rind, Syed Sikandar Habib, Javed Ahmed Ujan, Francesco Fazio, Saira Naz, Aima Iram Batool, Mujeeb Ullah, Sobia Attaullah, Khayyam Khayyam and Khalid Khan
Fishes 2023, 8(10), 512; https://doi.org/10.3390/fishes8100512 - 14 Oct 2023
Cited by 20 | Viewed by 4143
Abstract
The biofloc technology system (BFT) is considered to be one of the sustainable aquaculture systems, which is based on the principle of nutrient recycling with the addition of a carbon source to give dominance to heterotrophic microorganisms. The objective of this study was [...] Read more.
The biofloc technology system (BFT) is considered to be one of the sustainable aquaculture systems, which is based on the principle of nutrient recycling with the addition of a carbon source to give dominance to heterotrophic microorganisms. The objective of this study was to evaluate the effect of sugar cane molasses and tapioca flour as carbon sources on the water quality, growth, hematology, immune status, and non-specific antioxidant status of Oreochromis juveniles. Methodologically, the experiment was carried out for 10 weeks on 225 juvenile Nile tilapia with initial body weights of 47.0 ± 1.3 g that were randomly distributed in 09 tanks (1000 L) with a stocking density of 25 tilapias per tank; the treatments were: BFT + SM (S molasses), BFT + TF tapioca flour (TF), and a control with no carbon source added. The control group was fed 100% feed, while the BFT experimental groups were fed microbial flocs along with 75% feed. The results revealed that the water quality parameters were affected by the carbon sources, but were adequate for normal fish welfare, and the biofloc volume was higher (28.94) with the TF carbon source. The growth performance, such as weight gain (98.61), survival (99.01), and improved feed conversion ratio (FCR) (1.69), was recorded in BFT + TF. Significant improvements in WBCs, HCT, HB, lymphocytes, plasma proteins, albumin, and non-specific immune factors (lysozyme activity, immunoglobulins levels, and ACH50) were observed in biofloc-reared fish with tapioca flour as the carbon source compared to the control and sugarcane molasses groups. Moreover, significant increases in catalase (CAT) and superoxide dismutase (SOD) were found in the biofloc-reared fish with different carbon sources. In conclusion, the use of BFT + TF was found to affect improving the water quality, growth, hematology, immunity, and antioxidant status of juvenile Tilapia. Full article
(This article belongs to the Special Issue Integrated Aquaculture and Monoculture of Low-Trophic Species)
Show Figures

Graphical abstract

14 pages, 2309 KiB  
Article
An Improved Byzantine Fault-Tolerant Algorithm Based on Reputation Model
by Feiyang He, Wenlong Feng, Yu Zhang and Jian Liu
Electronics 2023, 12(9), 2049; https://doi.org/10.3390/electronics12092049 - 28 Apr 2023
Cited by 16 | Viewed by 3040
Abstract
This study proposes an improved Byzantine fault-tolerant consensus RB-BFT based on the reputation model to address the problems of low reliability of primary nodes and high communication complexity in the practical Byzantine algorithm (PBFT). First, this algorithm establishes a dynamic reputation model of [...] Read more.
This study proposes an improved Byzantine fault-tolerant consensus RB-BFT based on the reputation model to address the problems of low reliability of primary nodes and high communication complexity in the practical Byzantine algorithm (PBFT). First, this algorithm establishes a dynamic reputation model of nodes to distinguish honest and malicious nodes in the system, lowering the likelihood of malicious nodes being chosen as primary nodes and increasing the dependability of primary nodes. Second, the algorithm introduces supervisory nodes for information supervision while reducing the centrality of the system. Finally, this algorithm improves the consistency protocol of the PBFT algorithm by optimizing the process of mutual communication between nodes in the preparation and commitment phases, which reduces the algorithm communication complexity from O(n2) to O(n). Theoretical and practical studies reveal that the RB-BFT algorithm enhances performance and reliability greatly. Full article
Show Figures

Figure 1

17 pages, 2832 KiB  
Article
BFT-IoMT: A Blockchain-Based Trust Mechanism to Mitigate Sybil Attack Using Fuzzy Logic in the Internet of Medical Things
by Shayan E Ali, Noshina Tariq, Farrukh Aslam Khan, Muhammad Ashraf, Wadood Abdul and Kashif Saleem
Sensors 2023, 23(9), 4265; https://doi.org/10.3390/s23094265 - 25 Apr 2023
Cited by 41 | Viewed by 3616
Abstract
Numerous sensitive applications, such as healthcare and medical services, need reliable transmission as a prerequisite for the success of the new age of communications technology. Unfortunately, these systems are highly vulnerable to attacks like Sybil, where many false nodes are created and spread [...] Read more.
Numerous sensitive applications, such as healthcare and medical services, need reliable transmission as a prerequisite for the success of the new age of communications technology. Unfortunately, these systems are highly vulnerable to attacks like Sybil, where many false nodes are created and spread with deceitful intentions. Therefore, these false nodes must be instantly identified and isolated from the network due to security concerns and the sensitivity of data utilized in healthcare applications. Especially for life-threatening diseases like COVID-19, it is crucial to have devices connected to the Internet of Medical Things (IoMT) that can be believed to respond with high reliability and accuracy. Thus, trust-based security offers a safe environment for IoMT applications. This study proposes a blockchain-based fuzzy trust management framework (BFT-IoMT) to detect and isolate Sybil nodes in IoMT networks. The results demonstrate that the proposed BFT-IoMT framework is 25.43% and 12.64%, 12.54% and 6.65%, 37.85% and 19.08%, 17.40% and 8.72%, and 13.04% and 5.05% more efficient and effective in terms of energy consumption, attack detection, trust computation reliability, packet delivery ratio, and throughput, respectively, as compared to the other state-of-the-art frameworks available in the literature. Full article
(This article belongs to the Special Issue Advances in IoT and Sensor Networks)
Show Figures

Figure 1

Back to TopTop