Exploring Regenerative Aquaculture Initiatives for Climate-Resilient Food Production: Harnessing Synergies Between Technology and Agroecology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Search and Screening Process
2.4. Data Extraction and Analysis
2.5. Limitations
3. Results and Discussion
3.1. Technologies of Regenerative Aquaculture
3.1.1. Modern Periphyton Technology (PPT)
3.1.2. Biofloc Technology
3.1.3. Integrated Multitrophic Aquaculture (IMTA), Shellfish, and Seaweed
Sea Weeds
Bivalves
3.2. Sustainable Fish Feeds That Reduce or Eliminate the Use of Wild Fish to Feed Farmed Fish
3.2.1. Microalgae as a Sustainable Fish Feed Ingredient
3.2.2. Insects
3.3. Sustainable Practices That Keep Fish Healthy Without Antibiotics and Hormones
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Troell, M.; Naylor, R.L.; Metian, M.; Beveridge, M.; Tyedmers, P.H.; Folke, C.; Arrow, K.J.; Barrett, S.; Crépin, A.S.; Ehrlich, P.R.; et al. Does aquaculture add resilience to the global food system? Proc. Natl. Acad. Sci. USA 2014, 111, 13257–13263. [Google Scholar] [CrossRef]
- Halwart, M.; Soto, D. Aquaculture development and environmental sustainability in tropical and subtropical zones. Rev. Investig. Vet. Perú 2015, 26, 95–116. [Google Scholar]
- Ahmad, I.; Babitha Rani, A.M.; Verma, A.K.; Maqsood, M. Biofloc technology: An emerging avenue in aquatic animal healthcare and nutrition. Aquac. Int. 2017, 25, 1215–1226. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Bureau, D.P.; Chiu, A.; Elliott, M.; Farrell, A.P.; Forster, I.; Gatlin, D.M.; Goldburg, R.J.; Hua, K.; et al. Feeding aquaculture in an era of finite resources. Proc. Natl. Acad. Sci. USA 2009, 106, 15103–15110. [Google Scholar] [CrossRef]
- Klinger, D.H.; Naylor, R.L. Searching for solutions in aquaculture: Charting a sustainable course. Annu. Rev. Environ. Resour. 2012, 37, 247–276. [Google Scholar] [CrossRef]
- Gentry, R.R.; Froehlich, H.E.; Grimm, D.; Kareiva, P.; Parke, M.; Rust, M.; Halpern, B.; Zedler, J.B. Regenerative ocean farming. Nat. Sustain. 2022, 5, 191–197. [Google Scholar]
- Bulger, S.A. Developing Sustainable Aquaculture at Scale. Master’s Thesis, Dartmouth College, Hanover, NH, USA, 2023. [Google Scholar]
- Diana, J.S.; Egna, H.S.; Chopin, T.; Peterson, M.S.; Cao, L.; Pomeroy, R.; Verdegem, M.; Slack, W.T.; Bondad-Reantaso, M.G.; Cabello, F. Responsible aquaculture in 2050: Valuing local conditions and human innovations will be key to success. BioScience 2013, 64, 255–262. [Google Scholar] [CrossRef]
- Timmons, M.B.; Ebeling, J.M.; Wheaton, F.W.; Summerfelt, S.T.; Vinci, B.J. Recirculating Aquaculture Systems, 2nd ed.; Publication No. 01-002; Northeastern Regional Aquaculture Center, Cayuga Aqua Ventures: Ithaca, NY, USA, 2002; p. 769. [Google Scholar]
- Ogello, E.O.; Outa, N.O.; Obiero, K.O.; Kyule, D.N.; Munguti, J.M. The prospects of biofloc technology (BFT) for sustainable aquaculture development. Sci. Afr. 2021, 14, e01053. [Google Scholar] [CrossRef]
- Alfiko, Y.; Xie, D.; Tri, R.; Wong, J.; Wang, L. Insects as a feed ingredient for fish culture: Status and trends. Aquac. Fish. 2022, 7, 166–178. [Google Scholar] [CrossRef]
- Alegbeleye, W.O.; Obasa, S.O.; Olude, O.O.; Otubu, K.; Jimoh, W. Preliminary evaluation of the nutritive value of the variegated grasshopper (Zonocerus variegatus L.) for African catfish Clarias gariepinus (Burchell. 1822) fingerlings. Aquac. Res. 2012, 43, 412–420. [Google Scholar] [CrossRef]
- Zafar, M.A.; Masud Rana, M.A. Biofloc technology: An eco-friendly “green approach” to boost up aquaculture production. Aquac. Int. 2021, 30, 51–72. [Google Scholar] [CrossRef]
- Panigrahi, A.; Esakkiraj, P.; Das Ranjan, R.; Saranya, C.; Vinay, T.N.; Otta, S.K.; Shekhar, M.S. Bioaugmentation of biofloc system with enzymatic bacterial strains for high helath and production performance of Penaeus indicus. Nat. Portf. 2021, 11, 13633. [Google Scholar]
- Sanz-Lazaro, C.; Sanchez-Jerez, P. Regional integrated multi-trophic aquaculture (RIMTA): Spatially separated, ecologically linked. J. Environ. Manag. 2020, 271, 110921. [Google Scholar] [CrossRef] [PubMed]
- Raux, P.; Agundez, J.P.; Lample, M. Challenges, opportunities and bottlenecks of a growing industry, a socioeconomic perspective of aquaculture development. The need for a better understanding of sustainability in the light of past developments and the frantic succession of concepts targeting sustainable aquaculture. In Proceedings of the 15th Aquaculture Association of Southern Africa (AASA) Conference, Stellenbosch, South Africa, 9–13 September 2024. [Google Scholar]
- Bennett, M.; March, A.; Failler, P. Blue Economy Financing Solutions for the Fisheries and Aquaculture Sectors of Caribbean Island States. Fishes 2024, 9, 305. [Google Scholar] [CrossRef]
- Kumar, G.; Engle, C.; Tucker, C. Factors driving aquaculture technology adoption. J. World Aquac. Soc. 2018, 49, 447–476. [Google Scholar] [CrossRef]
- Yadav, R.; Kumar, P.; Saini, V.P.; Sharma, B.K. Importance of periphyton for aquaculture. Aqua Star. 2017, 2, 38–40. [Google Scholar]
- Hem, S.; Avit, J.L.B. First results on “acadja-enclos” as an extensive aquaculture system (West Africa). Bull. Mar. Sci. 1994, 55, 1038–1049. [Google Scholar]
- Azim, M.E.; Beveridge, M.C.M.; van Dam, A.A.; Verdegem, M.C.J. Periphyton and aquatic production: An introduction. In Periphyton: Ecology, Exploitation and Management; Azim, M.E., Verdegem, M.C.J., van Dam, A.A., Beveridge, M.C.M., Eds.; CABI Publishing: Oxfordshire, UK, 2005; pp. 1–13. [Google Scholar]
- Azim, M. The Potential of Periphyton-Based Aquaculture Production Systems. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2001. Available online: http://www.cabdirect.org/abstracts/20036796424.html (accessed on 5 February 2024).
- Franco-Nava, M.A.; Blancheton, J.P.; Deviller, G.; Le-Gall, J.Y. Particulate matter dynamics and transformations in a recirculating aquaculture system: Application of stable isotope tracers in seabass rearing. Aquac. Eng. 2004, 31, 135–155. [Google Scholar] [CrossRef]
- Jiménez-Montealegre, R.; Verdegem MC, J.; Van Dam, A.; Verreth, J.A.J. Conceptualization and validation of a dynamic model for the simulation of nitrogen transformations and fluxes in fish ponds. Ecol. Model. 2002, 147, 123–152. [Google Scholar] [CrossRef]
- Ebeling, J.M.; Timmons, M.B.; Bisogni, J.J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture 2006, 257, 346–358. [Google Scholar] [CrossRef]
- Emerenciano, M.; Cuzon, G.; Paredes, A.; Gaxiola, G. Evaluation of biofloc technology in pink shrimp Farfantepenaeus duorarum culture: Growth performance, water quality, microorganisms profile and proximate analysis of biofloc. Aquac. Int. 2013, 21, 1381–1394. [Google Scholar] [CrossRef]
- Xu, W.J.; Morris, T.C.; Samocha, T.M. Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture 2016, 453, 169–175. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Biofloc Production Systems for Aquaculture. SRAC Publ. 2013, 4503, 1–12. [Google Scholar]
- Azim, M.E.; Wahab, M.A.; Biswas, P.K.; Asaeda, T.; Fujino, T.; Verdegem, M.C.J. The effect of periphyton substrate density on production in freshwater polyculture ponds. Aquaculture 2004, 232, 441–453. [Google Scholar] [CrossRef]
- Emerenciano Martinez-Cordova, L.; Martinez-Porchas, M.; Miranda-Baeza, A. Biofloc technology (BFT) a tool for water quality management in aquaculture. Water Qual. 2017, 5, 92–109. Available online: https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics (accessed on 13 October 2024).
- Avnimelech, Y. Biofloc Technology—A Practical Guide Book, 3rd ed.; The World Aquaculture Society: Baton Rouge, LA, USA, 2015. [Google Scholar]
- Stein, L.Y.; Klotz, M.G. The nitrogen cycle. Curr. Biol. 2016, 26, R94–R98. [Google Scholar] [CrossRef]
- Azim, M.; Wahab, M.; van Dam, A.; Beveridge, M.; Verdegem, M.J. The potential of periphyton-based culture of two Indian major carps, rohu Labeo rohita (Hamilton) and gonia Labeo gonius (Linnaeus). Aquac. Res. 2001, 32, 209–216. [Google Scholar] [CrossRef]
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Sharma, K.; Khanal, S.K. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system. Sci. Total Environ. 2014, 470–471, 193–200. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Photosynthetic suspended-growth systems in aquaculture. Aquac. Eng. 2006, 34, 344–363. [Google Scholar] [CrossRef]
- Uddin, M.S.; Verdegem, M.C.; Azim, M.E.; Wahab, M.A. Periphyton-based tilapia-prawn polyculture. New dimension in aquaculture may support organic status. Glob. Aquac. Advocate 2007, 10, 50–53. [Google Scholar]
- Dempster, P.; Baird, D.J.; Beveridge, M.C.M. Can fish survive by filter-feeding on microparticles? Energy balance in tilapia grazing on algal suspensions. J. Fish Biol. 1995, 47, 7–17. [Google Scholar] [CrossRef]
- Albay, M.; Akcaalan, R. Comparative study of periphyton colonization on common reed (Phragmites australis) and artificial substrate in a shallow lake, Manyas, Turkey. Hydrobiologia 2003, 506–509, 531–540. [Google Scholar] [CrossRef]
- Hillebrand, H. Top-down versus bottom-up control of autotrophic biomass—A meta-analysis on experiments with periphyton. J. N. Am. Benthol. Soc. 2002, 21, 349–369. [Google Scholar] [CrossRef]
- Bossier, P.; Ekasari, J. Biofloc technology application in aquaculture to support sustainable development goals. Microb. Biotechnol. 2017, 10, 1012–1016. [Google Scholar] [CrossRef]
- Muthoka, M.; Ochieng Ogello, E.; Ouma, H.; Obiero, K. Periphyton Technology Enhances Growth Performance and Delays Prolific Breeding of Nile Tilapia, Oreochromis niloticus (Linnaeus, 1758), Juveniles. Asian Fish. Sci. 2021, 34, 290–300. [Google Scholar] [CrossRef]
- Kuhn, D.D.; Lawrence, A.L.; Boardman, G.D.; Patnaik, S.; Marsh, L.; Flick, G.J. Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture 2010, 303, 28–33. [Google Scholar] [CrossRef]
- Tucker, C.S.; Pote, J.W.; Wax, C.L.; Brown, T.W. Improving water-use efficiency for Ictalurid catfish pond aquaculture in Northwest Mississippi, USA. Aquac. Res. 2015, 48, 1–12. [Google Scholar] [CrossRef]
- Craig, S.; Helfrich, L.A. Understanding Fish Nutrition, Feeds, and Feeding; Virginia Cooperative Extension, Virginia Tech: Blacksburg, VA, USA, 2002; Publication 420-256; Available online: https://southcenters.osu.edu/sites/southc/files/site-library/site-documents/abc/UnderstandingFishNutritionFeedsAndFeeding.pdf (accessed on 12 March 2024).
- Ekasari, J.; Suprayudi, M.A.; Wiyoto, W.; Hazanah, R.F.; Lenggara, G.S.; Sulistiani, R.; Alkahfi, M.; Zairin, M. Biofloc technology application in African catfish fingerling production: The effects on the reproductive performance of broodstock and the quality of eggs and larvae. Aquaculture 2016, 464, 349–356. [Google Scholar] [CrossRef]
- Biswas, G.; Kumar, P.; Ghoshal, T.K.; Das, S.; De, D.; Bera, A.; Anand, P.S.; Kailasam, M. Periphyton: A natural fish food item for replacement of feed at optimized substrate surface area for cost-effective production in brackishwater polyculture. Aquaculture 2022, 561, 738672. [Google Scholar] [CrossRef]
- McFarland, A.M.; Millican, J.S.; Back, J.A.; Brister, J.S. Trophic status related to periphyton and macrophyte distribution and abundance along the North Bosque River in north central Texas. Tex. J. Sci. 2008, 60, 3–23. [Google Scholar]
- Sutherland, D.L.; Craggs, R.J. Utilising periphytic algae as nutrient removal systems for the treatment of diffuse nutrient pollution in waterways. Algal Res. 2017, 25, 496–506. [Google Scholar] [CrossRef]
- Crab, R.; Chielens, B.; Wille, M.; Bossier, P.; Verstraete, W. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquac. Res. 2010, 41, 559–567. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.E. Technological innovations. In Tilapia Culture, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2020; Available online: https://www.perlego.com/book/1827630/tilapia-culture-second-edition-pdf (accessed on 12 March 2024).
- Avnimelech, Y.; Mokady, S.; Schroeder, G.L. Circulated ponds as efficient bioreactors for single cell protein production. Isr. J. Aquac. 1989, 41, 58–66. [Google Scholar]
- Avnimelech, Y.; Kochva, M.; Diab, S. Development of controlled intensive aquaculture systems with alimited water exchange and adjusted carbon to nitrogen ratio. ISR J. Aquac. Bamidgeh 1994, 46, 119–131. [Google Scholar]
- Panigrahi, A.; Sundaram, M.; Saranya, C.; Kumar, R.S.; Dayal, J.S.; Saraswathy, R.; Otta, S.K.; Anand, P.S.; Rekha, P.N.; Gopal, C. Influence of differential protein levels of feed on production performance and immune response of pacific white leg shrimp in a biofloc-based system. Aquaculture 2019, 503, 118–127. [Google Scholar] [CrossRef]
- Rego MA, S.; Sabbag, O.J.; Soares, R.; Peixoto, S. Financial viability of inserting the biofloc technology in a marine shrimp Litopenaeus vannamei farm: A case study in the state of Pernambuco, Brazil. Aquac. Int. 2017, 25, 473–483. [Google Scholar] [CrossRef]
- Jang, I.K.; Pang, Z.; Yu, J.; Kim, S.K.; Seo, H.C.; Cho, Y.R. Selectively enhanced expression of prophenoloxidase activating enzyme 1 (PPAE1) at a bacteria clearance site in the white shrimp, Litopenaeus vannamei. BMC Immunol. 2011, 12, 70. [Google Scholar] [CrossRef]
- Abdul-Qadir, A.M.; Aliyu-Paiko, M.; Mohammed, A.K.; Ndejiko, M.J. Biofloc Technology as a Sustainable Alternative for Managing Aquaculture Wastewater. J. Biochem. Microbiol. Biotechnol. 2024, 12, 44–53. [Google Scholar] [CrossRef]
- De Schryver, P.; Vadstein, O. Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J. 2014, 8, 2360–2368. [Google Scholar] [CrossRef]
- Defoirdt, T.; Sorgeloos, P.; Bossier, P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol. 2011, 14, 251–258. [Google Scholar] [CrossRef]
- Sarter, S.; Randrianarivelo, R.; Ruez, P.; Raherimandimby, M.; Danthu, P. Antimicrobial Effects of Essential Oils of Cinnamosma fragrans on the Bacterial Communities in the Rearing Water of Penaeus monodon Larvae. Vector-Borne Zoonotic Dis. 2011, 11, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, D.D.; Boardman, G.D.; Lawrence, A.L.; Marsh, L.; Flick, G.J. Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture 2009, 296, 51–57. [Google Scholar] [CrossRef]
- Vazquez, L.; Alpuche, J.; Maldonado, G.; Agundis, C.; Morales, P.; Zenteno, E. Immunity mechanisms in crustaceans. Innate Immun. 2009, 15, 179–188. [Google Scholar] [CrossRef]
- Dawood, M.A.; Koshio, S.; Esteban, M.A. Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Rev. Aquac. 2018, 10, 950–974. [Google Scholar] [CrossRef]
- Xu, W.J.; Pan, L.Q. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture 2013, 412–413, 117–124. [Google Scholar] [CrossRef]
- De Schryver, P.; Crab, R.; Defoirdt, T.; Boon, N.; Verstraete, W. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture 2008, 277, 125–137. [Google Scholar] [CrossRef]
- De Schryver, P.; Verstraete, W. Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors. Bioresour. Technol. 2009, 100, 1162–1167. [Google Scholar] [CrossRef]
- Pérez-Rostro, C.I.; Pérez-Fuentes, J.A.; Hernández-Vergara, M.P. Biofloc, a Technical Alternative for Culturing Malaysian Prawn Macrobrachium rosenbergii. In Sustainable Aquaculture Techniques; Intech Open: Rijeka, Croatia, 2014; pp. 87–104. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Sharifinia, M.; Emerenciano, M.G.C. Biofloc Technology (BFT) in Aquaculture: What Goes Right, What Goes Wrong? A Scientific-Based Snapshot. Aquac. Nutr. 2024, 2024, 7496572. [Google Scholar] [CrossRef]
- Sukhdhane, K.S.; Kripa, V.; Divu, D.; Vase, V.K.; Mojjada, S.K. Integrated multi-trophic aquaculture systems: A solution for sustainability. Aquaculture 2018, 22, 26–29. [Google Scholar]
- Buck, B.H.; Troell, M.F.; Krause, G.; Angel, D.L.; Grote, B.; Chopin, T. State of the art and challenges for offshore integrated Multi-Trophic Aquaculture (IMTA). Front. Mar. Sci. 2018, 5, 165. [Google Scholar] [CrossRef]
- Zhang, J.; Kitazawa, D.; Yang, C. A numerical modeling approach to support decision-making on design of integrated multitrophic aquaculture for efficiently mitigating aquatic waste. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 1247–1261. [Google Scholar] [CrossRef]
- Chopin, T.; Cooper, J.A.; Reid, G.; Cross, S.; Moore, C. Open water integrated multi-trophic aquaculture: Environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Rev. Aquac. 2012, 4, 209–220. [Google Scholar] [CrossRef]
- Sasikumar, G.; Viji, C.S. Integrated Multi-Trophic Aquaculture Systems (IMTA); CMFRI Eprints: Mumbai, India, 2015; pp. 47–54. [Google Scholar]
- Correia, M.; Azevedo, I.C.; Peres, H.; Magalhaes, R.; Oliva-Teles, A.; Almeida, C.M.R.; Guimaraes, L. Integrated Multi-Trophic Aquaculture: A laboratory and Hands-on Experimental Activity to Promote Environmental Sustainability Awareness and Value of Aquaculture Products. Front. Mar. Sci. 2020, 7, 156. [Google Scholar] [CrossRef]
- Immanuel, G.; Uma, R.P.; Iyapparaj, P.; Citarasu, T.; Punitha Peter, S.M.; Michael Babu, M.; Palavesam, A. Dietary medicinal plant extracts improve growth, immune activity and survival of tilapia Oreochromis mossambicus. J. Fish Biol. 2009, 74, 1462–1475. [Google Scholar] [CrossRef] [PubMed]
- Bhosle, R.V.; Kumar, S.S.; Lingam, R.S.S. Non-fed Aquaculture—An Alternative Livelihood Option for Fisherman. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 3181–3188. [Google Scholar] [CrossRef]
- Armah, A.K.; Arroyo Mora, D.; Barg, U.; Bartley, D.; Cataudella, S.; Ekaratne, S.U.K.; Franicevic, V.; Goulletquer, P.; Lovatelli, A.; McMahon, T.; et al. Solutions for Sustainable Mariculture—Avoiding the Adverse Effects of Mariculture on Biological Diversity; CBD Technical Series No. 12; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2004; Available online: https://www.cbd.int/doc/publications/cbd-ts-12.pdf (accessed on 2 June 2024).
- Zhu, C.; Southgate, P.C.; Ting, L. Production of Pearls. In Goods and Services of Marine Bivalves; Smaal, A.C., Ferreira, J.G., Grant, J., Petersen, J.K., Strand, O., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 73–93. [Google Scholar] [CrossRef]
- Marinho-Soriano, E.; Azevedo, C.A.A.; Trigueiro, T.G.; Pereira, D.C.; Carneiro, M.A.A.; Camara, M.R. Bioremediation of aquaculture wastewater using macroalgae and Artemia. Int. Biodeterior. Biodegrad. 2011, 65, 253–257. [Google Scholar] [CrossRef]
- Neori, A.; Chopin, T.; Troell, M.; Buschmann, A.H.; Kraemer, G.P.; Halling, C.; Shpigel, M.; Yarish, C. Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 2004, 231, 361–391. [Google Scholar] [CrossRef]
- Globenewswire. Microalgae-Based Products Market Forecast to 2028. 2021. Available online: https://www.globenewswire.com/news-release/2021/08/12/2279504/0/en/Microalgae-Based-Products-Market-Forecast-to-2028-COVID-19-Impact-and-Global-Analysis-By-Type-and-Application.html (accessed on 11 October 2024).
- Hemaiswarya, S.; Raja, R.; Ravi Kumar, R.; Ganesan, V.; Anbahagan, C. Microalgae: A sustainable feed source. World J. Microbiol. Biotechnol. 2011, 27, 1737–1746. [Google Scholar] [CrossRef]
- Kokou, F.; Fountoulaki, E. Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture 2018, 495, 295–310. [Google Scholar] [CrossRef]
- Hardy, R.W. Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquac. Res. 2010, 41, 770–776. [Google Scholar] [CrossRef]
- Muller-Feuga, A. Microalgae for aquaculture: The current global situation and future trends. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd ed.; Richmond, A., Hu, Q., Eds.; John Wiley Sons, Ltd.: Oxford, UK, 2004; pp. 352–364. [Google Scholar]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.; Källqvist, T.; Olsen, E.; Vogt, G.; Gislerød, H.R. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquac. Int. 2007, 15, 1–9. [Google Scholar] [CrossRef]
- Nagappan, S.; Das, P.; AbdulQuadir, M.; Thaher, M.; Khan, S.; Mahata, C.; Al-Jabri, H.; Vatland, A.K.; Kumar, G. Potential of microalgae as a sustainable feed ingredient for aquaculture. J. Biotechnol. 2021, 341, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Mujtaba, G.; Memon, S.A.; Lee, K.; Rashid, N. Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renew. Sustain. Energy Rev. 2018, 92, 394–404. [Google Scholar] [CrossRef]
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 2019, 291, 121934. [Google Scholar] [CrossRef]
- Arun, J.; Gopinath, K.P.; Sundar Rajan, P.; Felix, V.; Joselyn Monica, M.; Malolan, R. A conceptual review on microalgae biorefinery through thermochemical and biological pathways: Bio-circular approach on carbon capture and wastewater treatment. Bioresour. Technol. Rep. 2020, 11, 100477. [Google Scholar] [CrossRef]
- Posten, C.; Schaub, G. Microalgae and terrestrial biomass as source for fuels—A process view. J. Biotechnol. 2009, 142, 64–69. [Google Scholar] [CrossRef]
- Niccolai, A.; Zittelli, G.C.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res. 2019, 42, 101617. [Google Scholar] [CrossRef]
- Matos, Â.P.; Feller, R.; Moecke, E.H.S.; de Oliveira, J.V.; Junior, A.F.; Derner, R.B.; Sant’Anna, E.S. Chemical characterization of six microalgae with potential utility for food application. J. Am. Oil Chem. Soc. 2016, 93, 963–972. [Google Scholar] [CrossRef]
- Fujii, K.; Nakashima, H.; Hashidzume, Y.; Uchiyama, T.; Mishiro, K.; Kadota, Y. Potential use of the astaxanthin-producing microalga, Monoraphidium sp. GK12, as a functional aquafeed for prawns. J. Appl. Phycol. 2010, 22, 363–369. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Bruneel, C.; Muylaert, K.; Foubert, I. Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technol. 2012, 24, 128–130. [Google Scholar] [CrossRef]
- Yao, C.; Ai, J.; Cao, X.; Xue, S.; Zhang, W. Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour. Technol. 2012, 118, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Dragone, G.; Fernandes, B.D.; Abreu, A.P.; Vicente, A.A.; Teixeira, J.A. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl. Energy 2011, 88, 3331–3335. [Google Scholar] [CrossRef]
- Raja, R.; Hemaiswarya, S.; Ashok Kumar, N.; Sridhar, S.; Rengasamy, R. A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol. 2008, 34, 77–88. [Google Scholar] [CrossRef]
- Muller-Feuga, A. The role of microalgae in aquaculture: Situation and trends. J. Appl. Phycol. 2000, 12, 527–534. [Google Scholar] [CrossRef]
- Hong, H.A.; Duc, H.L.; Cutting, S.M. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 2005, 29, 813–835. [Google Scholar] [CrossRef]
- van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security (No. 171); Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISSN 0258-6150. [Google Scholar]
- Aniebo, A.O.; Erondu, E.S.; Owen, O.J. Replacement of fish meal with maggot meal in African catfish (Clarias gariepinus) diets. Rev. Cient. UDO Agric. 2009, 9, 666–671. [Google Scholar]
- Ameixa, O.M.; Duarte, P.M.; Rodrigues, D.P. Insects, food security, and sustainable aquaculture. In Zero Hunger; Springer International Publishing: Cham, Switzerland, 2020; pp. 425–435. [Google Scholar]
- Khan, S.; Naz, S.; Sultan, A.; Alhidary, I.A.; Abdelrahman, M.M.; Khan, R.U.; Khan, N.A.; Khan, M.A.; Ahmad, S. Worm meal: A potential source of alternative protein in poultry feed. World’s Poult. Sci. J. 2016, 72, 93–102. [Google Scholar] [CrossRef]
- Ezewudo, B.I.; Monebi, C.O.; Ugwumba, A.A.A. Production and utilization of Musca domestica maggots in the diet of Oreochromis niloticus (Linnaeus, 1758) fingerlings. Afr. J. Agric. Res. 2015, 10, 2363–2371. [Google Scholar]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Sowa, S.M.; Keeley, L.L. Free amino acids in the hemolymph of the cockroach, Blaberus discoidalis. Comp. Biochem. Physiol. Part A Physiol. 1996, 113, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Whitton, P.S.; Nicholson, R.A.; Bell, M.F.; Strang, R.H.C. Biosynthesis of taurine in tissues of the locust (Schistocerca americana gregaria) and the effect of physiological and toxicological stresses on biosynthetic rate of this amino acid. Insect Biochem. Mol. Biol. 1995, 25, 83–87. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J.; Wu, W.M.; Zhao, J.; Song, Y.; Gao, L.; Yang, R.; Jiang, L. Biodegradation and mineralization of polystyrene by plasticeating mealworms: Part 1. Chemical and physical characterization and isotopic tests. Environ. Sci. Technol. 2015, 49, 12080–12086. [Google Scholar] [CrossRef] [PubMed]
- Freccia, A.; Tubin, J.S.B.; Rombenso, A.N.; Emerenciano, M.G.C. Insects in aquaculture nutrition: An emerging eco-friendly approach or commercial reality? In Emerging Technologies, Environment and Research for Sustainable Aquaculture; Intechopen: London, UK, 2020. [Google Scholar] [CrossRef]
- Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.B.; Worm, B. How many species are there on earth and in the ocean? PLoS Biol. 2011, 9, e1001127. [Google Scholar] [CrossRef]
- Collavo, A.; Glew, R.H.; Huang, Y.S.; Chuang, L.T.; Bosse, R.; Paoletti, M.G. House cricket small-scale farming. In Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails; Paoletti, M.G., Ed.; New Hampshire Science Publishers: Enfield, NH, USA, 2005; pp. 519–544. [Google Scholar]
- Fantatto, R.R.; Mota, J.; Ligeiro, C.; Vieira, I.; Guilgur, L.G.; Santos, M.; Murta, D. Exploring sustainable alternatives in aquaculture feeding: The role of insects. Aquac. Rep. 2024, 37, 102228. [Google Scholar] [CrossRef]
- Mancuso, T.; Baldi, L.; Gasco, L. An empirical study on consumer acceptance of farmed fish fed on insect meals: The Italian case. Aquac. Int. 2016, 24, 1489–1507. [Google Scholar] [CrossRef]
- Gustavsson, J. Save the Food. Study Conducted for the International Congress; SIK—The Swedish Institute for Food and Biotechnology: Dusseldorf, Germany, 2011. [Google Scholar]
- Gasco, L.; Henry, M.; Piccolo, G.; Marono, S.; Gai, F.; Renna, M.; Lussiana, C.; Antonopoulou, E.; Mola, P.; Chatzifotis, S. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim. Feed Sci. Technol. 2016, 220, 34–45. [Google Scholar] [CrossRef]
- Piccolo, G.; Marono, S.; Gasco, L.; Iannaccone, F.; Bovera, F.; Nizza, A. Use of Tenebrio Molitor Larvae Meal in Diets for Gilthead Sea Bream Sparus aurata Juveniles. In Insects to Feed the World, Proceedings of the 1st International Conference, Ede-Wageningen, The Netherlands, 14–17 May 2014; IRIS Torino: Turin, Italy, 2014; p. 68. [Google Scholar]
- Nwamba, H.; Ogunji, J.O. Evaluating butterfly larvae (Bematistes macaria) meal as fishmeal substitute in diets of African catfish hybrid (Heteroclarias). Indian J. Soc. Nat. Sci. 2012, 1, 78–84. [Google Scholar]
- St-Hilaire, S.; Cranfill, K.; McGuire, M.A.; Mosley, E.E.; Tomberlin, J.K.; Newton, L.; Sealey, W.; Sheppard, C.; Irving, S. Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J. World Aquac. Soc. 2007, 38, 309–313. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; De Boer, I.J.M. Environmental impact of the production of mealworms as a protein source for humans–a life cycle assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef]
- Belforti, M.; Gai, F.; Lussiana, C.; Renna, M.; Malfatto, V.; Rotolo, L.; De Marco, M.; Dabbou, S.; Schiavone, A.; Zoccarato, I.; et al. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: Effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital. J. Anim. Sci. 2015, 14, 4170. [Google Scholar] [CrossRef]
- Sánchez-Muros, M.; Haro, C.; Sanz, A.; Braided, C.E.; Villareces, S.; Barroso, F.G. Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquac. Nutr. 2016, 22, 943–955. [Google Scholar] [CrossRef]
- Ng, W.K.; Liew, F.L.; Ang, L.P.; Wong, K.W. Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquac. Res. 2001, 32, 273–280. [Google Scholar] [CrossRef]
- Ogunji, J.O.; Kloas, W.; Wirth, M.; Neumann, N.; Pietsch, C. Effect of housefly maggot meal (magmeal) diets on the performance, concentration of plasma glucose, cortisol and blood characteristics of Oreochromis niloticus fingerlings. J. Anim. Physiol. Anim. Nutr. 2008, 92, 511–518.1. [Google Scholar] [CrossRef]
- Jabir, M.D.A.R.; Razak, S.A.; Vikineswary, S. Nutritive potential and utilization of super worm (Zophobas morio) meal in the diet of Nile tilapia (Oreochromis niloticus) juvenile. Afr. J. Biotechnol. 2012, 11, 6592–6598. [Google Scholar]
- Freccia, A.; Meurer, E.S.; Jerônimo, G.T.; Emerenciano, M.G.C. Insect meal in diets of tilapia fingerlings. Zootech. Arch. 2016, 65, 541–547. [Google Scholar]
- Erickson, M.C.; Islam, M.; Sheppard, C.; Liao, J.; Doyle, M.P. Reduction of Escherichia coli O157:H7 and Salmonella enterica serovar enteritidis in chicken manure by larvae of the black soldier fly. J. Food Prot. 2004, 67, 685–690. [Google Scholar] [CrossRef]
- Liu, Q.; Tomberlin, J.K.; Brady, J.A.; Sanford, M.R.; Yu, Z. Black soldier fly (Diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure. Environ. Entomol. 2008, 37, 1525–1530. [Google Scholar] [CrossRef]
- Johnsen, B.O.; Jensen, A.J. Infestations of Atlantic salmon, Salmo salar, by Gyrodactilus salaris in Norwegian rivers. J. Fish Biol. 1986, 29, 233–241. [Google Scholar] [CrossRef]
- FARM AFRICA. Kenya Market-Led Aquaculture Programme Strategic Environmental Assessment and Environmental Management Plan; FARM AFRICA: Nairobi, Kenya, 2016; p. 112. [Google Scholar]
- Nguyen, H.N. Genetic improvement for important farmed aquaculture species with a reference to carp, tilapia and prawns in Asia: Achievements, lessons and challenges. Fish Fish. 2016, 17, 483–506. [Google Scholar] [CrossRef]
- FAO; OIE; WHO. Antimicrobial Use in Aquaculture and Antimicrobial Resistance; FAO: Rome, Italy; OIE: Seoul, Republic of Korea; WHO: Geneva, Switzerland, 2006; pp. 13–16. [Google Scholar]
- Polley, S.; Biswas, S.; Kesh, S.S.; Maity, A.; Batabyal, S. The link between animal manure and zoonotic disease. In Animal Manure: Agricultural and Biotechnological Applications; Springer International Publishing: Cham, Switzerland, 2022; pp. 297–333. [Google Scholar]
- Olson, E.G.; Grenda, T.; Ghosh, A.; Ricke, S.C. Microbial pathogen contamination of animal feed. In Present Knowledge in Food Safety; Academic Press: Cambridge, MA, USA, 2023; pp. 378–393. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Ultee, A.; Bennik MH, J.; Moezelaar, R. The Phenolic Hydroxyl Group of Carvacrol Is Essential for Action against the Food-Borne Pathogen Bacillus cereus. Society 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [PubMed]
- García-García, R.; López-Malo, A.; Palou, E. Bactericidal action of binary and ternary mixtures of carvacrol, thymol, and eugenol against Listeria innocua. J. Food Sci. 2011, 76, M95–M100. [Google Scholar] [CrossRef]
- Randrianarivelo, R.; Danthu, P.; Benoit, C.; Ruez, P.; Raherimandimby, M.; Sarter, S. Novel alternative to antibiotics in shrimp hatchery: Effects of the essential oil of Cinnamosma fragrans on survival and bacterial concentration of Penaeus monodon larvae. J. Appl. Microbiol. 2010, 109, 642–650. [Google Scholar] [CrossRef]
- Mahmoud, B.S.; Yamazaki, K.; Miyashita, K.; Il-Shik, S.; Suzuki, T. Bacterial microflora of carp (Cyprinus carpio) and its shelf-life extension by essential oil compounds. Food Microbiol. 2004, 21, 657–666. [Google Scholar] [CrossRef]
- Pyrgotou, N.; Giatrakou, V.; Ntzimani, A.; Savvaidis, I.N. Quality assessment of salted, modified atmosphere packaged rainbow trout under treatment with oregano essential oil. J. Food Sci. 2010, 75, M406–M411. [Google Scholar] [CrossRef]
- Yeh, R.Y.; Shiu, Y.L.; Shei, S.C.; Cheng, S.C.; Huang, S.Y.; Lin, J.C.; Liu, C.H. Evaluation of the antibacterial activity of leaf and twig extracts of stout camphor tree, Cinnamomum kanehirae, and the effects on immunity and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2009, 27, 26–32. [Google Scholar] [CrossRef]
- Romero, J.; Feijoo, C.G.; Navarrete, P. Antibiotics in Aquaculture- Use, Abuse, and Alternatives. Health Environ. Aquac. 2012, 6, 160–198. [Google Scholar]
- Desriac, F.; Defer, D.; Bourgougnon, N.; Brillet, B.; Le Chevalier, P.; Fleury, Y. Bacteriocin as weapons in the marine animal-associated bacteria warfare: Inventory and potential applications as an aquaculture probiotic. Mar. Drugs 2010, 8, 1153–1177. [Google Scholar] [CrossRef]
- Verschuere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. MMBR 2000, 64, 655–671. [Google Scholar] [CrossRef] [PubMed]
- Balcázar, J.L.; Vendrell, D.; de Blas, I.; Ruiz-Zarzuela, I.; Gironés, O.; Múzquiz, J.L. In vitro competitive adhesion and production of antagonistic compounds by lactic acid bacteria against fish pathogens. Vet. Microbiol. 2007, 122, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Balcázar, J.L.; Vendrell, D.; de Blas, I.; Ruiz-Zarzuela, I.; Muzquiz, J.L.; Girones, O. Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture 2008, 278, 188–191. [Google Scholar] [CrossRef]
- Hagi, T.; Hoshino, T. Screening and Characterization of Potential Probiotic Lactic Acid Bacteria from Cultured Common Carp Intestine. Biosci. Biotechnol. Biochem. 2009, 73, 1479–1483. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Sánchez, T.; Balcázar, J.L.; García, Y.; Halaihel, N.; Vendrell, D.; De Blas, I.; Merrifield, D.L.; Ruiz-Zarzuela, I. Identification and characterization of lactic acid bacteria isolated from rainbow trout, Oncorhynchus mykiss (Walbaum), with inhibitory activity against Lactococcus garvieae. J. Fish Dis. 2011, 34, 499–507. [Google Scholar] [CrossRef]
- Olmos, J.; Ochoa, L.; Paniagua-Michel, J.; Contreras, R. Functional Feed Assessment on Litopenaeus vannamei Using 100% Fish Meal Replacement by Soybean Meal, High Levels of Complex Carbohydrates and Bacillus Probiotic Strains. Mar. Drugs 2011, 9, 1119–1132. [Google Scholar] [CrossRef]
- Lategan, M.J.; Booth, W.; Shimmon, R.; Gibson, L.F. An inhibitory substance produced by Aeromonas media A199, an aquatic probiotic. Aquaculture 2006, 254, 115–124. [Google Scholar] [CrossRef]
- Thompson, J.; Gregory, S.; Plummer, S.; Shields, R.J.; Rowley, A.F. An in vitro and in vivo assessment of the potential of Vibrio spp. as probiotics for the Pacific white shrimp, Litopenaeus vannamei. J. Appl. Microbiol. 2010, 109, 1177–1187. [Google Scholar] [CrossRef]
- Ström-Bestor, M.; Wiklund, T. Inhibitory activity of Pseudomonas sp. On Flavobacterium psychrophilum, in vitro. J. Fish Dis. 2011, 34, 255–264. [Google Scholar] [CrossRef]
- Das, S.; Ward, L.R.; Burke, C. Screening of marine Streptomyces spp. for potential use as probiotics in aquaculture. Aquaculture 2010, 305, 32–41. [Google Scholar] [CrossRef]
- Ninawe, A.S.; Selvin, J. Probiotics in shrimp aquaculture: Avenues and challenges. Crit. Rev. Microbiol. 2009, 35, 43–66. [Google Scholar] [CrossRef] [PubMed]
- Van Hai, N.; Buller, N.; Fotedar, R. The use of customised probiotics in the cultivation of western king prawns (Penaeus latisulcatus Kishinouye, 1896). Fish Shellfish Immunol. 2009, 27, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Dimitroglou, A.; Merrifield, D.L.; Carnevali, O.; Picchietti, S.; Avella, M.; Daniels, C.; Güroy, D.; Davies, S.J. Microbial manipulations to improve fish health and production—A Mediterranean perspective. Fish Shellfish Immunol. 2011, 30, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Chapman, C.M.C.; Gibson, G.R.; Rowland, I. Health benefits of probiotics: Are mixtures more effective than single strains? Eur. J. Nutr. 2011, 50, 1–17. [Google Scholar] [CrossRef]
Aspect | Subtopic | Details | Citations |
---|---|---|---|
Current Fish Feed Issues | Environmental Impact | Fishmeal usage is linked to unsustainable harvesting of forage fish, affecting ocean ecosystems. Terrestrial plant-based feeds increase freshwater usage and lead to deforestation. | [81,82] |
Nutritional Challenges | Plant-based feeds have high phosphorus levels, low Omega-3, and anti-nutritional factors that can slow fish growth and maturity. | [82,83] | |
Microalgae as Fish Feed | Growth and Cultivation | Microalgae thrive in aerated liquid cultures with nutrients, light, and CO₂. Global production is ~5 million kg annually, with 20% used in aquaculture. The market value is around USD 330/kg with growing demand. | [80,81,84] |
Nutritional Content | Rich in triglycerides, vitamins, pigments, amino acids; popular strains include Phaeodactylum, Skeletonema, Tetraselmis, Pavlova, and others. Ideal strains are digestible and nutrient-dense. | [85,86,87] | |
Industrial Usage | Aquaculture Application | Microalgae, such as Pavlova sp. and Isochrysis spp., are used for live feed production for fish larvae. They provide higher net biomass productivity than animal or plant sources, supporting fish at all stages. | [88] |
Environmental Advantages | Reduced Land and Water Use | Can be cultivated without fertile land, using waste or seawater, thus minimizing freshwater needs and agricultural land use. | [89,90] |
Biorefinery Applications | Pigment Production | Microalgae processing yields valuable metabolites. For example, Haematococcus pluvialis is a primary source of astaxanthin, enhancing fish color and market appeal. | [90,91] |
Feed Composition | Digestibility | Microalgae are more digestible than plant-based feeds, lacking anti-nutritional factors like lignin and containing lower levels of hemicellulose. | [87,92,93] |
Protein and Fatty Acid Content | During growth, microalgae contain 30–40% protein and essential polyunsaturated fatty acids like arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. | [94,95] | |
Starch Content | Starch levels range from 7% to 45% across different species; Chlorella vulgaris, Chlamydomonas reinhardtii, and Tetraselmis subcordiformis have a higher starch content (30–49%). | [96,97] | |
Zooplankton Enhancement | Nutritional Pigments for Zooplankton | Algal pigments improve zooplankton’s nutritional profile, with copepods (e.g., Temora sp.) containing astaxanthin, lutein, and artemia rich in canthaxanthin. | [98] |
Aquaculture Pond Benefits | Water Quality and Health Boost | Microalgae improve water quality, stabilize pH, regulate bacterial communities, enhance immunity, and exhibit probiotic effects, supporting the growth and survival of fish. | [99,100] |
Aspect | Details | Citations |
---|---|---|
Sustainability | Insects efficiently convert feed into protein without needing energy for body temperature regulation, making them a sustainable feed alternative. | [103,104,105] |
Nutritional Composition | Nutrient profiles vary by insect species, life stage, and diet. Insects contain vital nutrients like hydroxyproline and taurine, promoting fish health and reducing antibiotic and hormone needs in aquaculture. | [106,107,108] |
Resource Utilization | Insects can consume organic and inorganic waste, including agro-industrial byproducts, helping reduce competition for land and food resources. | [109,110] |
Species Diversity | An estimated 5–10 million insect species exist globally, with only about 1 million identified, offering the potential for discovering diverse insect-based feeds. | [111,112] |
Circular Economy Benefits | Insect farming aligns with circular economy principles by upcycling organic waste into high-quality protein, supporting “reuse” and “upcycle” values in food systems. | [103,113] |
Consumer Acceptance | High consumer acceptance; in a survey, 90% of fish consumers in northern Italy favored fish fed on insect-based feeds. | [114] |
Environmental Efficiency | Insects require minimal land, water, and energy. They can recover up to 50% of nitrogen and 70% of phosphorus from waste, creating nutrient-rich feed with 30% lipids and 40% crude protein. | [115,116,117,118,119,120] |
Examples of Aquaculture Use |
| [121,122,123,124] |
Performance Benefits | Insect-based feeds improve feed conversion ratios, weight gain, and growth. For example, cockroach meal (Nauphoeta cinerea) performs better than fish meal in tilapia culture. BSF larvae help reduce pathogens like Salmonella. | [125,126,127,128] |
Challenges in Scaling | Challenges in commercializing insect meals include inconsistent organic waste supply and variations in nutritional content due to differing rearing conditions. Standardized waste input is necessary for reliable large-scale production. | [101,106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogello, E.; Muthoka, M.; Outa, N. Exploring Regenerative Aquaculture Initiatives for Climate-Resilient Food Production: Harnessing Synergies Between Technology and Agroecology. Aquac. J. 2024, 4, 324-344. https://doi.org/10.3390/aquacj4040024
Ogello E, Muthoka M, Outa N. Exploring Regenerative Aquaculture Initiatives for Climate-Resilient Food Production: Harnessing Synergies Between Technology and Agroecology. Aquaculture Journal. 2024; 4(4):324-344. https://doi.org/10.3390/aquacj4040024
Chicago/Turabian StyleOgello, Erick, Mavindu Muthoka, and Nicholas Outa. 2024. "Exploring Regenerative Aquaculture Initiatives for Climate-Resilient Food Production: Harnessing Synergies Between Technology and Agroecology" Aquaculture Journal 4, no. 4: 324-344. https://doi.org/10.3390/aquacj4040024
APA StyleOgello, E., Muthoka, M., & Outa, N. (2024). Exploring Regenerative Aquaculture Initiatives for Climate-Resilient Food Production: Harnessing Synergies Between Technology and Agroecology. Aquaculture Journal, 4(4), 324-344. https://doi.org/10.3390/aquacj4040024