Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = B. gladioli

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 13886 KiB  
Article
Complete Genome Analysis and Antimicrobial Mechanism of Burkholderia gladioli ZBSF BH07 Reveal Its Dual Role in the Biocontrol of Grapevine Diseases and Growth Promotion in Grapevines
by Xiangtian Yin, Chundong Wang, Lifang Yuan, Yanfeng Wei, Tinggang Li, Qibao Liu, Xing Han, Xinying Wu, Chaoping Wang and Xilong Jiang
Microorganisms 2025, 13(8), 1756; https://doi.org/10.3390/microorganisms13081756 - 28 Jul 2025
Viewed by 295
Abstract
Burkholderia gladioli is a multifaceted bacterium with both pathogenic and beneficial strains, and nonpathogenic Burkholderia species have shown potential as plant growth-promoting rhizobacteria (PGPRs) and biocontrol agents. However, the molecular mechanisms underlying their beneficial functions remain poorly characterized. This study systematically investigated the [...] Read more.
Burkholderia gladioli is a multifaceted bacterium with both pathogenic and beneficial strains, and nonpathogenic Burkholderia species have shown potential as plant growth-promoting rhizobacteria (PGPRs) and biocontrol agents. However, the molecular mechanisms underlying their beneficial functions remain poorly characterized. This study systematically investigated the antimicrobial mechanisms and plant growth-promoting properties of B. gladioli strain ZBSF BH07, isolated from the grape rhizosphere, by combining genomic and functional analyses, including whole-genome sequencing, gene annotation, phylogenetic and comparative genomics, in vitro antifungal assays, and plant growth promotion evaluations. The results showed that ZBSF BH07 exhibited broad-spectrum antifungal activity, inhibiting 14 grape pathogens with an average inhibition rate of 56.58% and showing dual preventive/curative effects against grape white rot, while also significantly promoting grape seedling growth with increases of 54.9% in plant height, 172.9% in root fresh weight, and 231.34% in root dry weight. Genomic analysis revealed an 8.56-Mb genome (two chromosomes and one plasmid) encoding 7431 genes and 26 secondary metabolite biosynthesis clusters (predominantly nonribosomal peptide synthetases), supporting its capacity for antifungal metabolite secretion, and functional analysis confirmed genes for indole-3-acetic acid (IAA) synthesis, phosphate solubilization, and siderophore production. These results demonstrate that ZBSF BH07 suppresses pathogens via antifungal metabolites and enhances grape growth through phytohormone regulation and nutrient acquisition, providing novel insights into the dual mechanisms of B. gladioli as a biocontrol and growth-promoting agent and laying a scientific foundation for developing sustainable grapevine disease management strategies. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

24 pages, 4225 KiB  
Article
Prediction of the Ecological Behavior of Burkholderia gladiolus in Fresh Wet Rice Noodles at Different Temperatures and Its Correlation with Quality Changes
by Mengmeng Li, Ke Xiong, Wen Jin and Yumeng Hu
Foods 2025, 14(8), 1291; https://doi.org/10.3390/foods14081291 - 8 Apr 2025
Viewed by 539
Abstract
Burkholderia gladioli pathovar cocovenenans (BGC) is a highly lethal foodborne pathogen responsible for outbreaks of food poisoning with the highest recorded mortality rates among bacterial foodborne illnesses in China. In this study, the ecological behavior of BGC and its Bongkrekic Acid (BA) production [...] Read more.
Burkholderia gladioli pathovar cocovenenans (BGC) is a highly lethal foodborne pathogen responsible for outbreaks of food poisoning with the highest recorded mortality rates among bacterial foodborne illnesses in China. In this study, the ecological behavior of BGC and its Bongkrekic Acid (BA) production dynamics in fresh wet rice noodles (FWRN) were investigated under isothermal conditions ranging from 4 °C to 37 °C. Growth kinetics were modeled using the Huang, Baranyi, and modified Gompertz primary models, with secondary models (Huang square root model and Ratkowsky square root model) describing the influence of temperature on growth parameters. Among these, the Huang–Huang model combination exhibited the best performance, with a root mean square error (RMSE) of 0.009 and bias factor (Bf) and accuracy factor (Af) values close to 1. Additionally, we examined the impact of BGC contamination on the quality attributes of FWRN, including pH, color (L*, a*, b*), hardness, and moisture content. The results indicated that BGC growth significantly increased pH and yellowing (b*) values, while changes in texture and moisture were less pronounced. A probabilistic model was further developed to predict BA production under various temperature scenarios, revealing that BA formation was most likely to occur between 24 °C and 30 °C. While this study provides valuable predictive tools for microbial risk assessment and quality control of FWRN, limitations include the exclusion of additional environmental factors such as oxygen and relative humidity, as well as the lack of direct investigation into the degradation behavior of BA. Future research will expand model parameters and include sensory evaluations and advanced microbiological analyses to enhance applicability under real-world storage and transportation conditions. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

24 pages, 5908 KiB  
Article
Understanding the Impact of Salt Stress on Plant Pathogens Through Phenotypic and Transcriptomic Analysis
by Hyejung Jung, Gil Han, Duyoung Lee, Hyun-Kyoung Jung, Young-Sam Kim, Hee Jeong Kong, Young-Ok Kim, Young-Su Seo and Jungwook Park
Plants 2025, 14(1), 97; https://doi.org/10.3390/plants14010097 - 1 Jan 2025
Viewed by 1201
Abstract
For plant diseases to become established, plant pathogens require not only virulence factors and susceptible hosts, but also optimal environmental conditions. The accumulation of high soil salinity can have serious impacts on agro-biological ecosystems. However, the interactions between plant pathogens and salinity have [...] Read more.
For plant diseases to become established, plant pathogens require not only virulence factors and susceptible hosts, but also optimal environmental conditions. The accumulation of high soil salinity can have serious impacts on agro-biological ecosystems. However, the interactions between plant pathogens and salinity have not been fully characterized. This study investigated the effects of salt stress on representative plant pathogens, such as Burkholderia gladioli, Burkholderia glumae, Pectobacterium carotovorum subsp. carotovorum (Pcc), Ralstonia solanacearum, and Xanthomonas oryzae pv. oryzae. Phenotypic assays revealed that B. gladioli and R. solanacearum are highly sensitive to salt stress, exhibiting significant reductions in growth, motility, and enzyme production, whereas Pcc showed notable tolerance. Pan-genome-based comparative transcriptomics identified co-downregulated patterns in B. gladioli and R. solanacearum under stress conditions, indicating the suppression of bacterial chemotaxis and type III secretion systems. Uniquely upregulated patterns in Pcc were associated with enhanced survival under high salinity, such as protein quality control, osmotic equilibrium, and iron acquisition. Additionally, the application of salt stress combined with the beneficial bacterium Chryseobacterium salivictor significantly reduced tomato wilt caused by R. solanacearum, suggesting a potential management strategy. This study underscores practical implications for effectively understanding and controlling plant pathogens under future climate changes involving salt stress. Full article
(This article belongs to the Special Issue Molecular Biology and Genomics of Plant-Pathogen Interactions)
Show Figures

Figure 1

13 pages, 1852 KiB  
Article
Identification of Burkholderia gladioli pv. cocovenenans in Black Fungus and Efficient Recognition of Bongkrekic Acid and Toxoflavin Producing Phenotype by Back Propagation Neural Network
by Chen Niu, Xiying Song, Jin Hao, Mincheng Zhao, Yahong Yuan, Jingyan Liu and Tianli Yue
Foods 2024, 13(2), 351; https://doi.org/10.3390/foods13020351 - 22 Jan 2024
Cited by 5 | Viewed by 3702
Abstract
Burkholderia gladioli pv. cocovenenans is a serious safety issue in black fungus due to the deadly toxin, bongkrekic acid. This has triggered the demand for an efficient toxigenic phenotype recognition method. The objective of this study is to develop an efficient method for [...] Read more.
Burkholderia gladioli pv. cocovenenans is a serious safety issue in black fungus due to the deadly toxin, bongkrekic acid. This has triggered the demand for an efficient toxigenic phenotype recognition method. The objective of this study is to develop an efficient method for the recognition of toxin-producing B. gladioli strains. The potential of multilocus sequence typing and a back propagation neural network for the recognition of toxigenic B. cocovenenans was explored for the first time. The virulent strains were isolated from a black fungus cultivation environment in Qinba Mountain area, Shaanxi, China. A comprehensive evaluation of toxigenic capability of 26 isolates were conducted using Ultra Performance Liquid Chromatography for determination of bongkrekic acid and toxoflavin production in different culturing conditions and foods. The isolates produced bongkrekic acid in the range of 0.05–6.24 mg/L in black fungus and a highly toxin-producing strain generated 201.86 mg/L bongkrekic acid and 45.26 mg/L toxoflavin in co-cultivation with Rhizopus oryzae on PDA medium. Multilocus sequence typing phylogeny (MLST) analysis showed that housekeeping gene sequences have a certain relationship with a strain toxigenic phenotype. We developed a well-trained, back-propagation neutral network for prediction of toxigenic phenotype in B. gladioli based on MLST sequences with an accuracy of 100% in the training set and an accuracy of 86.7% in external test set strains. The BP neutral network offers a highly efficient approach to predict toxigenic phenotype of strains and contributes to hazard detection and safety surveillance. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

17 pages, 3514 KiB  
Review
Bongkrekic Acid and Burkholderia gladioli pathovar cocovenenans: Formidable Foe and Ascending Threat to Food Safety
by Dong Han, Jian Chen, Wei Chen and Yanbo Wang
Foods 2023, 12(21), 3926; https://doi.org/10.3390/foods12213926 - 26 Oct 2023
Cited by 21 | Viewed by 9906
Abstract
Bongkrekic acid (BKA) poisoning, induced by the contamination of Burkholderia gladioli pathovar cocovenenans, has a long-standing history of causing severe outbreaks of foodborne illness. In recent years, it has emerged as a lethal food safety concern, presenting significant challenges to public health. This [...] Read more.
Bongkrekic acid (BKA) poisoning, induced by the contamination of Burkholderia gladioli pathovar cocovenenans, has a long-standing history of causing severe outbreaks of foodborne illness. In recent years, it has emerged as a lethal food safety concern, presenting significant challenges to public health. This review article highlights the recent incidents of BKA poisoning and current research discoveries on the pathogenicity of B. gladioli pv. cocovenenans and underlying biochemical mechanisms for BKA synthesis. Moreover, the characterization of B. gladioli pv. cocovenenans and the identification of the bon gene cluster provide a crucial foundation for developing targeted interventions to prevent BKA accumulation in food matrices. The prevalence of the bon gene cluster, which is the determining factor distinguishing B. gladioli pv. cocovenenans from non-pathogenic B. gladioli strains, has been identified in 15% of documented B. gladioli genomes worldwide. This finding suggests that BKA poisoning has the potential to evolve into a more prevalent threat. Although limited, previous research has proved that B. gladioli pv. cocovenenans is capable of producing BKA in diverse environments, emphasizing the possible food safety hazards associated with BKA poisoning. Also, advancements in detection methods of both BKA and B. gladioli pv. cocovenenans hold great promise for mitigating the impact of this foodborne disease. Future studies focusing on reducing the threat raised by this vicious foe is of paramount importance to public health. Full article
(This article belongs to the Special Issue Foodborne Pathogenic Bacteria: Prevalence and Control—Volume II)
Show Figures

Figure 1

22 pages, 6903 KiB  
Article
Bryorutstroemia (Rutstroemiaceae, Helotiales), a New Genus to Accommodate the Neglected Sclerotiniaceous Bryoparasitic Discomycete Helotium fulvum
by Hans-Otto Baral, Zuzana Sochorová and Michal Sochor
Life 2023, 13(4), 1041; https://doi.org/10.3390/life13041041 - 18 Apr 2023
Cited by 6 | Viewed by 2788
Abstract
The new genus Bryorutstroemia is established for the red-brown, stipitate, bryoparasitic discomycete Helotium fulvum Boud. Combined phylogenetic analysis of ITS and LSU rDNA and EF1α revealed that Bryorutstroemia fulva belongs to the sclerotiniaceous clade, which comprises the paraphyletic families Rutstroemiaceae and Sclerotiniaceae. Bryorutstroemia [...] Read more.
The new genus Bryorutstroemia is established for the red-brown, stipitate, bryoparasitic discomycete Helotium fulvum Boud. Combined phylogenetic analysis of ITS and LSU rDNA and EF1α revealed that Bryorutstroemia fulva belongs to the sclerotiniaceous clade, which comprises the paraphyletic families Rutstroemiaceae and Sclerotiniaceae. Bryorutstroemia formed with Clarireedia a supported clade (Rutstroemiaceae s.l.), though with high distance. Bryorutstroemia closely resembles other Rutstroemiaceae in having uninucleate ascospores with high lipid content and an ectal excipulum of textura porrecta, but is unique because of its bryophilous lifestyle and is extraordinary with its thick-walled inamyloid ascus apex. Although B. fulva was described in 1897, very few records came to our notice. The present study summarizes the known distribution of the species, including 25 personal collections from the years 2001–2022. Bryorutstroemia fulva was most often encountered on Dicranella heteromalla, and rarely on other members of Dicranales or Grimmiales, while inducing necrobiosis of the leaves. A detailed description based on mainly fresh apothecia is provided together with a rich photographic documentation. Six new combinations are proposed based on our phylogenetic results and unpublished personal morphological studies: Clarireedia asphodeli, C. calopus, C. gladioli, C. henningsiana, C. maritima, and C. narcissi. Full article
Show Figures

Figure 1

15 pages, 7893 KiB  
Article
Development of Droplet Digital PCR Assay for Detection of Seed-Borne Burkholderia glumae and B. gladioli Causing Bacterial Panicle Blight Disease of Rice
by Jiannan Zhang, Jinyan Luo, Lei Chen, Temoor Ahmed, Saqer S. Alotaibi, Yanli Wang, Guochang Sun, Bin Li and Qianli An
Microorganisms 2022, 10(6), 1223; https://doi.org/10.3390/microorganisms10061223 - 15 Jun 2022
Cited by 7 | Viewed by 3336
Abstract
Bacterial panicle blight of rice or bacterial grain rot of rice is a worldwide rice disease. Burkholderia glumae and B. gladioli are the causal agents. The early and accurate detection of seed-borne B. glumae and B. gladioli is critical for domestic and international [...] Read more.
Bacterial panicle blight of rice or bacterial grain rot of rice is a worldwide rice disease. Burkholderia glumae and B. gladioli are the causal agents. The early and accurate detection of seed-borne B. glumae and B. gladioli is critical for domestic and international quarantine and effective control of the disease. Here, genomic analyses revealed that B. gladioli contains five phylogroups and the BG1 primer pair designed to target the 3’-end sequence of a gene encoding a Rhs family protein is specific to B. glumae and two phylogroups within B. gladioli. Using the BG1 primer pair, a 138-bp DNA fragment was amplified only from the tested panicle blight pathogens B. glumae and B. gladioli. An EvaGreen droplet digital PCR (dPCR) assay on detection and quantification of the two pathogens was developed from a SYBR Green real-time quantitative PCR (qPCR). The detection limits of the EvaGreen droplet dPCR on the two pathogens were identical at 2 × 103 colony forming units (CFU)∙mL−1 from bacterial suspensions and 2 × 102 CFU∙seed−1 from rice seeds. The EvaGreen droplet dPCR assay showed 10-fold detection sensitivity of the SYBR Green qPCR and could detect a single copy of the target gene in a 20-μL assay. Together, the SYBR Green qPCR assay allows for routine high-throughput detection of the panicle blight pathogens and the EvaGreen droplet dPCR assay provides a high-sensitive and high-accurate diagnostic method for quarantine of the pathogens. Full article
(This article belongs to the Special Issue Plant Pathogenic Bacteria: Genetics, Genomics and Molecular Biology)
Show Figures

Figure 1

10 pages, 1672 KiB  
Article
The Class A β-Lactamase Produced by Burkholderia Species Compromises the Potency of Tebipenem against a Panel of Isolates from the United States
by Scott A. Becka, Elise T. Zeiser, John J. LiPuma and Krisztina M. Papp-Wallace
Antibiotics 2022, 11(5), 674; https://doi.org/10.3390/antibiotics11050674 - 17 May 2022
Cited by 3 | Viewed by 2949
Abstract
Tebipenem-pivoxil hydrobromide, an orally bioavailable carbapenem, is currently in clinical development for the treatment of extended-spectrum β-lactamase- and AmpC-producing Enterobacterales. Previously, tebipenem was found to possess antimicrobial activity against the biothreat pathogens, Burkholderia pseudomallei and Burkholderia mallei. Thus, herein, tebipenem was evaluated [...] Read more.
Tebipenem-pivoxil hydrobromide, an orally bioavailable carbapenem, is currently in clinical development for the treatment of extended-spectrum β-lactamase- and AmpC-producing Enterobacterales. Previously, tebipenem was found to possess antimicrobial activity against the biothreat pathogens, Burkholderia pseudomallei and Burkholderia mallei. Thus, herein, tebipenem was evaluated against a panel of 150 curated strains of Burkholderia cepacia complex (Bcc) and Burkholderia gladioli, pathogens that infect people who are immunocompromised or have cystic fibrosis. Using the provisional susceptibility breakpoint of 0.12 mg/L for tebipenem, 100% of the Bcc and B. gladioli tested as being provisionally resistant to tebipenem. Bcc and B. gladioli possess two inducible chromosomal β-lactamases, PenA and AmpC. Using purified PenA1 and AmpC1, model β-lactamases expressed in Burkholderia multivorans ATCC 17616, PenA1 was found to slowly hydrolyze tebipenem, while AmpC1 was inhibited by tebipenem with a k2/K value of 1.9 ± 0.1 × 103 M−1s−1. In addition, tebipenem was found to be a weak inducer of blaPenA1 expression. The combination of the slow hydrolysis by PenA1 and weak induction of blaPenA1 likely compromises the potency of tebipenem against Bcc and B. gladioli. Full article
Show Figures

Figure 1

17 pages, 4185 KiB  
Article
Molecular and Biochemical Characterization, Antimicrobial Activity, Stress Tolerance, and Plant Growth-Promoting Effect of Endophytic Bacteria Isolated from Wheat Varieties
by Dawood Shah, Mohammad Sayyar Khan, Shahkaar Aziz, Haidar Ali and Lorenzo Pecoraro
Microorganisms 2022, 10(1), 21; https://doi.org/10.3390/microorganisms10010021 - 23 Dec 2021
Cited by 47 | Viewed by 8591
Abstract
Endophytic bacteria have been utilized as an alternative source to chemical fertilizers and pesticides to enhance plant productivity and defense mechanisms against biotic and abiotic stress. Five endophytic bacterial strains were isolated from the seeds of three different Pakistani wheat varieties (Ghaneemat-e-IBGE, Atta-Habib, [...] Read more.
Endophytic bacteria have been utilized as an alternative source to chemical fertilizers and pesticides to enhance plant productivity and defense mechanisms against biotic and abiotic stress. Five endophytic bacterial strains were isolated from the seeds of three different Pakistani wheat varieties (Ghaneemat-e-IBGE, Atta-Habib, and Siren). The isolated strains AH-1, S-5, S-7, GI-1, and GI-6 showed phylogenetic similarity with Bacillus altitudinis, B. aryabhattai, B. wiedmannii, Pseudomonas aeruginosa, and Burkholderia gladioli, respectively. All strains showed catalase activity (except AH-1) and Indole-3-acetic acid production, with the highest concentration (16.77 μg·mL−1) found for GI-6, followed by S-5 (11.5 μg·mL−1), nitrogen assimilation (except S-7), phosphorus solubilization (except S-7 and AH-1), and ability to produce siderophores, with maximum productions for GI-6 (31 ± 3.5 psu) and GI-1 (30 ± 2.9 psu). All five analyzed strains possessed antimicrobial activity, which was particularly strong in GI-6 and S-5 against Klebsiella pneumonia, Escherichia coli, and Bacillus subtilis. Increasing salinity stress with NaCl negatively affected the bacterial growth of all isolates. However, strains GI-6 and S-5 showed salt tolerance after three days of incubation. A drought tolerance test resulted in a negative impact of poly ethylene glycol on bacterial growth, which was, however, less pronounced in GI-6 strain. The GI-6 strain revealed growth-promoting effects on inoculated wheat plants. Full article
Show Figures

Figure 1

17 pages, 3487 KiB  
Article
In Vitro Study of Biocontrol Potential of Rhizospheric Pseudomonas aeruginosa against Pathogenic Fungi of Saffron (Crocus sativus L.)
by Shuang Hu, Xingxing Wang, Wenjing Sun, Lili Wang and Wankui Li
Pathogens 2021, 10(11), 1423; https://doi.org/10.3390/pathogens10111423 - 2 Nov 2021
Cited by 17 | Viewed by 4591
Abstract
Plant rhizosphere soil contains a large number of plant-growth promoting rhizobacteria, which can not only resist the invasion of pathogenic microorganisms and protect plants from damage, but also promote the growth and development of plants. In this study, Pseudomonas aeruginosa strain YY322, isolated [...] Read more.
Plant rhizosphere soil contains a large number of plant-growth promoting rhizobacteria, which can not only resist the invasion of pathogenic microorganisms and protect plants from damage, but also promote the growth and development of plants. In this study, Pseudomonas aeruginosa strain YY322, isolated and screened from the rhizosphere soil of saffron (Crocus sativus L.), was found through a plate confrontation experiment to show highly effectual and obvious antagonistic activity against the pathogens of saffron, including Fusarium oxysporum, Fusarium solani, Penicillium citreosulfuratum, Penicillium citrinum and Stromatinia gladioli. In addition, the volatile organic compounds of strain YY322 had great antagonistic activity against these pathogens. Observation under a scanning electron microscope and transmission electron microscope reflected that strain YY322 had a significant effect on the hyphae and conidia of F. oxysporum and F. solani. Through the detection of degrading enzymes, it was found that P. aeruginosa can secrete protease and glucanase. The plant growth promoting performance was evaluated, finding that strain YY322 had the functions of dissolving phosphorus, fixing nitrogen, producing siderophore and producing NH3. In addition, whole genome sequencing analysis indicated that the YY322 genome is comprised of a 6,382,345-bp circular chromosome, containing 5809 protein-coding genes and 151 RNA genes. The P. aeruginosa YY322 genome encodes genes related to phenazine (phzABDEFGIMRS), hydrogen cyanide(HCN) (hcnABC), surfactin (srfAA), salicylate (pchA), biofilm formation (flgBCDEFGHIJKL, motAB, efp, hfq), and colonization (minCDE, yjbB, lysC). These results collectively indicated the role of P. aeruginosa YY322 in plant growth enhancement and biocontrol mechanisms. All in all, this study provides a theoretical basis for P. aeruginosa as the PGPR of saffron, paving the way for the subsequent development and utilization of microbial fertilizer. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

20 pages, 4938 KiB  
Article
Metabolic Footprints of Burkholderia Sensu Lato Rhizosphere Bacteria Active against Maize Fusarium Pathogens
by Guadalupe C. Barrera-Galicia, Héctor A. Peniche-Pavía, Juan José Peña-Cabriales, Sergio A. Covarrubias, José A. Vera-Núñez and John P. Délano-Frier
Microorganisms 2021, 9(10), 2061; https://doi.org/10.3390/microorganisms9102061 - 29 Sep 2021
Cited by 13 | Viewed by 3323
Abstract
Consistent with their reported abundance in soils, several Burkholderia sensu lato strains were isolated from the rhizosphere of maize plants cultivated at different sites in central México. Comparative analysis of their 16S rRNA gene sequences permitted their separation into three distinctive clades, which [...] Read more.
Consistent with their reported abundance in soils, several Burkholderia sensu lato strains were isolated from the rhizosphere of maize plants cultivated at different sites in central México. Comparative analysis of their 16S rRNA gene sequences permitted their separation into three distinctive clades, which were further subdivided into six other clusters by their close resemblance to (1) Trinickia dinghuensis; (2) Paraburkholderia kirstenboschensis, P. graminis, P. dilworthii and P. rhynchosiae; (3) B. gladioli; (4) B. arboris; (5) B. contaminans, or (6) B. metallica representative species. Direct confrontation assays revealed that these strains inhibited the growth of pathogenic Fusarium oxysporum f. sp. radicis-lycopersici, and F. verticillioides within a roughly 3–55% inhibition range. The use of a DIESI-based non-targeted mass spectroscopy experimental strategy further indicated that this method is an option for rapid determination of the pathogen inhibitory capacity of Burkholderia sensu lato strains based solely on the analysis of their exometabolome. Furthermore, it showed that the highest anti-fungal activity observed in B. contaminans and B. arboris was associated with a distinctive abundance of certain m/z ions, some of which were identified as components of the ornbactin and pyochelin siderophores. These results highlight the chemical diversity of Burkholderia sensu lato bacteria and suggest that their capacity to inhibit the Fusarium-related infection of maize in suppressive soils is associated with siderophore synthesis. Full article
(This article belongs to the Topic Mechanisms of Resistance to Plant Diseases)
Show Figures

Figure 1

22 pages, 2432 KiB  
Article
Pan-Genome Analysis Reveals Host-Specific Functional Divergences in Burkholderia gladioli
by Hyun-Hee Lee, Jungwook Park, Hyejung Jung and Young-Su Seo
Microorganisms 2021, 9(6), 1123; https://doi.org/10.3390/microorganisms9061123 - 22 May 2021
Cited by 14 | Viewed by 6588
Abstract
Burkholderia gladioli has high versatility and adaptability to various ecological niches. Here, we constructed a pan-genome using 14 genome sequences of B. gladioli, which originate from different niches, including gladiolus, rice, humans, and nature. Functional roles of core and niche-associated genomes were [...] Read more.
Burkholderia gladioli has high versatility and adaptability to various ecological niches. Here, we constructed a pan-genome using 14 genome sequences of B. gladioli, which originate from different niches, including gladiolus, rice, humans, and nature. Functional roles of core and niche-associated genomes were investigated by pathway enrichment analyses. Consequently, we inferred the uniquely important role of niche-associated genomes in (1) selenium availability during competition with gladiolus host; (2) aromatic compound degradation in seed-borne and crude oil-accumulated environments, and (3) stress-induced DNA repair system/recombination in the cystic fibrosis-niche. We also identified the conservation of the rhizomide biosynthetic gene cluster in all the B. gladioli strains and the concentrated distribution of this cluster in human isolates. It was confirmed the absence of complete CRISPR/Cas system in both plant and human pathogenic B. gladioli and the presence of the system in B. gladioli living in nature, possibly reflecting the inverse relationship between CRISPR/Cas system and virulence. Full article
(This article belongs to the Section Systems Microbiology)
Show Figures

Figure 1

17 pages, 1400 KiB  
Review
An Overview of Metabolic Activity, Beneficial and Pathogenic Aspects of Burkholderia Spp.
by Hazem S. Elshafie and Ippolito Camele
Metabolites 2021, 11(5), 321; https://doi.org/10.3390/metabo11050321 - 17 May 2021
Cited by 70 | Viewed by 7497
Abstract
Burkholderia is an important bacterial species which has different beneficial effects, such as promoting the plant growth, including rhizosphere competence for the secretion of allelochemicals, production of antibiotics, and siderophores. In addition, most of Burkholderia species have demonstrated promising biocontrol action against different [...] Read more.
Burkholderia is an important bacterial species which has different beneficial effects, such as promoting the plant growth, including rhizosphere competence for the secretion of allelochemicals, production of antibiotics, and siderophores. In addition, most of Burkholderia species have demonstrated promising biocontrol action against different phytopathogens for diverse crops. In particular, Burkholderia demonstrates significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites. The current review is concerned with Burkholderia spp. covering the following aspects: discovering, classification, distribution, plant growth promoting effect, and antimicrobial activity of different species of Burkholderia, shedding light on the most important secondary metabolites, their pathogenic effects, and biochemical characterization of some important species of Burkholderia, such as B. cepacia, B. andropogonis, B. plantarii, B. rhizoxinica, B. glumae, B. caryophylli and B. gladioli. Full article
(This article belongs to the Special Issue Metabolites from Bacterial Pathogens and Their Role in Disease)
Show Figures

Figure 1

15 pages, 4309 KiB  
Article
Bioinspired Green Synthesis of Zinc Oxide Nanoparticles from a Native Bacillus cereus Strain RNT6: Characterization and Antibacterial Activity against Rice Panicle Blight Pathogens Burkholderia glumae and B. gladioli
by Temoor Ahmed, Zhifeng Wu, Hubiao Jiang, Jinyan Luo, Muhammad Noman, Muhammad Shahid, Irfan Manzoor, Khaled S. Allemailem, Faris Alrumaihi and Bin Li
Nanomaterials 2021, 11(4), 884; https://doi.org/10.3390/nano11040884 - 30 Mar 2021
Cited by 79 | Viewed by 6291
Abstract
Burkholderia glumae and B. gladioli are seed-borne rice pathogens that cause bacterial panicle blight (BPB) disease, resulting in huge rice yield losses worldwide. However, the excessive use of chemical pesticides in agriculture has led to an increase in environmental toxicity. Microbe-mediated nanoparticles (NPs) [...] Read more.
Burkholderia glumae and B. gladioli are seed-borne rice pathogens that cause bacterial panicle blight (BPB) disease, resulting in huge rice yield losses worldwide. However, the excessive use of chemical pesticides in agriculture has led to an increase in environmental toxicity. Microbe-mediated nanoparticles (NPs) have recently gained significant attention owing to their promising application in plant disease control. In the current study, we biologically synthesize zinc oxide nanoparticles (ZnONPs) from a native Bacillus cereus RNT6 strain, which was taxonomically identified using 16S rRNA gene analysis. The biosynthesis of ZnONPs in the reaction mixture was confirmed by using UV–Vis spectroscopy. Moreover, XRD, FTIR, SEM-EDS, and TEM analysis revealed the functional groups, crystalline nature, and spherical shape of ZnONPs with sizes ranging from 21 to 35 nm, respectively. Biogenic ZnONPs showed significant antibacterial activity at 50 µg mL−1 against B. glumae and B. gladioli with a 2.83 cm and 2.18 cm zone of inhibition, respectively, while cell numbers (measured by OD600) of the two pathogens in broth culture were reduced by 71.2% and 68.1%, respectively. The ultrastructure studies revealed the morphological damage in ZnONPs-treated B. glumae and B. gladioli cells as compared to the corresponding control. The results of this study revealed that ZnONPs could be considered as promising nanopesticides to control BPB disease in rice. Full article
(This article belongs to the Special Issue Nanomaterials and Microorganisms)
Show Figures

Graphical abstract

14 pages, 2661 KiB  
Article
Fungicidal Activity of Volatile Organic Compounds Emitted by Burkholderia gladioli Strain BBB-01
by Ying-Tong Lin, Cheng-Cheng Lee, Wei-Ming Leu, Je-Jia Wu, Yu-Cheng Huang and Menghsiao Meng
Molecules 2021, 26(3), 745; https://doi.org/10.3390/molecules26030745 - 31 Jan 2021
Cited by 29 | Viewed by 4324
Abstract
A Burkholderia gladioli strain, named BBB-01, was isolated from rice shoots based on the confrontation plate assay activity against several plant pathogenic fungi. The genome of this bacterial strain consists of two circular chromosomes and one plasmid with 8,201,484 base pairs in total. [...] Read more.
A Burkholderia gladioli strain, named BBB-01, was isolated from rice shoots based on the confrontation plate assay activity against several plant pathogenic fungi. The genome of this bacterial strain consists of two circular chromosomes and one plasmid with 8,201,484 base pairs in total. Pangenome analysis of 23 B. gladioli strains suggests that B. gladioli BBB-01 has the closest evolutionary relationship to B. gladioli pv. gladioli and B. gladioli pv. agaricicola. B. gladioli BBB-01 emitted dimethyl disulfide and 2,5-dimethylfuran when it was cultivated in lysogeny broth and potato dextrose broth, respectively. Dimethyl disulfide is a well-known pesticide, while the bioactivity of 2,5-dimethylfuran has not been reported. In this study, the inhibition activity of the vapor of these two compounds was examined against phytopathogenic fungi, including Magnaporthe oryzae, Gibberella fujikuroi, Sarocladium oryzae, Phellinus noxius and Colletotrichumfructicola, and human pathogen Candida albicans. In general, 2,5-dimethylfuran is more potent than dimethyl disulfide in suppressing the growth of the tested fungi, suggesting that 2,5-dimethylfuran is a potential fumigant to control plant fungal disease. Full article
Show Figures

Figure 1

Back to TopTop