Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = B-type Raf kinase (BRAF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1977 KiB  
Review
Target-Driven Tissue-Agnostic Drug Approvals—A New Path of Drug Development
by Kyaw Z. Thein, Yin M. Myat, Byung S. Park, Kalpana Panigrahi and Shivaani Kummar
Cancers 2024, 16(14), 2529; https://doi.org/10.3390/cancers16142529 - 13 Jul 2024
Cited by 8 | Viewed by 4383
Abstract
The regulatory approvals of tumor-agnostic therapies have led to the re-evaluation of the drug development process. The conventional models of drug development are histology-based. On the other hand, the tumor-agnostic drug development of a new drug (or combination) focuses on targeting a common [...] Read more.
The regulatory approvals of tumor-agnostic therapies have led to the re-evaluation of the drug development process. The conventional models of drug development are histology-based. On the other hand, the tumor-agnostic drug development of a new drug (or combination) focuses on targeting a common genomic biomarker in multiple cancers, regardless of histology. The basket-like clinical trials with multiple cohorts allow clinicians to evaluate pan-cancer efficacy and toxicity. There are currently eight tumor agnostic approvals granted by the Food and Drug Administration (FDA). This includes two immune checkpoint inhibitors, and five targeted therapy agents. Pembrolizumab is an anti-programmed cell death protein-1 (PD-1) antibody that was the first FDA-approved tumor-agnostic treatment for unresectable or metastatic microsatellite instability-high (MSI-H) or deficient mismatch repair (dMMR) solid tumors in 2017. It was later approved for tumor mutational burden-high (TMB-H) solid tumors, although the TMB cut-off used is still debated. Subsequently, in 2021, another anti-PD-1 antibody, dostarlimab, was also approved for dMMR solid tumors in the refractory setting. Patients with fusion-positive cancers are typically difficult to treat due to their rare prevalence and distribution. Gene rearrangements or fusions are present in a variety of tumors. Neurotrophic tyrosine kinase (NTRK) fusions are present in a range of pediatric and adult solid tumors in varying frequency. Larotrectinib and entrectinib were approved for neurotrophic tyrosine kinase (NTRK) fusion-positive cancers. Similarly, selpercatinib was approved for rearranged during transfection (RET) fusion-positive solid tumors. The FDA approved the first combination therapy of dabrafenib, a B-Raf proto-oncogene serine/threonine kinase (BRAF) inhibitor, plus trametinib, a mitogen-activated protein kinase (MEK) inhibitor for patients 6 months or older with unresectable or metastatic tumors (except colorectal cancer) carrying a BRAFV600E mutation. The most recent FDA tumor-agnostic approval is of fam-trastuzumab deruxtecan-nxki (T-Dxd) for HER2-positive solid tumors. It is important to identify and expeditiously develop drugs that have the potential to provide clinical benefit across tumor types. Full article
(This article belongs to the Special Issue Tissue Agnostic Drug Development in Cancer)
Show Figures

Figure 1

25 pages, 2213 KiB  
Review
RAF and MEK Inhibitors in Non-Small Cell Lung Cancer
by Christos Adamopoulos, Kostas A. Papavassiliou, Poulikos I. Poulikakos and Athanasios G. Papavassiliou
Int. J. Mol. Sci. 2024, 25(9), 4633; https://doi.org/10.3390/ijms25094633 - 24 Apr 2024
Cited by 8 | Viewed by 3540
Abstract
Lung cancer, despite recent advancements in survival rates, represents a significant global health burden. Non-small cell lung cancer (NSCLC), the most prevalent type, is driven largely by activating mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) and receptor tyrosine kinases (RTKs), and [...] Read more.
Lung cancer, despite recent advancements in survival rates, represents a significant global health burden. Non-small cell lung cancer (NSCLC), the most prevalent type, is driven largely by activating mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) and receptor tyrosine kinases (RTKs), and less in v-RAF murine sarcoma viral oncogene homolog B (BRAF) and mitogen-activated protein-kinase kinase (MEK), all key components of the RTK-RAS-mitogen-activated protein kinase (MAPK) pathway. Learning from melanoma, the identification of BRAFV600E substitution in NSCLC provided the rationale for the investigation of RAF and MEK inhibition as a therapeutic strategy. The regulatory approval of two RAF-MEK inhibitor combinations, dabrafenib–trametinib, in 2017, and encorafenib–binimetinib, in 2023, signifies a breakthrough for the management of BRAFV600E-mutant NSCLC patients. However, the almost universal emergence of acquired resistance limits their clinical benefit. New RAF and MEK inhibitors, with distinct biochemical characteristics, are in preclinical and clinical development. In this review, we aim to provide valuable insights into the current state of RAF and MEK inhibition in the management of NSCLC, fostering a deeper understanding of the potential impact on patient outcomes. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 3904 KiB  
Article
Repurposing Metabolic Inhibitors in the Treatment of Colon Adenocarcinoma Patient-Derived Models
by Bora Lee, ChuHee Lee, Hae-Min Moon, Se-Young Jo, Se Jin Jang and Young-Ah Suh
Cells 2023, 12(24), 2859; https://doi.org/10.3390/cells12242859 - 18 Dec 2023
Cited by 4 | Viewed by 2746
Abstract
The effect of agonists on AMP-activated protein kinase (AMPK), mainly metformin and phenformin, has been appreciated in the treatment of multiple types of tumors. Specifically, the antitumor activity of phenformin has been demonstrated in melanomas containing the v-Raf murine sarcoma viral oncogene homolog [...] Read more.
The effect of agonists on AMP-activated protein kinase (AMPK), mainly metformin and phenformin, has been appreciated in the treatment of multiple types of tumors. Specifically, the antitumor activity of phenformin has been demonstrated in melanomas containing the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) activating mutation. In this report, we elucidated the synergistic antitumor effects of biguanides with metabolism inhibitors on colon tumors. Phenformin with 2-deoxy-D-glucose (2DG) inhibited tumor cell growth in cancer cell lines, including HT29 cells harboring BRAF- and p53-mutations. Biochemical analyses showed that two chemotherapeutics exerted cooperative effects to reduce tumor growth through cell cycle arrest, apoptosis, and autophagy. The drugs demonstrated activity against phosphorylated ERK and the gain-of-function p53 mutant protein. To demonstrate tumor regressive effects in vivo, we established patient-derived models, including xenograft (PDX) and organoids (PDO). Co-treatment of biguanides with chemotherapeutics efficiently reduced the growth of patient-derived colon models in comparison to treatment with a single agent. These results strongly suggest that significant therapeutic advantages would be achieved by combining AMPK activators such as phenformin and cancer metabolic inhibitors such as 2DG. Full article
Show Figures

Figure 1

11 pages, 1577 KiB  
Article
BRAF V600E Mutation of Non-Small Cell Lung Cancer in Korean Patients
by Hyo Yeong Ahn, Chang Hun Lee, Min Ki Lee, Jung Seop Eom, Yeon Joo Jeong, Yeong Dae Kim, Jeong Su Cho, Jonggeun Lee, So Jeong Lee, Dong Hoon Shin and Ahrong Kim
Medicina 2023, 59(6), 1085; https://doi.org/10.3390/medicina59061085 - 4 Jun 2023
Cited by 5 | Viewed by 2624
Abstract
Background and Objectives: BRAF mutational status in resected non-small cell lung cancer (NSCLC) in the Korean population is poorly understood. We explored BRAF (particularly BRAF V600E) mutational status among Korean patients with NSCLC. Materials and Methods: This study included 378 patients with resected [...] Read more.
Background and Objectives: BRAF mutational status in resected non-small cell lung cancer (NSCLC) in the Korean population is poorly understood. We explored BRAF (particularly BRAF V600E) mutational status among Korean patients with NSCLC. Materials and Methods: This study included 378 patients with resected primary NSCLC who were enrolled from January 2015 to December 2017. The authors obtained formalin-fixed paraffin-embedded (FFPE) tissue blocks and performed peptide nucleic acid (PNA)-clamping polymerase chain reaction (PCR) for detecting BRAF V600, real-time PCR for detecting BRAF V600E, and immunohistochemical analyses using the mutation-specific Ventana VE1 monoclonal antibody. For positive cases in any methods mentioned above, direct Sanger sequencing was additionally performed. Results: The PNA-clamping method revealed the BRAF V600 mutation in 5 (1.3%) of the 378 patients. Among these five patients, real-time PCR, direct Sanger sequencing detected BRAF V600E mutations in three (0.8%) patients. Thus, two cases showed differences in their PNA-clamping and the others. Direct Sanger sequencing of PNA-clamping PCR product was performed for two cases showing negative results on direct Sanger sequencing; both contained BRAF mutations other than V600E. All patients harboring BRAF mutations had adenocarcinomas, and all patients with V600E mutation exhibited minor micropapillary components. Conclusions: Despite the low incidence of the BRAF mutation among Korean patients with NSCLC, lung adenocarcinoma patients with micropapillary components should be prioritized in terms of BRAF mutation testing. Immunohistochemical staining using Ventana VE1 antibody may serve as a screening examination for BRAF V600E. Full article
Show Figures

Figure 1

18 pages, 8998 KiB  
Systematic Review
The Prognostic Significance of BRAF Gene Analysis in Children and Adolescents with Papillary Thyroid Carcinoma: A Systematic Review and Meta-Analysis
by Eleni P Kotanidou, Styliani Giza, Vasiliki Rengina Tsinopoulou, Kosmas Margaritis, Anastasia Papadopoulou, Eleni Sakellari, Savvas Kolanis, Eleni Litou, Anastasios Serbis and Assimina Galli-Tsinopoulou
Diagnostics 2023, 13(6), 1187; https://doi.org/10.3390/diagnostics13061187 - 21 Mar 2023
Cited by 10 | Viewed by 3037
Abstract
Thyroid cancer represents the prominent endocrine cancer in children. Papillary thyroid cancer (PTC) constitutes its most frequent (>90%) pediatric histological type. Mutations energizing the mitogen-activated-protein kinase (MAPK) pathway are definitely related to PTC. Its most common genetic alteration is in proto-oncogene B-Raf (BRAF). [...] Read more.
Thyroid cancer represents the prominent endocrine cancer in children. Papillary thyroid cancer (PTC) constitutes its most frequent (>90%) pediatric histological type. Mutations energizing the mitogen-activated-protein kinase (MAPK) pathway are definitely related to PTC. Its most common genetic alteration is in proto-oncogene B-Raf (BRAF). Mutated BRAF is proposed as a prognostic tool in adult PTC. We conducted a systematic review and meta-analysis evaluating the association of mutated BRAF gene and prognostic clinicopathological characteristics of PTC in children/adolescents. Systematic search for relevant studies included PubMed, MEDLINE, Scopus, clinicaltrials.gov and Cochrane Library. Pooled estimates of odds ratios for categorical data and mean difference for continuous outcomes were calculated using random/fixed-effect meta-analytic models. BRAFV600E mutation presents a pooled pediatric/adolescent prevalence of 33.12%. Distant metastasis is significantly associated with mutated BRAF gene (OR = 0.32, 95% CI = 0.16–0.61, p = 0.001). Tumor size (MD = −0.24, 95% CI = −0.62–0.135, p = 0.21), multifocality (OR = 1.13, 95% CI = 0.65–2.34, p = 0.74), vascular invasion (OR = 1.17, 95% CI = 0.67–2.05, p = 0.57), lymph node metastasis (OR = 0.92, 95% CI = 0.63–1.33, p = 0.66), extra-thyroid extension (OR = 0.78, 95% CI = 0.53–1.13, p = 0.19) and tumor recurrence (OR = 1.66, 95% CI = 0.68–4.21, p = 0.376) presented no association or risk with BRAF mutation among pediatric/adolescent PTC. Mutated BRAF gene in children and adolescents is less common than in adults. Mutation in BRAF relates significantly to distant metastasis among children/adolescents with PTC. Full article
(This article belongs to the Special Issue Prognostic Factors for Pediatric Tumors)
Show Figures

Figure 1

16 pages, 4237 KiB  
Article
Identification of R-Spondin Gene Signature Predictive of Metastatic Progression in BRAFV600E-Positive Papillary Thyroid Cancer
by Sabrina Daniela da Silva, Grégoire B. Morand, Luciana Diesel, Jefferson Muniz de Lima, Krikor Bijian, Senthilkumar Kailasam, Francois Lefebvre, Guillaume Bourque, Michael Hier and Moulay A. Alaoui-Jamali
Cells 2023, 12(1), 139; https://doi.org/10.3390/cells12010139 - 29 Dec 2022
Cited by 5 | Viewed by 2306
Abstract
Papillary thyroid carcinoma (PTC) is the most common malignancy of the thyroid gland and early stages are curable. However, a subset of PTCs shows an unusually aggressive phenotype with extensive lymph node metastasis and higher incidence of locoregional recurrence. In this study, we [...] Read more.
Papillary thyroid carcinoma (PTC) is the most common malignancy of the thyroid gland and early stages are curable. However, a subset of PTCs shows an unusually aggressive phenotype with extensive lymph node metastasis and higher incidence of locoregional recurrence. In this study, we investigated a large cohort of PTC cases with an unusual aggressive phenotype using a high-throughput RNA sequencing (RNA-Seq) to identify differentially regulated genes associated with metastatic PTC. All metastatic PTC with mutated BRAF (V600E) but not BRAF wild-type expressed an up-regulation of R-Spondin Protein 4 (RSPO4) concomitant with an upregulation of genes involved in focal adhesion and cell-extracellular matrix signaling. Further immunohistochemistry validation confirmed the upregulation of these target genes in metastatic PTC cases. Preclinical studies using established PTC cell lines support that RSPO4 overexpression is associated with BRAF V600E mutation and is a critical upstream event that promote activation of kinases of focal adhesion signaling known to drive cancer cell locomotion and invasion. This finding opens up the potential of co-targeting B-Raf, RSPO and focal adhesion proteins as a pharmacological approach for aggressive BRAF V600E PTC. Full article
(This article belongs to the Special Issue Changes in Thyrocytes during Thyroid Disease and Thyroid Cancer)
Show Figures

Figure 1

14 pages, 315 KiB  
Review
Precision Medicine of Hepatobiliary and Pancreatic Cancers: Focusing on Clinical Trial Outcomes
by Takehiko Tsumura, Keitaro Doi and Hiroyuki Marusawa
Cancers 2022, 14(15), 3674; https://doi.org/10.3390/cancers14153674 - 28 Jul 2022
Cited by 6 | Viewed by 4125
Abstract
Tumor-agnostic precision medicine employing comprehensive genome profiling (CGP) and using next-generation sequencing (NGS) has been progressing recently. This review focuses on precision medicine for advanced unresectable hepatobiliary and pancreatic cancers. In this paper, for biliary tract cancer (BTC), therapies that target several regulators [...] Read more.
Tumor-agnostic precision medicine employing comprehensive genome profiling (CGP) and using next-generation sequencing (NGS) has been progressing recently. This review focuses on precision medicine for advanced unresectable hepatobiliary and pancreatic cancers. In this paper, for biliary tract cancer (BTC), therapies that target several regulators of cancer cell growth, including isocitrate dehydrogenase 1 (IDH1), fibroblast growth factor receptor 2 (FGFR2) fusion, proto-oncogene B-Raf (BRAF), and human epidermal growth factor receptor 2 (HER2) alterations, are reviewed. For pancreatic ductal adenocarcinoma (PDAC), therapies for Kirsten rat sarcoma virus (KRAS) gene mutation G12C, neuregulin (NRG)1, and breast cancer type 1 and 2 susceptibility (BRCA1/2), gene alterations are summarized. On the other hand, precision medicine targets were not established for hepatocellular carcinoma (HCC), although telomerase reverse transcriptase (TERT), tumor protein P53 (TP53), and Wnt/β catenin signaling alterations have been recognized as HCC driver oncogenes. Tumor-agnostic therapies for microsatellite instability-high (MSI-H) and neurotropic tyrosine receptor kinase (NTRK) fusion cancers effectively treat biliary and pancreatic cancers. Precision medicine methods developed using NGS of circulating tumor DNA (ctDNA) and utilizing a liquid biopsy technique are discussed. Full article
16 pages, 3865 KiB  
Article
The PIK3CA H1047R Mutation Confers Resistance to BRAF and MEK Inhibitors in A375 Melanoma Cells through the Cross-Activation of MAPK and PI3K–Akt Pathways
by Saverio Candido, Rossella Salemi, Sara Piccinin, Luca Falzone and Massimo Libra
Pharmaceutics 2022, 14(3), 590; https://doi.org/10.3390/pharmaceutics14030590 - 8 Mar 2022
Cited by 19 | Viewed by 3720
Abstract
The targeting of the Mitogen-Activated Protein Kinase (MAPK) signalling pathway in melanoma improves the prognosis of patients harbouring the V-Raf Murine Sarcoma Viral Oncogene Homolog B1 (BRAF) mutation. However, a fraction of these patients may experience tumour progression due to resistance to targeted [...] Read more.
The targeting of the Mitogen-Activated Protein Kinase (MAPK) signalling pathway in melanoma improves the prognosis of patients harbouring the V-Raf Murine Sarcoma Viral Oncogene Homolog B1 (BRAF) mutation. However, a fraction of these patients may experience tumour progression due to resistance to targeted therapy. Mutations affecting the Phosphoinositol-3-Kinase (PI3K)–Akt pathway may favour the onset of drug resistance, suggesting the existence of a crosstalk between the MAPK and PI3K–Akt pathways. We hypothesized that the inhibition of both pathways may be a therapeutic option in resistant melanoma. However, conflicting data have been generated in this context. In this study, three different A375 cell melanoma models either overexpressing or not expressing the wild-type or mutated form of the PhosphatidylInositol-4,5-bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA) gene were used to clarify the therapeutic response of melanoma to BRAF, Mitogen-Activated Protein Kinase Kinase 1 (MEK), and PI3K inhibitors in the presence of the PIK3CA H1047R mutation. Our data strongly support the notion that the crosstalk between the MAPK and PI3K–Akt pathways is one of the main mechanisms associated with melanoma development and progression and that the combination of MAPK and PI3K inhibitors may sensitize melanoma cells to therapy. Full article
(This article belongs to the Special Issue Protein Kinase Inhibitors for Targeted Anticancer Therapies)
Show Figures

Figure 1

21 pages, 3985 KiB  
Article
A Comprehensive In Silico Exploration of Pharmacological Properties, Bioactivities, Molecular Docking, and Anticancer Potential of Vieloplain F from Xylopia vielana Targeting B-Raf Kinase
by Syed Shams ul Hassan, Syed Qamar Abbas, Fawad Ali, Muhammad Ishaq, Iqra Bano, Mubashir Hassan, Hui-Zi Jin and Simona G. Bungau
Molecules 2022, 27(3), 917; https://doi.org/10.3390/molecules27030917 - 28 Jan 2022
Cited by 56 | Viewed by 4679
Abstract
Compounds derived from plants have several anticancer properties. In the current study, one guaiane-type sesquiterpene dimer, vieloplain F, isolated from Xylopia vielana species, was tested against B-Raf kinase protein (PDB: 3OG7), a potent target for melanoma. A comprehensive in silico analysis was conducted [...] Read more.
Compounds derived from plants have several anticancer properties. In the current study, one guaiane-type sesquiterpene dimer, vieloplain F, isolated from Xylopia vielana species, was tested against B-Raf kinase protein (PDB: 3OG7), a potent target for melanoma. A comprehensive in silico analysis was conducted in this research to understand the pharmacological properties of a compound encompassing absorption, distribution, metabolism, excretion, and toxicity (ADMET), bioactivity score predictions, and molecular docking. During ADMET estimations, the FDA-approved medicine vemurafenib was hepatotoxic, cytochrome-inhibiting, and non-cardiotoxic compared to the vieloplain F. The bioactivity scores of vieloplain F were active for nuclear receptor ligand and enzyme inhibitor. During molecular docking experiments, the compound vieloplain F has displayed a higher binding potential with −11.8 kcal/mol energy than control vemurafenib −10.2 kcal/mol. It was shown that intermolecular interaction with the B-Raf complex and the enzyme’s active gorge through hydrogen bonding and hydrophobic contacts was very accurate for the compound vieloplain F, which was then examined for MD simulations. In addition, simulations using MM-GBSA showed that vieloplain F had the greatest propensity to bind to active site residues. The vieloplain F has predominantly represented a more robust profile compared to control vemurafenib, and these results opened the road for vieloplain F for its utilization as a plausible anti-melanoma agent and anticancer drug in the next era. Full article
(This article belongs to the Special Issue Natural Products for Chronic Diseases: A Ray of Hope)
Show Figures

Figure 1

9 pages, 317 KiB  
Review
VISTA, PDL-L1, and BRAF—A Review of New and Old Markers in the Prognosis of Melanoma
by Andreea Cătălina Tinca, Iuliu Gabriel Cocuz, Mihaela Cornelia Șincu, Raluca Niculescu, Adrian Horațiu Sabău, Diana Maria Chiorean, Andreea Raluca Szőke and Ovidiu Simion Cotoi
Medicina 2022, 58(1), 74; https://doi.org/10.3390/medicina58010074 - 4 Jan 2022
Cited by 5 | Viewed by 2781
Abstract
Melanoma is currently known as one of the most aggressive malignant tumors. The prognostic factors and particularities of this neoplasm are a persistent hot topic in the medical field. This review has multiple purposes. First, we aim to summarize the known data regarding [...] Read more.
Melanoma is currently known as one of the most aggressive malignant tumors. The prognostic factors and particularities of this neoplasm are a persistent hot topic in the medical field. This review has multiple purposes. First, we aim to summarize the known data regarding the histological and immunohistochemical appearance of this versatile tumor and to look further into the analysis of several widely used prognostic markers, such as B-Raf proto-oncogene, serine/threonine kinase BRAF. The second purpose is to analyze the data on the new prognostic markers, V-domain Immunoglobulin Suppressor of T cell Activation (VISTA) and Programmed death-ligand 1 (PD-L1). VISTA is a novel target that is considered to be highly important in determining the invasive potential and treatment response of a melanoma, and there are currently only a limited number of studies describing its role. PD-L1 is a marker with whose importance has been revealed in multiple types of malignancies, but its exact role regarding melanoma remains under investigation. In conclusion, the gathered data highlights the importance of correlations between these markers toward providing patients with a better outcome. Full article
(This article belongs to the Special Issue New Perspectives in the Treatment of Skin Disease)
14 pages, 4684 KiB  
Article
Structural Protein Analysis of Driver Gene Mutations in Conjunctival Melanoma
by Mak B. Djulbegovic, Vladimir N. Uversky, J. William Harbour, Anat Galor and Carol L. Karp
Genes 2021, 12(10), 1625; https://doi.org/10.3390/genes12101625 - 15 Oct 2021
Cited by 11 | Viewed by 2742
Abstract
In recent years, there has been tremendous enthusiasm with respect to detailing the genetic basis of many neoplasms, including conjunctival melanoma (CM). We aim to analyze five proteins associated with CM, namely BRAF, NRAS, c-KIT, NF1, and PTEN. We evaluated each protein for [...] Read more.
In recent years, there has been tremendous enthusiasm with respect to detailing the genetic basis of many neoplasms, including conjunctival melanoma (CM). We aim to analyze five proteins associated with CM, namely BRAF, NRAS, c-KIT, NF1, and PTEN. We evaluated each protein for its intrinsically disordered protein regions (IDPRs) and its protein-protein interactions (PPI) with the Predictor of Natural Disordered Protein Regions (PONDR®) and the Search Tool for the Retrieval of Interacting Genes (STRING®). Our PONDR® analysis found high levels of IDPRs in all five proteins with mutations linked to CM. The highest levels of IDPRs were in BRAF (45.95%), followed by PTEN (31.76%), NF1 (22.19%), c-KIT (21.82%), and NRAS (14.81%). Our STRING analysis found that each of these five proteins had more predicted interactions then expected (p-value < 1.0 × 10−16). Our analysis demonstrates that the mutations linked to CM likely affected IDPRs and possibly altered their highly complex PPIs. Quantifying IDPRs in BRAF, NRAS, c-KIT, NF1, and PTEN and understanding these protein regions are important processes as IDPRs can be possible drug targets for novel targeted therapies for treating CM. Full article
(This article belongs to the Special Issue Genetics and Genomics of Melanoma)
Show Figures

Figure 1

16 pages, 1144 KiB  
Review
Treatment of Rare Mutations in Patients with Lung Cancer
by Tarek Taha, Rasha Khoury, Ronen Brenner, Haitam Nasrallah, Irena Shofaniyeh, Samih Yousef and Abed Agbarya
Biomedicines 2021, 9(5), 534; https://doi.org/10.3390/biomedicines9050534 - 11 May 2021
Cited by 11 | Viewed by 5870
Abstract
Lung cancer is a worldwide prevalent malignancy. This disease has a low survival rate due to diagnosis at a late stage challenged by the involvement of metastatic sites. Non-small-cell lung cancer (NSCLC) is presented in 85% of cases. The last decade has experienced [...] Read more.
Lung cancer is a worldwide prevalent malignancy. This disease has a low survival rate due to diagnosis at a late stage challenged by the involvement of metastatic sites. Non-small-cell lung cancer (NSCLC) is presented in 85% of cases. The last decade has experienced substantial advancements in scientific research, leading to a novel targeted therapeutic approach. The newly developed pharmaceutical agents are aimed towards specific mutations, detected in individual patients inflicted by lung cancer. These drugs have longer and improved response rates compared to traditional chemotherapy. Recent studies were able to identify rare mutations found in pulmonary tumors. Among the gene alterations detected were mesenchymal epithelial transition factor (MET), human epidermal growth factor 2 (HER2), B-type Raf kinase (BRAF), c-ROS proto-oncogene (ROS1), rearranged during transfection (RET) and neurotrophic tyrosine kinase (NTRK). Ongoing clinical trials are gaining insight onto possible first and second lines of medical treatment options intended to enable progression-free survival to lung cancer patients. Full article
(This article belongs to the Special Issue Lung Cancer: Tumor Progression and Target Therapy)
Show Figures

Figure 1

7 pages, 780 KiB  
Case Report
A Rare p.T599dup BRAF Mutant NSCLC in a Non-Smoker
by Alla Turshudzhyan and James Vredenburgh
Curr. Oncol. 2021, 28(1), 196-202; https://doi.org/10.3390/curroncol28010021 - 25 Dec 2020
Cited by 9 | Viewed by 2878
Abstract
V-RAF murine sarcoma viral oncogene homolog B1 (BRAF) mutated non-small-cell lung cancer (NSCLC) is an exceptionally rare form of lung cancer, found only in one to two percent of patients with an NSCLC diagnosis. BRAF NSCLC traditionally affects former or active smokers. BRAF [...] Read more.
V-RAF murine sarcoma viral oncogene homolog B1 (BRAF) mutated non-small-cell lung cancer (NSCLC) is an exceptionally rare form of lung cancer, found only in one to two percent of patients with an NSCLC diagnosis. BRAF NSCLC traditionally affects former or active smokers. BRAF mutations have always been of special interest to the oncological community, as they offer potential for targeted therapies. BRAF mutation spectrum includes mutations that are of both V600 and non-V600 types. BRAF V600 is an activating mutation, which results in high kinase activity and overproduction of active oncoproteins such as rapidly accelerated fibrosarcoma (RAF). This makes them susceptible to targeted therapies with RAF inhibitors. There has been little evidence, however, regarding efficacy of RAF inhibitors towards non-activating mutations that have intermediate to low kinase activity, such as non-V600 BRAF mutations. While several approaches have been investigated to overcome the limitations of RAF inhibitors, such as use of mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) inhibitors or combination of MEK and RAF inhibitors, none of them have been proven to have a superior efficacy for low kinase activity non-V600 BRAF tumors. We present a case of an extremely rare variant of NSCLC BRAF p.T599dup mutation in a non-smoker that responded to a targeted combination therapy with RAF and MEK inhibitors. The patient responded well to therapy that usually targets high kinase activity V600 mutations. Our hope is to bring more attention to non-V600 mutations and document their responses to existing and new therapies. Full article
Show Figures

Figure 1

22 pages, 6554 KiB  
Article
NAMPT Over-Expression Recapitulates the BRAF Inhibitor Resistant Phenotype Plasticity in Melanoma
by Valentina Audrito, Vincenzo Gianluca Messana, Enrico Moiso, Nicoletta Vitale, Francesca Arruga, Lorenzo Brandimarte, Federica Gaudino, Elisa Pellegrino, Tiziana Vaisitti, Chiara Riganti, Roberto Piva and Silvia Deaglio
Cancers 2020, 12(12), 3855; https://doi.org/10.3390/cancers12123855 - 20 Dec 2020
Cited by 19 | Viewed by 4184
Abstract
Serine–threonine protein kinase B-RAF (BRAF)-mutated metastatic melanoma (MM) is a highly aggressive type of skin cancer. Treatment of MM patients using BRAF/MEK inhibitors (BRAFi/MEKi) eventually leads to drug resistance, limiting any clinical benefit. Herein, we demonstrated that the nicotinamide adenine dinucleotide [...] Read more.
Serine–threonine protein kinase B-RAF (BRAF)-mutated metastatic melanoma (MM) is a highly aggressive type of skin cancer. Treatment of MM patients using BRAF/MEK inhibitors (BRAFi/MEKi) eventually leads to drug resistance, limiting any clinical benefit. Herein, we demonstrated that the nicotinamide adenine dinucleotide (NAD)-biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) is a driving factor in BRAFi resistance development. Using stable and inducible NAMPT over-expression systems, we showed that forced NAMPT expression in MM BRAF-mutated cell lines led to increased energy production, MAPK activation, colony-formation capacity, and enhance tumorigenicity in vivo. Moreover, NAMPT over-expressing cells switched toward an invasive/mesenchymal phenotype, up-regulating expression of ZEB1 and TWIST, two transcription factors driving the epithelial to mesenchymal transition (EMT) process. Consistently, within the NAMPT-overexpressing cell line variants, we observed an increased percentage of a rare, drug-effluxing stem cell-like side population (SP) of cells, paralleled by up-regulation of ABCC1/MRP1 expression and CD133-positive cells. The direct correlation between NAMPT expression and gene set enrichments involving metastasis, invasiveness and mesenchymal/stemness properties were verified also in melanoma patients by analyzing The Cancer Genome Atlas (TCGA) datasets. On the other hand, CRISPR/Cas9 full knock-out NAMPT BRAFi-resistant MM cells are not viable, while inducible partial silencing drastically reduces tumor growth and aggressiveness. Overall, this work revealed that NAMPT over-expression is both necessary and sufficient to recapitulate the BRAFi-resistant phenotype plasticity. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Skin Cancer)
Show Figures

Figure 1

23 pages, 3534 KiB  
Article
Gene Expression Alterations Associated with Oleuropein-Induced Antiproliferative Effects and S-Phase Cell Cycle Arrest in Triple-Negative Breast Cancer Cells
by Samia S. Messeha, Najla O. Zarmouh, Abrar Asiri and Karam F. A. Soliman
Nutrients 2020, 12(12), 3755; https://doi.org/10.3390/nu12123755 - 7 Dec 2020
Cited by 37 | Viewed by 5103
Abstract
It is known that the Mediterranean diet is effective in reducing the risk of several chronic diseases, including cancer. A critical component of the Mediterranean diet is olive oil, and the relationship between olive oil consumption and the reduced risk of cancer has [...] Read more.
It is known that the Mediterranean diet is effective in reducing the risk of several chronic diseases, including cancer. A critical component of the Mediterranean diet is olive oil, and the relationship between olive oil consumption and the reduced risk of cancer has been established. Oleuropein (OL) is the most prominent polyphenol component of olive fruits and leaves. This compound has been shown to have potent properties in various types of cancers, including breast cancer. In the present study, the molecular mechanism of OL was examined in two racially different triple-negative breast cancer (TNBC) cell lines—African American (AA, MDA-MB-468) and Caucasian American (CA, MDA-MB-231). The data obtained showed that OL effectively inhibits cell growth in both cell lines, concomitant with S-phase cell cycle arrest-mediated apoptosis. The results also showed that OL-treated MDA-MB-468 cells were two-fold more sensitive to OL antiproliferative effect than MDA-MB-231 cells were. At lower concentrations, OL modified the expression of many apoptosis-involved genes. OL was more effective in MDA-MB-468, compared to MDA-MB-231 cells, in terms of the number and the fold-change of the altered genes. In MDA-MB-468 cells, OL induced a noticeable transcription activation in fourteen genes, including two members of the caspase family: caspase 1 (CASP1) and caspase 14 (CASP14); two members of the TNF receptor superfamily: Fas-associated via death domain (FADD) and TNF receptor superfamily 21 (TNFRSF21); six other proapoptotic genes: growth arrest and DNA damage-inducible 45 alpha (GADD45A), cytochrome c somatic (CYCS), BCL-2 interacting protein 2 (BNIP2), BCL-2 interacting protein 3 (BNIP3), BH3 interacting domain death agonist (BID), and B-cell lymphoma/leukemia 10 (BCL10); and the CASP8 and FADD-like apoptosis regulator (CFLAR) gene. Moreover, in MDA-MB-468 cells, OL induced a significant upregulation in two antiapoptotic genes: bifunctional apoptosis regulator (BFAR) and B-Raf proto-oncogene (BRAF) and a baculoviral inhibitor of apoptosis (IAP) repeat-containing 3 (BIRC3). On the contrary, in MDA-MB-231 cells, OL showed mixed impacts on gene expression. OL significantly upregulated the mRNA expression of four genes: BIRC3, receptor-interacting serine/threonine kinase 2 (RIPK2), TNF receptor superfamily 10A (TNFRSF10A), and caspase 4 (CASP4). Additionally, another four genes were repressed, including caspase 6 (CASP6), pyrin domain (PYD), and caspase recruitment domain (CARD)-containing (PAYCARD), baculoviral IAP repeat-containing 5 (BIRC5), and the most downregulated TNF receptor superfamily member 11B (TNFRSF11B, 16.34-fold). In conclusion, the data obtained indicate that the two cell lines were markedly different in the anticancer effect and mechanisms of oleuropein’s ability to alter apoptosis-related gene expressions. The results obtained from this study should also guide the potential utilization of oleuropein as an adjunct therapy for TNBC to increase chemotherapy effectiveness and prevent cancer progression. Full article
(This article belongs to the Special Issue Plant-Based Foods in Cancer Prevention and Treatment)
Show Figures

Figure 1

Back to TopTop